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GRAPHICAL ABSTRACT 

 
ABSTRACT: 

 

According to the United States Environmental Protection Agency, 81% of greenhouse gas 

emission is due to Carbon-dioxide. When fossil fuels, solid waste, trees, and wood products 

are burnt, Carbon-dioxide emission occurs. The concentration of Carbon-dioxide in the 

atmosphere is reduced when it is absorbed by plants as a part of the biological carbon cycle. 

The major sources of CO2 emission are from fossil fuel such as coal, natural gas, oil, cement 

production, gas flares used in industrial plants and bunker fuels used in ships. Increase in CO2 

emission leads to the increase in global warming. Climate change, change in seasonal events 

and decrease in agricultural productivity are the major impacts of global warming. Hence it is 

important to study and analyse CO2 emission based on the recorded data across the globe. 

Further the major source of emission must be detected, and alert messages must be sent to the 

pollution control boards in various countries to take necessary remedial actions. This work 

focuses on predicting the CO2 emission in the near future in various countries based upon the 

“Fossil-Fuel CO2 Emissions by Nation” dataset recorded by Carbon Dioxide Information 

Analysis Center (CDIAC), Oak Ridge National Laboratory. This system comprises of data 

cleaning, data normalization, optimization, and model building. The model built using 

Multiple Kernel Gaussian Process (MKGP) will predict the concentration of CO2 that may be 

present in the atmosphere in upcoming years. Based on the prediction the major source of 

CO2 emission is identified. We have studied the effects of Radial Basis Function kernel, 

Rational Quadratic, Periodic kernel and combinations of the kernels on India USA and China 
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dataset. We have proposed a Multi-Kernel Gaussian Process for predicting the fossil fuel 

emission (MKGP - FFE). It has been inferred that combination of kernels performed well 

when compared to individual kernels in most of the cases. 

Keywords: Fossil fuel, CO2 emission, global warming, CDIAC, data cleaning, data 

normalization, model building, machine learning techniques. 

1. Introduction: 

Global warming and the effects of fossil fuel emission are considered among the critical 

issues in the fields of science. This has raised the concern regarding the contributions of 

carbon dioxide (CO2) to global warming [1]. The United States Environmental Protection 

Agency pointed out that more than 81% of greenhouse gases are probably caused by the 

emission of Carbon-dioxide.  The emission of Carbon-dioxide occurs when fossil fuels, solid 

waste, trees, and wood products are burnt. This emission has caused a negative impact across 

the globe. One of the major impacts is an increase in temperature, which has started affecting 

health in several societies across the world. Weather conditions are extremely increasing, in 

particular heat waves, floods, and storms, which results in an increasing loss of human life 

and injuries due to natural disasters caused by climate change. This increase in carbon 

dioxide affects determinants of health, such as quality and quantity of foods, water resources, 

and ecological disease control vector [2]. Energy consumption is considered as the main 

source of greenhouse emissions [3]. From the period 1970–2010 energy consumption for the 

Organization of the Petroleum Exporting Countries (OPEC) has risen by 685%, whereas the 

emissions of CO2 have risen by 440% as a result of burning fossil fuels within that period. 

Thus, there is a drastic increase in energy consumption and CO2 emissions of the OPEC 

countries.   

The CO2 emission caused by burning of fossil fuels has raised the global temperature [4, 25]. 

The OPEC countries have contributed more to the world CO2 emissions in 2010. Such a 

contribution can significantly affect the use of energy in the future by OPEC countries. 

Global warming is one of the critical issues currently faced by the world. As global warming 

has become a serious threat, the policy makers and government officials throughout the globe 

are striving in creating a new template which takes into consideration energy conservation 

and reduction in emission of greenhouse gases [5]. In fact, by reducing greenhouse gas 

emission, global warming can be reduced. Reducing greenhouse gas emission, in particular 

CO2 emission, requires an accurate fossil fuel emission prediction system. In turn this can 

help the policy makers and officials to closely monitor and control fossil fuel emission [6]. 

