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ABSTRACT 13 

The aim of this work was to investigate an advanced oxidation process for removing malachite green 14 

from aqueous solutions using a modified Fenton-like process. An experimental Box-Behnken design 15 

was applied to determine the optimal conditions by examining the effects of catalyst concentration 16 

([Fe2+]), oxidant concentration ([K2S2O8]), and stirring speed. The analysis of variance (ANOVA) 17 

indicated that oxidant concentration was the most significant factor, with a p-value of 0.001, while 18 

catalyst concentration, the quadratic term of the oxidant, and the interaction between catalyst 19 

concentration and stirring speed were also significant. The optimal conditions for maximum dye 20 

removal were found to be a catalyst concentration of 3.5 ppm, an oxidant concentration of 3.07 ppm, 21 

and a stirring speed of 200 rpm, achieving a theoretical degradation yield of 100% and an 22 

experimental yield of 98%. This agreement validates the model and the importance of the optimized 23 

parameters. Additionally, degradation kinetics studies in various natural waters revealed that 24 

oxidation efficiency followed this order: Distilled water (98%) > Seawater ≈ Industrial water 25 

(88.97%) > Source water (85.57%) > Mineral water (80.52%). 26 

Keywords: Modified Fenton oxidation, Water treatment, Box-Behnken design, Homogeneous 27 

catalysis optimization, degradation kinetics, real matrix. 28 
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1. Introduction 30 

With the growth of humanity, science, and technology, our world is reaching new horizons, but the 31 

cost we'll be paying soon is bound to be too high. Environmental disorder, with a major pollution 32 

problem, is among the consequences of this rapid growth. Apart from other needs, the water demand 33 

has increased enormously with the agricultural, industrial, and domestic sectors consuming 70, 22, 34 

and 8% of the available freshwater respectively, resulting in large quantities of wastewater containing 35 

several pollutants (Gupt et al. 2009, Ali Akbar et al. 2017, Karimipour et al. 2021, Azizpour et al. 36 

2024). Once dissolved in water, they can be difficult to treat, as dyes have a synthetic origin and a 37 

complex molecular structure that makes them more stable and difficult to biodegrade (Forgacs et al. 38 

2004, Rai et al. 2005, Jalilzadeh et al. 2014, Shobirynia et al. 2024, Brati et al. 2024). They can 39 

therefore be a risk factor for our health and a nuisance for our environment, and it is necessary to 40 

limit these pollutants as much as possible by setting up a suitable treatment method, such as a 41 

decolorization unit. 42 

There are several physical, chemical, and biological methods for treating and decolorizing polluted 43 

effluents, such as coagulation and flocculation (Wu et al. 2015, Lee et al.2006, Zonoozi et al.2009, 44 

Zahrim et al. 2013, Souhaimi et al. 2011), membrane filtration (Jiraratananon et al. 2000, Koyuncu 45 

et al. 2002), chemical oxidation (Liu et al 2006, Ghodbane et al. 2014, Shokri et al. 2020, Nemati et 46 

al. 2024), extraction (Bendebane et al. 2016), ozonation (Lee et al. 2006, Baban et al 2010), ion 47 

exchange and electrochemical methods (Soloman et al 2009, Bahadir et al. 2008), and adsorption, 48 

etc. (Rangabhashiyam et al.  2013, Gashtasbi et al. 2017, Bendebane et al. 2021). 49 

In recent decades, much research has focused on a new class of oxidation techniques for dyes.  50 

This work is mainly based on the application of the modified Fenten-like process experimental design, 51 

the aim of which is to improve dye removal efficiency.  52 

Indeed, we first studied the oxidation of malachite green by the modified Fenton-like process 53 

(K2S2O8/𝑆𝑂4
− ° system) by showing the influence of some experimental parameters on the degradation 54 

yield. 55 

https://link.springer.com/article/10.1007/s10904-020-01859-1#auth-Zohreh-Karimipour-Aff1
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The reactions of persulfate ions with various inorganic compounds have been extensively studied 56 

(Ivanov et al 2000), and sulfate radicals are more powerful oxidants than hydroxyl and the 57 

thermodynamics of transition metal-oxidant coupling (Anipistakis et al. 2003, Anipistakis et al. 58 

