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ABSTRACT 

To effectively address the CO2 emissions in the tourism place, in this study focuses a Sanshan scenic 

spot for precise prediction. The main factors contributing CO2 emission as, accommodation, 

transportation and catering services which intends to improve the need of carbon emission forecasting 

methods. To address this issue, we proposed an innovatively integrating the optimization algorithms 

Genetic Algorithm and Particle Swarm Optimization for accurately predicting the CO2 emissions. 

Initially, this system taken input from the CO2 emissions occurred from the year of 2010 to 2020. The 

optimization model contains the input variables, initializing populations, evaluating fitness values, and 

iterating until convergence to found best prediction model. The experimental results of the proposed 

PSO-GA system attains 9.86 highest sensitivity showcases best performance in predicting CO2 

emissions, as evidenced by its superior Adjusted Rand Index value of 1 after 160 iterations. The 

predicted and measured values of CO2 emissions using this algorithm remains significant and 

advanced carbon environment development at scenic spots. The PSO-GA was used to calculate the 

carbon emissions of three mountainous scenic spots over the next five years, and the medium and high 

carbon levels should change to a medium carbon development stage by 2024. 
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With the continuous accumulation of the greenhouse effect, global warming is becoming more serious, 

and the development direction of the carbon environment has attracted significant attention [1-5]. 

Tourism, known as a “smoke-free industry”, has positively promoted economic development, social 

progress, and environmental protection [6]. However, tourism infrastructure, activities, and 

management will inevitably cause CO2 emissions. At present, tourism carbon emissions account for 

approximately 3.4% of the total global carbon emissions [7,8]. Therefore, it is imperative to correctly 

evaluate the development status of the carbon environment at scenic spots. During carbon emission 

assessment evaluation, a critical step is to effectively extract, classify, and measure the parameter 

values in the carbon environment. During decomposition of the target variable into independent 

variables, the change contribution values measured by different algorithms have specific differences, 

especially for complex and diverse data types [9-12]. Therefore, the integration evaluation of data 

information requires algorithms with high compatibility. In this context, the present study used the 

carbon environment development evaluation of scenic spots as the starting point to undertake 

algorithm optimisation research to promote the energy conservation, emission reduction, and 

sustainable development of the tourism industry. 

Scholars have undertaken research on the effective prediction methods of carbon emissions. 

Acheampong et al. established an artificial neural network carbon emission intensity model to 

effectively predict the growth of carbon dioxide emission intensity [13]. Vansia et al. [14] used the 

genetic algorithm (GA), non-dominated sorting GA, and improved adaptive multi population elite Jaya 

algorithm to solve the problem of transportation product quantity and facility location to make product 

turnover with minimum transportation costs, carbon emissions, and transportation times. To reduce the 

carbon emission of the power sector, Melgar et al. [15] proposed an environmental asset planning 

method, which adopted a two-stage robust hybrid planning model and considered various planning, 

carbon emission trading, and demand response schemes simultaneously to reduce the final total CO2 

emissions of the power sector in the region by 15%. Fang et al. [16] proposed a CO2 emission 

prediction method based on the improved particle swarm optimisation (PSO) algorithm, which 

effectively optimised the super parameters of covariance function in Gaussian process regression, and 

suggested policies and measures to reduce CO2 emissions. Zhang et al. [17] studied the basic 

theoretical framework of the structural decomposition analysis (SDA) model, analysed the structure 

and characteristics of different algorithms, and comprehensively evaluated the applicability and 

effectiveness of each algorithm. Li et al. [18] conducted an in-depth analysis on the main sources of 

carbon emissions from the transportation industry, conducted a linear regression between the 

influencing factors and CO2 emissions from the transportation industry, compared the predicted values 

of different algorithms with the actual values, and optimised the algorithm with the highest degree of 

fitting. 