The change of climate policies and providing a pointer for alternative energy sources requires 

a proper CO2 prediction system [7]. The formation of preventive measures for reducing CO2 

emissions has encouraged past researchers to apply computational intelligent algorithms due 

to their supremacy over formal logic, mathematical programming [8], and statistical methods 

[9] for predicting the CO2 emission.  

Our primary aim is to apply the Gaussian Process Multi-Kernel methods to predict the CO2 

emission. As the dataset is small, most of the deep learning techniques will not perform well. 



   

 

   

 

Whereas Multi-Kernel Gaussian Process performs better in a small dataset when compared to 

other machine learning and deep learning techniques. In this work we have analysed the 

performance of various kernels separately and combining 2 or more kernels together (multi-

kernel) to understand it's working. 

2. Related works: 

 

 Inspite of the drawbacks of the traditional methods, a non-homogeneous exponential 

equation and a linear equation was used by Meng et al. [10] to construct a model for the 

prediction of CO2 emissions related to energy related in China. Chen and Wang [11] used a 

hybrid of Fuzzy Regression and Back Propagation Neural Network (FRBPNN) to forecast the 

global concentration of CO2 thereby avoiding limitations of the traditional methods. This 

hybrid method was found to improve the accuracy of CO2 forecasting. Chen [6] applied a 

collaborative fuzzy neural network to increase the forecasting accuracy of the FRBPNN. 

Results obtained show that the collaborative fuzzy neural network performs better than the 

FRBPNN and statistical methods in the forecasting of global CO2. Bao and Hui [12] used the 

Grey model to construct a model for the forecasting of CO2 emissions in Shijiazhuang, 

China. The model constructed was used to project the CO2 emissions of Shijiazhuang from 

2010 to 2020. In yet another study, the emission of CO2 related to energy in developing 

countries was predicted using the Grey model [13]. It was found that the Grey model was not 

effective with a large sample of data; it only requires small samples of observations to be 

robust [14]. Also, it was observed that the model lacks fitting ability and has a defect in 

nonlinear modelling [15]. This encouraged Tan and Zhang [15] to apply GA to enhance 

fitting ability of the Grey model and combined the genetic algorithm (GA) fitted Grey model 

into BPNN for enhancing its nonlinear approximation ability. The model was applied to 

predict energy load with enhanced performance. However, the BPNN is a gradient based 

algorithm that has the chance of being trapped in local minima; it has slow convergence rate, 

and the algorithm is highly dependent on parameter settings and it generates complex error 

surfaces with a many local minimum [16–17].  

Fuzzy systems are short of the capability of learning input data; also, human language 

is used to represent the input and output of the systems. Hence, incomplete, or wrong rules 

cannot be handled finely by fuzzy systems. The GA eradicates previous knowledge of the 

problem if the population changes [18] and requires multiple parameter settings that weaken 

its robustness [19]. Studies on the forecasting of OPEC CO2 emission from petroleum 

consumption are insufficient in the literature, regardless of the increasing consumption of 

petroleum and emissions of CO2 by the OPEC countries.  Cao uses component prediction 

method for flue gas of natural gas combustion based on Nonlinear Partial Least Squares 

Method. Nonlinear partial least squares (NPLS) with extended input could solve the 

nonlinear problems effectively [20].  The NPLS method with extended input based on Radial 

Basis Function Neural Network (RBFNN) is used for component prediction of flue gas. A 

near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the 

effectiveness of the NPLS method. The NPLS method with RBFNN is computationally 

inefficient and suffers from over-fitting.  

Abbas applied the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to predict 

CO2 emissions based on important input indicators like energy consumption and economic 



   

 

   

 

growth [21]. The fuzzy rules through ANFIS were used to generalize the relationships of the 

input and output indicators in order to make a prediction of CO2 emissions. This was also 

found to be computationally inefficient and overfitting. Wilson and Adams introduced simple 

closed form kernels that can be used with Gaussian processes to discover patterns and enable 

extrapolation [22]. Importance of machine learning and deep learning algorithms in CO2 

emissions are discussed in [23-24]. Miyazaki and Bowman used modified Environmental 

Kuznets Curve to postulate the coevolution of fossil fuel CO2 (FFCO2) and NOx emissions 

using Kalman filter and analysed the relationship between NOx and FFCO2 [26]. Ahmadi 

et.al. used artificial neural network approach Group Method of Data Handling (GMDH) to 

predict the CO2 emission based on the consumption of fossil fuels like coal, oil, natural gas 

and renewable energy sources [27]. Drawbacks of the previous studies and lack of work on 

the forecasting of OPEC CO2 emission from petroleum consumptions stirred the present 

research.  