2004), as they are more selective for oxidation (electron transfer). Hydroxyl radicals can also react 59 

rapidly through hydrogen elimination and addition, a fact also highlighted by our observation. 60 

secondly, we describe the oxidation kinetics of malachite green in a real matrix using different types 61 

of water. 62 

2. Materials and methods 63 

2.1. Materials 64 

Malachite green (C52H56N4O12 ),  Iron (II) sulfate heptahydrate  (purity 99%, FeSO4 .7H2O ), and 65 

sulfuric acid (purity 96-98%, H2SO4) were purchased from Sigma Aldrich, Potassium persulfate 66 

(purity 30%, K2S2O8) was purchased from Biochem Chemopharma. All the solutions used in the 67 

experiments were prepared with distilled water at pH was regulated using H2SO4 (1 M). 68 

2.2. Experimental procedures and analysis 69 

The study of the degradation of malachite green by potassium persulfate (K2S2O8) was carried out in 70 

a discontinuous, perfectly stirred and thermostated reactor shown in Figure 1. 71 

 72 

Figure 1. Experimental set-up 73 
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The reactor is first charged with 100 mL of a 10 ppm solution of malachite green. The pH of the 74 

reaction medium is adjusted to 3 using a few drops of sulfuric acid (H₂SO₄, 98% purity). The solution 75 

is then stirred for several minutes to ensure optimum homogenization. Subsequently, a determined 76 

volume of FeSO₄ solution is added, followed by the introduction of a volume of K₂S₂O₈ solution at 77 

the specified concentration. The mixture thus prepared is subjected to controlled stirring by a 78 

magnetic stirrer, at the prescribed speed as indicated in Table 1, while maintaining the system 79 

temperature at 20°C. The oxidation reaction starts as soon as the oxidant is added. To monitor reaction 80 

kinetics, a sample is taken after one hour of reaction. The samples are then analyzed by UV-visible 81 

spectrophotometry to quantify the species in solution. The malachite green removal yield is then 82 

calculated from the following equation: 83 

𝑌 (%) = [1 −
[MG]f

[MG]0
] × 100                      (1)                           84 

Where: [MG]0  the initial concentration of dye (mg/L) ; 85 

[VM]f  the final concentration (at equilibrium) of dye (mg/L) ; 86 

 Y (%): removal efficiency of MG. 87 

In this study, operating conditions were optimized to maximize the degradation yield of malachite 88 

green dye by applying response surface methodology (RSM), using a Box-Behnken design (BBD). 89 

Three independent variables were selected for the study: catalyst concentration [Fe²⁺], oxidant 90 

concentration [K₂S₂O₈], and stirring speed, while the other operating parameters were kept constant. 91 

The persulfate ion (S₂O₈²-) was used as the main oxidant, being one of the strongest oxidizing agents 92 

in aqueous solution, with a standard potential of 2.01 V/ENH. This potential, which is higher than 93 

that of hydrogen peroxide (H₂O₂, E°=1.78 V/ENH), gives the persulfate increased efficacy. However, 94 

to optimize its effectiveness, persulfate must be activated in the presence of catalysts, leading to the 95 

formation of the sulfate radical (SO₄.-), an even more powerful oxidant with a high oxidation potential 96 

(E° = 2.6 V/ENH) (Liang et al. 2003, Liang et al. 2008, Zhao et al. 2013). 97 
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Table 1 summarizes the factors studied and their respective levels. Statistical analysis of the 98 

experimental data was carried out using MINITAB 18 software. 99 

 100 

 101 

Table 1. Factors and domains studied. 102 

 103 

3. Results and Discussion 104 

3.1. Results 105 

In the first part of this article, the removal of malachite green (MG) was studied from aqueous 106 

solutions prepared with distilled water, using the Box-Behnken design (BBD). The matrix presented 107 

in Table 2 combines the three factors varying according to this experimental design. 108 

Table 2. Experiment  matrix for MG degradation 109 

Try [Fe2+](ppm) [K2S2O8] (ppm) w(rpm) Yexp.(%) Yth. (%) 

1 3.5 6 30 96.02 96.12 

2 3.5 10 40 96.57 90.39 

3 2.0 2 30 48.00 54.98 

4 3.5 2 20 40.71 46.88 

5 3.5 6 30 96.15 96.13 

6 2.0 6 20 96.27 83.11 

7 3.5 2 40 38.82 28.33 

Factors Units Levels 

Low (-1) Medium (0) High (+1) 