There are many algorithms for carbon emission measurement, and the algorithms with wide 

applicability and effectiveness are briefly introduced [19-22]. GA is a computing model used to 

simulate the process of biological evolution and natural selection in Darwin's theory of genetic 

mechanism of biological evolution. It is a method to find the optimal solution by simulating the 

process of natural evolution. With the help of natural genetics, the first generation of the population 

evolves generation by generation according to the principle of survival of the fittest, and produces an 

optimal solution with more and more adaptability through cross and compilation. PSO simulates the 

flight foraging behavior of birds, and regards each bird in the population as a feasible solution to the 

optimization problem [23-26]. Each particle in the PSO algorithm has the memory function. During 

each iteration, the particle adjusts its path through the two optimal extremum of individual and group, 

and finds the optimal solution of the problem through multiple iterations. GA algorithm searches from 
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the solution string set, with a large coverage, which is conducive to the global optimization of the 

problem. However, this algorithm can not fully express the constraints of the optimization problem, 

with a long operation time, and can not be quantitatively analyzed in terms of algorithm accuracy and 

feasibility. PSO algorithm has the advantages of node transfer function and no gradient information, 

and its calculation speed is fast [27, 28]. The two can be combined and improved accordingly to make 

up for each other's shortcomings [29]. 

The study novelty encompasses the integration of optimization techniques as PSO-GA for accurate 

CO2 emission prediction considering the factors to perform sensitivity analysis and comprehensive 

evaluation of carbon environment development. To promote the sustainable development of the 

tourism sector, the present study utilised the Sanshan scenic spot as the research object to undertake 

research on the evaluation algorithm of carbon environment development.  

The main contribution of this study as follows, 

• The CO2 emission sources at scenic spots were analysed, and the CO2 emission values of 

transportation, accommodation, and catering services were obtained to comprehensively 

compare the proportion and correlation of carbon emissions of various influencing factors 

and determine the main carbon sources of CO2 emission at three mountainous scenic 

spots.  

• The sensitivities of the GA, PSO algorithm, and PSA-GA were analysed to evaluate the 

CO2 emission measurement performance of the various algorithms. In addition, the 

adjusted Rand coefficient was measured based on the ARI, and the convergence speed and 

data compatibility of each algorithm were evaluated regarding the three influencing 

factors of transportation, accommodation, and catering services.  

Finally, by observing the fit of the CO2 emission prediction curves and measuring the curves of the 

three algorithms, the optimal algorithm for carbon environment development evaluation was 

determined, and this algorithm was used to predict and evaluate the development of the carbon 

environment at the three mountainous scenic spots. 

2. MATERIALS AND METHOD 

Zhenjiang Sanshan scenic spot is located in the southwest of Jiangsu Province and the South Bank of 

the lower reaches of the Yangtze River. It is composed of Jinshan, Jiaoshan, and Beigu mountains, 

covering an area of 46.3 km2. It is a comprehensive tourist attraction integrating natural, cultural, and 

urban scenery, and plays an important supporting role in constructing the urban ecological 

environment [30-37]. During the carbon emission calculation at the Sanshan scenic spot, the energy 

consumption data of transportation, accommodation, restaurants, and other places were collected 

through field sampling ensuring the models' predictions reflect real-world conditions.  Then, based on 

the scale of each factor, the samples were classified to obtain the average energy consumption level 

under the same scale and the energy consumption was converted into standard coal for the carbon 

emission calculation [38-43]. Gathered data converted into CO2 emissions using standard coal 

equivalence. By capturing real-world data, the study ensured that the carbon emission models 

accurately reflect actual conditions, enhancing the reliability of the predictions and the effectiveness of 

the proposed optimization algorithms. In the present study, the improved PSO algorithm was used to 

optimise the input weight and threshold in the GA, and an optimised PSO-GA carbon emission 

prediction model was obtained. The PSO and GA method is chosen for the purpose of effectively 

optimizing the complexity and nonlinear prediction models.  
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The steps were as follows: (1) Sample interval and factor variable setting – the present study selected 

the carbon emission data from 2010 to 2020 as the target set, the carbon emission factors such as 

transportation, accommodation, and catering as the input variables, and carbon emission as the output; 

(2) Parameters such as population size, maximum number of iterations, hidden layer nodes, location, 

and maturity were set; (3) The population was initialised randomly and the fitness function was 

selected; (4) The fitness value was calculated and judged whether the maximum number of iterative 

steps or the optimal solution was reached; (5) The carbon emissions were predicted and the evaluation 

of the carbon environment development level completed. 