 

3. Gaussian process: 

A Gaussian process (GP) is a collection of random variables, any infinite number of which 

have a joint Gaussian distribution. Using a Gaussian process, we can define a distribution 

over functions 𝑓(𝑥)  f(x) in Equation 1 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))(1)  

where xεRP is an arbitrary input variable, and the mean function 𝑚(𝑥)       𝑘(𝑥, 𝑥′)￼              

as in Equation 3 are defined as                   𝑚(𝑥) = 𝐸[𝑓(𝑥)]                                                    

(2) 

 

                   𝑘(𝑥, 𝑥′) = 𝑐𝑜𝑣(𝑓(𝑥), 𝑓(𝑥′))                                                                     (3) 

Any collection of function values has a joint Gaussian distribution denoted by Equation 4 

                 [𝑓(𝑥1), 𝑓(𝑥2), . . . . , 𝑓(𝑥𝑁)]𝑇~ 𝑁(𝜇, 𝐾))                                                                         

(4)where the N x N covariance matrix K has entries Kij = k(xi,x j), and the mean μ has entries 

μi = m(xi). The properties of the functions- smoothness, periodicity, etc.. are determined by 

the kernel function. Mean function, μ(x), usually defined to be zero. Justified by 

manipulating the data. Covariance function(kernel), k(x, x) defines the prior properties of the 

functions considered for inference. The properties include stationarity and smoothness. 

Stationary process is a stochastic process whose joint probability distribution does not change 

when shifted in time. Consequently, parameters such as the mean and variance, if they are 

present, also do not change over time. In probability theory and statistics, smoothness of a 

density function is a measure which determines how many times the density function can be 

differentiated. Statistical parameters of the process do not change with time. 

 

3.1. Covariance Kernel Functions 

 

The heart of every Gaussian process model is a covariance kernel. The kernel k explicitly 

specifies the covariance between a pair of random function values at a pair of input points: 

k(x,x’) = cov(f(x),f(x’)). The particular choice of covariance function determines the 

properties of sample functions drawn from the GP prior (e.g. smoothness, length scales, 



   

 

   

 

amplitude etc). Therefore, it is an important part of GP modelling to select an appropriate 

covariance function for a particular problem. The are several types of covariance functions it 

includes the following: 

 

3.1.1. Radial Basis Function Kernel (RBF) 

 

The Radial Basis Function (RBF) kernel, also sometimes called the Gaussian, squared 

exponential function, or exponentiated quadratic kernel, is probably the most widely used 

kernel. The RBF kernel has become the default kernel for GPs. It has some nice properties 

like very smooth. It is universal and has a clear connection with Gaussian density. Gaussian 

process with an RBF kernel has the form as given in Equation 5, 

          𝑘𝑅𝐵𝐹(𝑥, 𝑥′) = 𝜎2𝑒𝑥𝑝(−(𝑥 − 𝑥′)2/2𝑙2)                                                                       

(5) 

To model the long term smooth rising trend, we use an RBF covariance term. It has two 

hyperparameters controlling the amplitude 𝜎 and characteristic length-scale l. 

 

3.1.2. Rational Quadratic (RQ) 

 

The squared exponential kernel assumes that the data are only varying at one particular 

length-scale. In different mechanisms underlying the data could be varying on different 

scales. It may often be unsure about the scales over which data are varying and indeed we 

may wish to account for infinitely many scales. The rational quadratic (RQ) kernel is a scale 

mixture (infinite sum) of squared exponential kernels with different length-scales. The RQ 

kernel is intended to model multi-scale data. This kernel is equivalent to adding together 

many SE kernels with different length scales. So, GP priors with this kernel expect to see 

functions which vary smoothly across many length scales. The rational quadratic (RQ) 

covariance function is mentioned in Equation 6 

 

𝑘𝑅𝑄(𝑥, 𝑥′)  =  𝜎2(1 + (𝑥 − 𝑥′)2/2𝑙2)−𝛼                                          

(6) 

It includes three hyperparameters values, magnitude 𝜎, length scale l and shape parameter 𝛼. 