[Fe2+] ppm 2 3.5 5 

[K2S2O8] ppm 2 6 10 

W rpm 200 300 400 
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8 5.0 6 20 93.29 89.78 

9 2.0 6 40 97.00 100 

10 3.5 10 20 96.39 100 

11 5.0 2 30 9.88 7.22 

12 5.0 10 30 94.75 87.76 

13 3.5 6 30 96.21 96.13 

14 2.0 10 30 93.84 96.50 

15 5.0 6 40 24.17 37.33 

 110 

3.1.1 ANOVA 111 

Table 3 of the analysis of variance shows that the oxidant [K2S2O8] is a highly significant parameter 112 

for the degradation of malachite green, with a probability value of 0.001. The catalyst [Fe2+], the 113 

oxidant squared ([K2S2O8])
2 and the interaction [Fe2+]*w are also significant for the degradation of 114 

MG, with a probability value of 0.001. The catalyst [Fe2+], the oxidant squared ([K2S2O8])
2 and the 115 

interaction [Fe2+]*w are also significant for MG degradation, with P values of 0.024, 0.019 and 0.038 116 

respectively. 117 

Table 3. ANOVA results according to Box-Behnken design 118 

Source DL P value 

Model 9 0.011 

 Linear 3 0.003 

    [Fe2+]  1 0.024 

    [K2S2O8] 1 0.001 

    w  1 0.104 

 Square 3 0.061 

    [Fe2+]*[Fe2+] 1 0.113 



 

8 

 

 

    [K2S2O8]*[K2S2O8] 1 0.019 

    w*w 1 0.400 

 2-factor interaction 3 0.109 

    [Fe2+]*[K2S2O8] 1 0.179 

    [Fe2+]*w 1 0.038 

    [K2S2O8]*w 1 0.937 

Error 5    

 Inadequacy of fit 3 0.000 

 Pure error 2    

Total 14    

 119 

According to Table 4, the factors that positively influence malachite green degradation are the 120 

oxidant, the [Fe2+]*[K2S2O8] interaction, and the [K2S2O8]*w interaction. On the other hand, the other 121 

factors studied have a negative effect on this phenomenon 122 

Table 4. Box-Behnken coefficients 123 

Termes Coeff Coef ErT T value P value 

Constant 96.13 7.21 13.34 0.000 

[Fe2+] -14.13 4.41 -3.20 0.024 

[K2S2O8]    30.52 4.41 6.91 0.001 

W -8.76 4.41 -1.98 0.104 

[Fe2+]*[Fe2+] -12.47 6.50 -1.92 0.113 

[K2S2O8]*[K2S2O8] -22.03 6.50 -3.39 0.019 

w*w  -5.97 6.50 -0.92 0.400 

[Fe2+]*[K2S2O8] 9.76 6.24 1.56 0.179 
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[Fe2+]*w -17.46 6.24 -2.80 0.038 

[K2S2O8]*w 0.52 6.24 0.08 0.937 

 124 

 125 

3.1.2. Histogram of residual values 126 

Figure 2 shows the histogram of residual values for the degadation yield of malachite green. From 127 

this figure, we can see that the histogram follows a bell-shaped curve. This means that the residual 128 

values are almost normally distributed. We can also see that the histogram values are highly 129 

symmetrical, so the residual values are probably normally distributed. 130 

 131 

Figure 2. Histogram of residual values for Malachite Green degradation yield 132 

3.1.3. Main effects of the factors 133 

From Figure 4, a decrease in dye degradation yield was observed as a function of increasing Fe(II) 134 

concentration as well as increasing stirring speed. For the [Fe2+] catalyst, the yield decreased from 135 

83.78% at 2 ppm to 55.52% at 5 ppm. Similarly, agitation speed reduces yield, from 81.66% at 200 136 

rpm to 64.14% at 400 rpm. On the other hand, increasing oxidant concentration has a positive effect 137 

on malachite green degradation yield. This improvement is significant, with yields rising from 138 

34.35% at 10 ppm to 85.58% at 30 ppm, reaching 95.39% at 50 ppm oxidant. 139 
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 140 