Reviewing these studies revealed primary contributors to CO2 emissions at tourist spots. The 

sensitivity analysis shows an effectiveness of PSO-GA in emission predictions. Additionally, the field 

sampling approach ensured precise, real-world data for improved accuracy. These results showcase the 

importance of targeted emission reduction strategies and robust predictive models. 

3. RESULTS AND DISCUSSION 

Selection of influencing factors 

Statistics were performed on the CO2 emissions and their proportion in seven aspects of transportation, 

accommodation, food and beverages, shopping, entertainment, administration and waste disposal in 

the district in 2018, as shown in Figure 1. From the perspective of the CO2 emission structure, the CO2 

emission related to transportation was 2296.1 t, nearly half of the total CO2 emission, which is the 

factor with the highest CO2 emission at the three mountainous scenic spots. Mainly affected by its 

geographical location, the Sanshan scenic spot is close to the Zhenjiang urban area and only 1.5 km 

away from the commercial centre. The connection between the scenic spot and the city is relatively 

close. The roads near the scenic spot belong to the main urban traffic lines. There are many social 

vehicles, with large flow, high speed, and severe tail gas pollution, resulting in significant CO2 

emissions. Therefore, transit traffic plays a leading role in the CO2 emissions of transportation at the 

Sanshan scenic spot, with emissions of 1563.6 t, accounting for 68.1% of the CO2 emission of 

transportation and 28.9% of the total CO2 carbon emission of tourist attractions. Ferries and 

speedboats are the main means of transportation in the scenic spot, and their CO2 carbon emissions are 

376.6 t and 133.2 t, accounting for 16.4% and 5.80%, respectively, which are behind the proportion of 

transit traffic. 
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FIGURE 1Carbon emission of three mountain scenic spots in 2018 

 

Significant CO2 is generated in accommodation, especially when air conditioning is used intensively 

during summer and winter [37,38]. The average CO2 generated by each person staying in the hotel for 

one night is as high as 32.19 kg, which greatly influences the CO2 emission at the scenic spot. In 2018, 

the CO2 emissions generated by the accommodation industry were 1347.7 t, accounting for 

approximately 24.9% of the total CO2 emission of tourist attractions. The catering service industry 

also produces CO2 during cooking and processing waste materials. CO2 emissions in this sector are 

after transportation and accommodation, accounting for 20.8% of the total CO2 emissions at the scenic 

spot. As the three mountainous scenic spots focus on natural mountains and rivers and historical 

monuments, the CO2 emissions in tourism shopping, entertainment facilities, and management are 

lower; however, the CO2 emissions formed cannot be ignored. The above influencing factors were 

verified by binary correlation analysis. The correlation degree between transportation and CO2 

emission at the scenic spot was the highest, and the correlation coefficient was 0.9987, which are the 

leading factor affecting CO2 emissions in the three mountainous scenic spots. The second was the 

accommodation and catering industry, and the correlation coefficients were 0.9926 and 0.9918, 

respectively. The CO2 emissions of the tourism transportation, accommodation, and catering services 

were the main carbon sources at the Sanshan scenic spots. Controlling carbon emission from these 

three aspects is vital for energy conservation and emission reduction at scenic spots. 

Algorithm sensitivity analysis  

To evaluate the measurement performance of various algorithms, the sensitivities of the GA, PSO 

algorithm, and PSO-GA were analysed. To determine the algorithm with the highest sensitivity, most 

accurate results, and widest practicability, the influencing factor values of the three parameters of 

transportation, accommodation, and catering services were used and increased or decreased by 10% on 

the original data. Then, each algorithm was tested, using the measured results in 2018 as the standard, 

and the calculation results under the different conditions were compared. The sensitivity results of the 

three algorithms to each influencing factor are shown in Table 1. The PSO algorithm had the lowest 

sensitivity (8.59), followed by the GA (8.68). The PSO-GA had the highest sensitivity (9.86) and the 

algorithm had good sensitivity to the main factors affecting CO2 emission, with a sensitivity value 

between 9.66 and 9.88. 

TABLE 1 

Sensitivity of each algorithm on influencing factors of CO2 emissions 

CO2 emissions 
Transportati

on 

Accommodati

on 

Caterin

g  

Shoppin

g 

Entertainme

nt 

Wast

e  

PSO 

Increase 

Decrease 

2513.3 

2108.5 

1467.8 

1227.1 

1215.1 

1029.1 

41.1 

34.2 

57.6 

48.9 

237.