The RQ kernel is a scale mixture of squared exponential kernels with different length-scales. 

To model the medium-term irregularities a rational quadratic term is used. 

 

3.1.3. Periodic (PE) 

 

This kernel is mostly useful in combination with other covariance functions. For example, 

this kernel is used in combination with squared exponential (SE) and rational quadratic (RQ) 

kernels. This kernel gives rise to periodic functions. The Periodic Covariance function is 

given in Equation 7, 

𝑘(𝑥, 𝑥′) = 𝜎2𝑒𝑥𝑝(−((𝑥 − 𝑥′)2/2𝑏2) − (−2𝑠𝑖𝑛2((𝑥 − 𝑥′))/ℎ
2))                                                                                                 

(7) 



   

 

   

 

Periodic covariance function can be used with a period of one year to model the seasonal 

variation. It includes three hyperparameters values, magnitude l, decay-time for the periodic 

component b and smoothness of the periodic component h. 

 

3.1.4. Matern (MA) 

 

The Matern kernel is the second most popular kernel, after the squared exponential or RBF 

kernel. Smoothness properties of the squared exponential kernel is unrealistic and 

recommends the Matern kernel as an alternative. The kernel is given in Equation 8𝑘(𝑥𝑖, 𝑥𝑗) =

1/𝛤(𝑣)2𝑣 − 1 ((√2𝑣/𝑙)𝑑(𝑥𝑖, 𝑥𝑗)) 𝑣𝐾𝑣 ((√2𝑣/𝑙)𝑑(𝑥𝑖, 𝑥𝑗))   (8) 

 

where d(.,.) is the Euclidean distance,  Kv(.) is a modified Bessel function and 𝛤(.) is the 

gamma function. It has an additional parameter which controls the smoothness of the 

resulting function. The smaller, the less smooth the approximated function is.  

 

3.1.5. Spectral Mixture (SM) 

 

It is closed form kernels for automatic pattern discovery and extrapolation. These spectral 

mixture (SM) kernels are derived by modelling the spectral density of the kernel (its Fourier 

transform) using a scale-location Gaussian mixture. SM kernels form a basis for all stationary 

covariances and can be used as a drop-in replacement for standard kernels, as they retain 

simple and exact learning and inference procedures. 

 

4. Proposed System: 

 

The architecture diagram of the proposed system Multi-Kernel Gaussian Process for fossil 

fuel emission (MKGP - FFE) to predict the CO2 emission in the near future in various 

countries based upon the Fossil-Fuel CO2 Emissions by Nation dataset[1] recorded by Carbon 

Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory is given in 

Figure 1. The system comprises data collection, data cleaning, model Selection, 

hyperparameter optimization, Cholesky decomposition and prediction stages. The data is 

collected from Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National 

Laboratory. The features of the data are given in Table 1. The collected data is cleaned to 

eliminate all the missing values and erroneous values. The data is structured and given as 

input to train a machine learning model in the model selection stage. Model selection is the 

process of setting hyperparameters to the covariance functions of the Gaussian Process (GP). 

It is used to refine the predictions and give a better interpretation about the properties of the 

given data. The families of covariance kernel functions are, Radial Basis Function (RBF), 

Matern (MA), Rational Quadratic (RQ), Periodic (PE), etc. Each of these families have a 

number of free parameters, these values are determined using an optimization algorithm 
[1] https://www.osti.gov/biblio/1394401 

during the hyper parameter optimization stage. One such multivariate optimization algorithm 

is a Scaled Conjugate Gradient (SCG) algorithm. SCG is fully automated, it includes no 

https://www.osti.gov/biblio/1394401


   

 

   

 

critical user-dependent parameters and thereby avoids a timeconsuming line search. GP 

makes useof  inverse matrix computation which is computationally intense. One of the 

approaches to reduce the computation time to compute an inverse matrix is Cholesky’s 

decomposition.  The Cholesky decomposition of a symmetric, positive-definite matrix 

decomposes matrix A into the product of its lower triangular matrix L and its transpose. It is 

represented as shown in Equation 9, 

𝐴 =  𝐿𝐿𝑇      (9) 

where L is called the Cholesky factor of A. Cholesky decomposition is done because it is 

faster and numerically stable when compared to directly inverting the matrix.