 141 

Figure 4. Main effects of the factors studied on the degradation yield of MG 142 

Figure 5 shows the interaction effects on the degradation yield of Malachite Green. The strong 143 

interactions obtained between: 144 

• At 6 ppm oxidant between 2 and 3.5ppm catalyst. 145 

• At 250 rpm between 2 and 3.5 ppm of [Fe2+]. 146 

• At 350 rpm between 2 and 3.5 ppm of [Fe2+]. 147 

• At 300 rpm, between 6 and 10 ppm of oxidant. 148 

Weak interactions are also observed between: 149 

• At 10 ppm of oxidant between the three concentrations of [Fe2+]. 150 

• At 200 rpm between 2 and 5ppm of [Fe2+]. 151 

• At 200 rpm between 6 and 10ppm [K2S2O8]. 152 

 153 



 

11 

 

 

 154 

Figure 5. Interaction effects of the factors studied. 155 

3.1.4. Pareto diagram 156 

The Pareto diagram is used to evaluate the value and importance of effects. This diagram presents the 157 

absolute value of the effects of factors and includes a reference line on the graph. According to Figure 158 

6, any effect that exceeds this reference line can be considered significant. The terms identified as 159 

significant are oxidant concentration [K2S2O8], iron concentration [Fe2+], the oxidant quadratic term 160 

([K2S2O8])², and the interaction between iron and stirring rate [Fe2+]*w. This confirms the results 161 

obtained previously. 162 

 163 

Figure 6. Pareto diagram for MG degradation 164 
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3.1.5. Mathematical model 165 

The mathematical model is second-order and relates the degradation yield of MG to the various 166 

factors, their squares, and their interaction. 167 

The regression of the response in coded units as a function of all terms is represented by equation 2, 168 

and in uncoded units by equation 3. 169 

Regression equation in coded units 170 

𝒀 (%) = −147.4 +  54.6 × [𝑭𝒆𝟐+] + 3.62 × [𝑲𝟐𝑺𝟐𝑶𝟖] + 6.70 ×  𝒘 −  5.54 × [𝑭𝒆𝟐+]𝟐171 

−  0.0551 × [𝑲𝟐𝑺𝟐𝑶𝟖]𝟐  −  0.0597 × 𝒘𝟐 +  0.325 × [𝑭𝒆𝟐+] × [𝑲𝟐𝑺𝟐𝑶𝟖]172 

−  1.164 × [𝑭𝒆𝟐+] × 𝑤  +  0.0026 × [𝑲𝟐𝑺𝟐𝑶𝟖 ×]𝑤                  (𝟑)               173 

 174 

Regression equation in uncoded units 175 

𝒀 (%) =  96.13 − 14.13 × [𝑭𝒆𝟐+] + 30.52 × [𝑲𝟐𝑺𝟐𝑶𝟖] − 8.76 × 𝑤 −  12.47 × [𝑭𝒆𝟐+]𝟐176 

−  22.03 × [𝑲𝟐𝑺𝟐𝑶𝟖]𝟐  −  5.97 × 𝒘𝟐 +  9.76 × [𝑭𝒆𝟐+] × [𝑲𝟐𝑺𝟐𝑶𝟖]177 

−  17.46 × [𝑭𝒆𝟐+] × 𝑤 178 

+  0.52 × [𝑲𝟐𝑺𝟐𝑶𝟖 ×]𝑤                                                                       (𝟒)       179 

3.1.6. Response surfaces  180 

Minitab18 allows us to plot response and contour surfaces by varying two factors simultaneously and 181 

setting the third at different levels (min, medium, and max). The surface and contour figures show 182 

that MG degradation yields are very good (around 100%). The zone of best yields is obtained at an 183 

oxidant concentration between 5.5-10ppm and throughout the range of Fe2+ concentration at a 184 

minimum level for the stirring speed (200rpm).   185 

The response surface is concave and slightly inclined. 186 
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Figure 7. Contour and response surfaces of Y as a function of [Fe2+]-[K2S2O8] at 200 rpm 187 

 188 

Figure 8 shows MG degradation efficiency's response and contour surfaces by varying [Fe2+] and w 189 

at 6 ppm for [K2S2O8]. 190 

It can be seen that total degradation of the pollutant was obtained, and the zone of good yields is 191 

located in the middle of the chosen domain in inclined form (blue contour). 192 

  