4 

199.

4 

Sensitive value 

M 
9.46 8.91 8.19 9.94 9.18 8.28 
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8.17 8.95 8.37 8.46 7.38 9.04 

GA 

Increase 

Decrease 

2086.2 

2099.5 

1236.3 

1233.3 

1050.2 

1029.1 

34.5 

34.0 

48.4 

47.8 

200.

3 

199.

6 

Sensitive value 

M 

9.14 

8.56 

8.27 

8.49 

6.49 

8.37 

7.64 

9.15 

8.28 

9.43 

8.64 

8.97 

PSO-

GA 

Increase 

Decrease 

2069.0 

2070.6 

1216.0 

1217.5 

1011.5 

1012.4 

33.7 

33.7 

47.6 

47.6 

197.

4 

197.

5 

Sensitive value 

M 

9.89 

9.82 

9.77 

9.66 

9.94 

9.86 

9.82 

9.78 

9.83 

9.82 

9.96 

9.94 

 

Convergence in the algorithm iteration means that a stable solution can be obtained via finite step 

iteration, and the change in the continuous iteration is lower than the set accuracy. The faster the speed 

of obtaining the stable solution, the better the convergence and data compatibility of the algorithm. 

The ARI was applied in the model evaluation of the given index information, that identifies the 

changes in input and guiding the system improvement to enhance reliability. The range of values was 

[-1,1]. The larger the ARI value, the better the result. The ARI parameter validates PSO-GA 

effectiveness for accurately forecasting carbon emissions, supporting its practical application in carbon 

management strategies. 

 

FIGURE 2.ARI index changes of algorithms in transportation data set 
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 Figure 2 shows all algorithm types. The PSO algorithm, GA, and PSO-GA comparison charts of the 

ARI change trend for the transportation data set show that the PSO algorithm had the fastest speed, 

and the model entered the convergence stage after 35 iterations; however, its ARI value was low, at 

approximately 0.76. The GA had the slowest operation speed, converging after 280 steps, and its ARI 

value was the smallest, at approximately 0.7. The operation speed of the PSO-GA was between the 

other two algorithms, converging when n = 157, although its ARI value was the largest at 0.95, and the 

accuracy of the results was better than the other two algorithms. Therefore, the PSO-GA was the best 

at the CO2 emission measurement. 

 

FIGURE3. ARI index change of each algorithm under accommodation data set 

Figure 3 shows the various algorithm (PSO algorithm, GA, and PSO-GA) comparison charts of the 

ARI change trend for the accommodation industry data set. The PSO still had the fastest convergence 

speed. When the number of iteration steps was 92, the ARI curve entered the stable stage; however, 

the accuracy of its calculation result was low and the ARI value was the smallest. The results of the 

CO2 emission measurement for the GA and PSO-GA were the same; however, the former entered the 

convergence stage first and the number of iterations increased by 34 steps. Therefore, the PSO-GA 

performed the best in the operation of CO2 emission in the accommodation industry data set.  
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FIGURE4.ARI index changes of algorithms under catering service data set 

 

Figure 4 compares the ARI change trend for the PSO algorithm, GA, and PSO-GA for the catering 

service data set. When the number of iteration steps was lower than 70 generations, the ARI value of 

the PSO-GA reached the optimal (ARI = 1), whereas the ARI values of the PSO algorithm and GA 

converged after 110 steps, and the ARI value under the PSO-GA was slightly greater than that of the 

PSO algorithm (0.99); however, it was much larger than the ARI value of the GA (0.83). Therefore, 

after 160 iterations, the ARI value of the PSO-GA was higher than that of the PSO algorithm and GA, 

and the ARI value of the former showed that the measurement result was ideal, and the ARI can reach 

1. Therefore, the change in the ARI for the comprehensive transportation, accommodation, and 

catering service data sets showed that the CO2 measurement result under the PSO-GA model was ideal 

in accuracy and optimisation efficiency. 

 

 

FIGURE5.CO2 emission prediction curve and measured curve of different algorithms 
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The PSO algorithm, GA algorithm and PSO-GA algorithm model are used to predict the CO2 

emissions of the Sanshan tourist attractions from 2010 to 2020 and compare them with the measured 

values. The fitting trend of the predicted curve and the measured value curve is shown in Figure 5. 