Figure 1. 

Overall System Architecture Diagram 

Once the hyperparameters of GP are optimized during hyper parameter optimization and 

Cholesky’s decomposition, the learnt model is generated with multiple kernels selected 

during model selection stage. The learnt Multiple Kernel Gaussian Process (MKGP - FFE) 

model is used to predict the per capita CO2 emissions. 

Table 1. Features of Fossil-Fuel CO2 Emissions Dataset 

 

Nation Emissions from liquid fuel 

consumption 

Year Emissions from gas fuel consumption 

Total CO2 emissions from fossil-fuels 

and cement production  

Emissions from cement production 

Emissions from solid fuel consumption Emissions from gas flaring 

Emissions from bunker fuels  Per capita CO2 emissions (metric tons 

of carbon) 

 

 

5. 5. Implementation: 

 



   

 

   

 

The steps to implement MKGP - FFE regression are given in algorithm 1. Based on algorithm 

1, algorithm 2 is derived to build the learnt MKGP model to predict the total emissions. 

Algorithm 1 takes the training inputs, training target, kernel functions, noise level and test 

data as input, based on the processing it produces predictive mean, variance, and log-

marginal likelihood as output.  The training inputs include features like Year, total CO2 

emissions from fossil-fuels and cement production, emissions from solid fuel consumption, 

emissions from liquid fuel consumption, emissions from gas fuel consumption, emissions 

from cement production, emissions from gas flaring and emissions from bunker fuels. 

According to requirements kernel parameters are initialized. The algorithm 1 performs 

computation of kernel matrix, inverse matrix using Cholesky decomposition, predictive 

mean, predictive variance and log-marginal likelihood in a sequential way. Algorithm 2 is 

responsible for finding the optimal hyperparameters and thereby formulating the learnt 

MKGP model. It works based on the concept of maximizing the log marginal likelihood. The 

predictive mean of the MKGP model is the predicted per capita CO2 emission and the 

predictive variance of the MKGP is the uncertainty in the predictive per capita CO2 

emission.Algorithm 1. Multiple Kernel Gaussian Process (MKGP) Regression 

 
Algorithm 2. MKGP for Emission Prediction  

 
 

6. Results and Discussion:  

The proposed system (MKGP-FFE) uses the data collected from Carbon Dioxide Information 

Analysis Center (CDIAC), Oak Ridge National Laboratory. There are 265 samples available 

in the training dataset and 120 samples available in the test dataset. The quality of the data is 

ensured by using appropriate data preparation techniques. Based on the Exploratory data 

analysis, particular kernels are chosen to build the MKGP model for three different countries 



   

 

   

 

namely India, USA, and China. As data collected for different countries adheres to various 

patterns, different  kernel functions are chosen to build an accurate GP model for the 

respective patterns. In some cases, the accuracy can be achieved using a single kernel, 

whereas in most cases the multiple kernel learning works better. The proposed work uses a 

fixed rule linear combination approach to perform multiple kernel learning. Based on the 

choice of the kernels, the parameter of the kernel varies. The inverse of the new kernel is 

found using Cholesky decomposition. The parameters are learnt using the Limited-Memory 

Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm.   

 

From algorithm 2 it is clear that the optimal values of the parameter are found by maximizing 

the likelihood. Using the optimal values of parameter the computed mean and computed 

variance are found as in algorithm 1. The predictive mean of the MKGP model is the 

predicted per capita CO2 emission and the predictive variance of the MKGP is the 

uncertainty in the predictive per capita CO2 emission. The visual representation of the 

predicted and actual values is shown in Figure 2. 