Figure 8. Contour and response surfaces of Y as a function of [Fe2+]-w at 6ppm [K2S2O8] 193 

3.1.7. Optimization 194 

The main objective was to identify the optimum operating conditions for achieving complete 195 

degradation of MG. A constraint was imposed on the selected factors.  196 

After several optimizations, the optimum conditions are summarized in Table 5. The results of these 197 

optimizations were used to determine the ideal values for each factor influencing the process, as well 198 

as the theoretical maximum value for malachite green (MG) degradation efficiency. 199 

 200 
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Table 5. Optimization results for malachite green 201 

Factors [Fe2+] ppm [K2S2O8] ppm W rpm Yth (%) d 

Opt. 3.5 3.07 200 100 1,00 

 202 

These results show that the optimum conditions for the complete degradation of MV are a [Fe2+] 203 

concentration of 3.5 ppm, a [K2S2O8] concentration of 3.07 ppm, and a stirring speed of 200 rpm. 204 

Under these conditions, a theoretical degradation yield of 100% was achieved. 205 

 206 

Figure 9. Optimization diagram for MG degradation 207 

The theoretical model predicts a degradation efficiency of 100% for these optimized values. A 208 

verification test was carried out twice under the same experimental conditions to validate these 209 

optimum conditions. The experimental results showed an average yield of 98%, confirming the 210 

accuracy of the theoretical model. These results indicate that the model is adequate to represent the 211 

degradation process under the optimized conditions. 212 

3.2. Discussion 213 

Persulfate concentration 𝑆2𝑂4
2− plays a crucial role in the degradation system 𝑆2𝑂4

2−/𝐹𝑒2+. The 214 

persulfate anion can be activated, either by thermal conditions or by chemical catalysts such as 215 

transition metal ions, to generate a powerful oxidant, the sulfate free radical ( 𝑆𝑂4
.−). This radical is 216 

extremely reactive and actively participates in the degradation of organic pollutants (Rastogi et al. 217 

2008, Zhang et al. 2011, Li et al. 2014, Wang et al. 2017)  218 
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The impact of free radicals and transition metal ions 𝐹𝑒2+ on the degradation process has been widely 219 

studied. An increase in persulfate concentration promotes the formation of additional sulfate radicals, 220 

accelerating the degradation rate of methyl green (MG). This observation is in line with previous 221 

studies, which show that higher persulfate concentrations lead to faster MG degradation (Sun et al. 222 

2011, Ho et al. 2012, Yu et al. 2013). 223 

In addition, sulfate radicals formed by persulfate activation can initiate complex chain reactions 224 

involving radical transfer. These reactions contribute to more efficient contaminant degradation. The 225 

dynamics of these chain reactions and their impact on degradation rates are influenced by persulfate 226 

concentration and the presence of transition metal ions, which modulate the production and 227 

consumption of free radicals (Yang et al. 2012, Li et al 2012, Kim et al. 2013). 228 

The study also revealed that the presence of transition metal ions, such as iron, not only catalyzes the 229 

generation of sulfate radicals, but can also influence their stability and reactivity. The specific 230 

mechanisms by which these metal ions influence MG degradation merit further investigation to 231 

optimize reaction conditions and improve the efficiency of persulfate-based degradation systems ( 232 

Lee et al. 2012, Ding et al. 2014, Liu et al. 2015). 233 

The sulfate radicals formed by adding the catalyst can trigger a series of radical transfer chain 234 

reactions (Rastogi et al. 2009, Bennedsen et al. 2012, Fang et al.2023). 235 

𝑆𝑂4
.− + 𝐻2𝑂 → 𝐻𝑆𝑂4

− + 𝑂𝐻 236 

𝑆𝑂4
.− +  𝐹𝑒2+ →  𝑆𝑂4

2− +  𝐹𝑒3+ 237 

𝑆2𝑂4
2− +  𝐹𝑒2+ →  𝑆𝑂4

2− +  𝐹𝑒3++ 𝑆𝑂4
.−  238 

2𝑆𝑂4
.− → 𝑆2𝑂8

2−  239 

3.3. Kinetics of malachite green degradation in a real matrix 240 

In order to investigate the kinetics of malachite green degradation in different natural environments, 241 

various experiments were carried out at room temperature under a stirring speed of around 300 rpm 242 

for 1h. The physicochemical characteristics of the waters used are shown in Table 6. The 243 

concentrations are in ppm. 244 



 