According to the analysis of the measured change trend of CO2 emissions in the Sanshan scenic spots 

in recent ten years, during 2010-2016, with the rapid development of the national economy, the 

number of tourists is gradually increasing, and the CO2 emissions are increasing year by year, with an 

average annual growth of 269.2 tons. With the promulgation of a series of ecological  

Restoration policies by the government, people’s awareness of environmental protection have been 

greatly improved. Although the number of tourists coming to the Sanshan Scenic Area has increased 

significantly, its CO2 emissions have only increased slightly. The average annual growth rate in 2017-

2019 is 96t, which is 64.3% lower than before. In recent years, affected by the new crown epidemic, 

the number of tourists has decreased significantly, and its CO2 emissions have decreased from 5592.4t 

to 5047.9t. It can be seen from the fitting figures under each algorithm that the predicted CO2 

emissions by PSO-GA algorithm are highly consistent with the actual values, which can effectively 

predict the CO2 emissions of the Sanshan Scenic Area. At the same time, it also proves that the PSO 

algorithm and GA algorithm are feasible to mix in terms of CO2 emissions of tourist attractions. 

 

FIGURE6. Level chart of carbon environment development (2021-2025 is the predicted value) 

Combined with the development level of the evaluation system at the scenic spot, a carbon 

environment development level map of the three mountainous scenic spots was drawn (Figure 6). In 

2010, the CO2 emission coefficient of the three mountainous scenic spots was relatively small, 73 

t/km2, which was a low carbon development level. From 2011 to 2014, the CO2 emission coefficient 

was between 80 and 100 t/km2, and the carbon environment was in the medium carbon development 

stage. Over the following three years, CO2 emissions gradually increased and the carbon environment 

gradually transited to medium and high carbon development levels. In 2018 and 2019, the three 

mountainous scenic spots were evaluated as high carbon environments with severe pollution. With 

improved scenic spot management level and awareness by tourists of environmental protection, the 

ecological environment has been effectively restored. At present, it is in the medium and high carbon 

stages. It is predicted that the CO2 emission coefficient at the Sanshan scenic spot will fall below 100 

t/km2 in 2024, entering the medium carbon level development stage. 

4. CONCLUSIONS 
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In conclusions, the proposed PSO-GA model significantly predicts the CO2 in the tourist spot. The 

study attains the effective results, for CO2 emissions related to transportation, accommodation, and 

catering services accounted for 42.5%, 24.9%, and 20.8% of the total CO2 carbon emissions and their 

correlations were 0.9987, 0.9926, and 0.9918, respectively, and are the main influencing factors of 

carbon emissions at the three mountainous scenic spots. The CO2 measurement sensitivities of the GA, 

PSO algorithm, and PSO-GA were analysed. The sensitivity of the PSO-GA was the highest (9.86), 

followed by the GA (8.68) and PSO (8.68). ARI evaluates the convergence of each algorithm in the 

transportation, accommodation, and catering service data sets, after 160 iterations, the ARI value of 

the PSO-GA was the highest, the measurement result was the most ideal, and its ARI reached 1. The 

CO2 emissions predicted by the PSO-GA fitted with the actual value, and effectively predicted the 

CO2 emissions at the three mountainous scenic spots. During 2010-2020, the carbon environment 

development level of the three mountainous scenic spots was low carbon (2010) → medium carbon 

(2011-2014) → medium high carbon (2015–2017) → high carbon (2018 and 2019) → medium high 

carbon (2020). The carbon environment development level is expected to become the medium carbon 

development stage by 2024.Despite advancements, the study with shortcomings of single scenic spot 

that might not fully contains geographical and environmental contexts. Additionally, the three 

common factors are employed other sources were overlooked. Future work should expand to multiple 

locations and included wider range of contributing factors to enhance the models generalizability. 

Integrating advanced data collection methods and comparative studies will also improve the 

robustness and applicability of the carbon emission models. 

 

NOMENCLATURE 

GA genetic algorithm 

PSO particle swarm optimisation 

ARI adjusted Rand index 

SDA structural decomposition analysis 
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