From the figure 2, it is observed that in the graphs based on India data, the test_predicted of 

RBF+PE+RQ is closer to test_actual whereas in the graphs based on USA data, the 

test_predicted of RBF+RQ is closer to test_actual. In case of China data, the  test_predicted 

of a single kernel RBF is closer to test_actual.  

 

We have used the metrics like correlation coefficient (r) and log likelihood (L) to measure the 

performance of the Kernel methods in Gaussian Process. The formula to calculate r and L are 

given in Equations 10 and 11 respectively. Correction coefficient (r) is used to find the 

relationship between the parameters in the dataset. This is used to identify the level of 

correlation. If the r value is positive, then the parameters are positively correlated and if it is a 

negative value, then the parameters are negatively correlated.  If the r value is 0, then there is 

no correlation between the parameters. It gives the dependency and contribution of the 

parameters or attributes in predicting the response or output variable. Log likelihood function 

(L) is an important measure used in point estimation of the response parameters in statistical 

models. Since we are predicting the CO2 emission value, we have used the log likelihood 

function as a metric to evaluate the model. 
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Figure2. Fossil Fuel CO2 emission prediction using different combinations of Single 

Kernel and Multiple Kernels in GP for India, USA, and China 

 

The correlation coefficient and Log likelihood values obtained for various combinations of 

kernel functions using data of India, USA and China are given in the Tables 2 to 4.  

 

𝑟𝑥𝑦 =
𝑛 ∑ (𝑥𝑦)𝑛

𝑖=1 −∑ 𝑥 ∑ 𝑦 
 

 
 

√(𝑛 ∑ 𝑥2 
  −(∑ 𝑥 

  )2) (𝑛 ∑ 𝑦2 
  −(∑ 

   𝑦)2) 
                                                                                                        

(10) 

 

𝐿  =   ∑ ln 𝑓𝑖 (𝑦𝑖  | 𝜃)𝑛
𝑖=1                                                                           (11) 

 

Table 2. Performance Evaluation for India 

Metric RBF RBF+PE RBF+RQ  RBF+PE+RQ 

r 0.9216 0.9744  0.9263  0.9823 

L -102.73e6  -607.64e5  -504.23e5  -104.58e5 

In  Table 2 derived from India data, the results obtained show that the combination of all 

three kernels (RBF+RQ+PE) has better performance with highest correlation coefficient and 

highest log likelihood. Table3 derived based on the USA data, the results obtained show that 

the combination of RBF and RQ has better performance with the highest correlation 

coefficient.  

Table 3. Performance Evaluation for USA 

Metric Two RBF RBF+PE RBF+RQ  



   

 

   

 

r 0.9603  0.8749  0.9656 

L -138.92e5  -137.55e5  -45.02e5 

Likewise table 4 for China, the results obtained shows that RBF has better performance with 

highest correlation coefficient and highest log likelihood.  

Table 4. Performance Evaluation for China 

Metric RBF RBF+PE 

r 0.9634  0.8549 

L -453.47e7  -341.19e8 

 

7. Conclusion and Future work:  

In this work we have analyzed the importance of kernel methods in Gaussian process for 

small datasets. In real time scenario it is practically not possible to collect more critical data 

and so less amount of data is only available. Data augmentation techniques can be done to 

generate new data. Again, this may not provide good suggestions for critical data. Here 

Gaussian process was studied, and prediction was done on Fossil fuel emission data set using 

MKGP – FFE with the help of Radial Basis Function kernel, Rational Quadratic, Periodic 

kernel, and combination of kernels. The multiple kernel learning in GP has performed better 

for data from India and USA, whereas the single kernel itself has performed better for data 

from China. It has been found that RBF has been good enough in learning the long-term 

smoothness in data. The PE kernel has been proper in identifying the periodical variation 

exhibited by the data. Similar RQ kernel has contributed in identifying the haphazard 

behaviour in the data. When the data exhibited many properties like smoothness, periodicity 

and haphazardness, the linear combination of all the three kernels gave the best result. In 

future, problems can be further enhanced by using several other multiple kernel learning 

approaches to provide more generalized output. 
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