16 

 

 

Table 6: Characteristics of waters used 245 

 Ca2+ Mg2+ K+ Na+ 𝐻𝐶𝑂3
− 𝑆𝑂4

2− 𝑁𝑂3
− 𝑁𝑂2

− Cl- dry residue 

at180°C 

pH 

1 99 24 2.1 15.8 265 68 15 0.02 72 380 7.20 

2 72 27 2 11 336 11 20.20 0.01 21 475 7.28 

3 0.01 0.006 3.05 0.004 0.23 / 0.02 0.01 0.23 1.51 6.20 

4 430 1.45 400 12 160 3.1 2.00 0.01 21 38 8.00 

(1) natural mineral water (ifri); (2) Source water; (3) industrial water; (4) seawater. 246 

It should be noted that the industrial water used in this study is desalinated water, intended for the 247 

cooling circuits of the Fertial complex, and was used as the actual matrix. In addition, the spring water 248 

used in this part of the work was collected from a mountain at Séraidi, near Annaba. This water was 249 

stored in a container at a temperature of 4°C. 250 

 251 

Figure 10. Effect of real matrix on degradation efficiency of malachite green 252 

It was found that yields vary according to the physicochemical characteristics of each type of water. 253 

Distilled water, which is free of ions and impurities, allows a maximum degradation of 98% due to 254 

the absence of interference with sulfate radicals (Huang et al. 2020). In contrast, seawater and 255 

industrial water show similar efficiencies of 88.97%, due to their high concentration of chloride ions 256 
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(Cl-) and conductivity, which can influence the reactivity of sulfate radicals and alter the efficiency 257 

of the degradation process (Smith et al. 2018). Source water, with a yield of 85.57%, has high 258 

concentrations of bicarbonates and calcium, which can interact with the radicals or malachite green, 259 

reducing the rate of degradation (Johnson et al. 2019). Finally, natural mineral water, with the lowest 260 

yield of 80.52%, contains a high concentration of various ions, such as calcium and magnesium, as 261 

well as a significant dry residue, which can complex the radicals or neutralize their action (Williams 262 

et al. 2019). These variations can be explained by the influence of the specific physicochemical 263 

characteristics of each medium on the effectiveness of sulfate radicals in the degradation process of 264 

malachite green. 265 

  266 
4. CONCLUSION  267 

In order to eliminate malachite green from aqueous solutions, an advanced oxidation process was 268 

investigated. The experimental Box-Behnken design was used to determine the optimum operating 269 

conditions for improving the percentage of dye removal using a modified Fenton-like process. In fact, 270 

the three factors studied were: catalyst concentration [Fe2+], oxidant concentration [K2S2O8] and 271 

stirring speed. The results of the analysis of variance (ANOVA) showed that oxidant concentration 272 

[K2S2O8] was the most significant parameter for malachite green degradation, with a probability value 273 

(p-value) of 0.001. In addition, catalyst concentration [Fe2+], the oxidant quadratic term [K2S2O8]², 274 

and the interaction between catalyst concentration and stirring speed [Fe2+] * W were also identified 275 

as significant, with p-values of 0.024, 0.019 and 0.038 respectively. 276 

Based on these results, the optimum conditions for malachite green removal were determined to be a 277 

catalyst concentration of 3.5 ppm, an oxidant concentration of 3.07 ppm, and a stirring speed of 200 278 

rpm. These conditions enable a theoretical degradation yield of 100% to be achieved, while 279 

experimental tests showed a yield of 98%. This agreement confirms not only the effectiveness of the 280 

model used to represent the degradation process under the optimized conditions, but also that the 281 

parameters identified play a crucial role in the almost complete removal of the dye. Indeed, the 282 
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experimental results show that the optimized conditions achieve a yield close to that predicted 283 

theoretically, thus validating the importance of the optimized parameters in the degradation process. 284 

Furthermore, in order to investigate the degradation kinetics of malachite green in different natural 285 

media, experiments were carried out at room temperature, with a stirring speed of 300 rpm for 1 hour. 286 

The results showed that malachite green oxidation follows the following order:  287 

distilled water (98%) > seawater ≈ industrial water (88.97%) > source water (85.57%) > mineral 288 

water (80.52%).  289 
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