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Abstract 

With the rapid expansion of science and technology, there 
is a growing hazard to public health from many forms of 
pollution in the air, particularly fine dust, which can 
aggravate or induce heart and lung disorders. Furthermore, 
this threat is expanding as a consequence of the rapid 
progression of technology. The purpose of this study is to 
make an attempt to forecast the fine dust concentration in 
Delhi eight hours in advance in order to reduce the 
potential adverse impacts on health. The objective of this 
study is to develop a multimodal deep learning framework 
that combines the architectures of Self Tuned Long Short 

Term Memory (STLSTM) and Concatenated Convolutional 
Neural Network (CCNN) in order to generate accurate 
predictions. This research is constructed using a dataset 
that contains both numerical and visual data. An STLSTM 
AutoEncoder is responsible for handling numerical time 
series data, in contrast to the Concatenated Visual 
Geometry Group Neural Network (CVGGNet) models 
(CVGG16 and CVGG19), which use image data to compare 
performance depending on network depth. Based on the 
results of the final investigation, it has been predicted that 
the deeper CVGG19 model performs up to 14.2% improved 
than modality models with single data input that simply use 
numerical data. The RMSE, MAE, SMAP of the proposed 
model is 3.87, 3.45, 09.87 respectively. When compared to 
the models with single data input, the multimodal deep 
learning model that makes use of both types of data 
performs significantly better. 

Keywords: Air pollution, fine dust, health impact, 
multimodal deep learning, stlstm autoencoder and 
concatenated VGGNet 

1. Introduction 

The standard of life has increased as technology and 
science progress daily, but there is also an increase in air 
pollution in many forms. Heart and lung disorders are 
among the conditions that fine dust either causes or 
exacerbates (Disease C. and Agency P, 2022). Models for 
prediction of data from time series have been used in 
numerous research on air pollution to forecast fine dust 
and avert such health harm. Aerosol data, however, are not 
included in the majority of research, which instead contain 
a variety of data types (such as PM-10, temperatures, 
humid point, and wind speed). Because of atmospheric 
dispersion, the term "aerosol" refers to fine materials 
moving in the atmosphere, such as fine dust, and it is 
helpful for forecasting the movement and buildup of fine 
dust. 

Adding aerosol imaging information that is closely linked 
with tiny particles to the numerical datasets that 
performed best in prior study (Ko and Shahzad, 2021) 
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improved the efficacy of the model. The satellite picture 
such as information on aerosol size distribution was 
included in the multimodal information set, and it was 
organised hourly to match the preset numerical 
information in hourly units. Additionally, the satellite 
picture offers aerosol data that covers the whole Korean 
Peninsula, making it possible to see the overall movement 
of fine particles across the peninsula. In this paper, we 
present a deep learning model that is a hybrid that 
combines the LSTM (Long Short Term Memory) series 
approach, which shows improved precision in time-series 
information forecasting, with the CNN parallel designs, 
useful for processing images for learning a particular 
information set. Processing a high number of features is 
necessary because the bidirectional deep learning model 
presented in this study combines the features of the image 
and numeric datasets that are processed using a CNN series 
model. Consequently, the LSTM series architecture used 
the LSTM AutoEncoder, which worked optimally when 
packed with multiple capabilities. A simple CNN as well as 
VGGNet (VGG16, VGG19) were utilized by the CNN series 
model in the prior study (Ko and Shahzad, 2021) to examine 
the differences as perdepth of the network. A multi-layer 
standard deep CNN architecture, the VGGNet model was 
created by Oxford University researchers, the Visual 
Geometry Group. 

Therefore, compared to, the multidimensional deep 
learning models that used both numerical and visual data 
outperformed it. Using VGG19, the CNN series model with 
the deepest network depth, produced the best results out 
of all of them. Furthermore, we separated the image 
information into original and cropped photos, then ran a 
multidimensional deep learning model on each to examine 
the differences in performance. Utilizing katib, an adaptive 
hyperparameter optimization system, the model's 
hyperparameter set was tuned to optimal performance. 
The proposed model makes three notable contributions: 

1. The study introduces a novel multimodal deep learning 
framework that combines Self Tuned Long Short Term 
Memory (STLSTM) and Concatenated Convolutional 
Neural Network (CCNN) architectures. This approach is 
innovative in integrating both numerical and visual 
data to improve the accuracy of fine dust 
concentration predictions. 

2. By leveraging the strengths of both STLSTM for 
numerical time series data and CVGGNet (CVGG16 and 
CVGG19) for image data, the study achieves significant 
improvements in prediction accuracy. The deeper 
CVGG19 model, in particular, performs up to 14.2% 
better than models that use only numerical data. 

3. The study's primary aim is to mitigate the adverse 
health impacts of fine dust pollution by forecasting its 
concentration in Delhi eight hours in advance. The 
improved prediction accuracy achieved through the 
multimodal deep learning model can provide timely 
warnings and enable better public health responses, 
thereby reducing the potential health risks associated 
with air pollution. 

The structure of the paper is as follows. The created 
dataset is presented in Section 3 and associated research is 
described in Section 2. Subsequently, the suggested 
framework for the dataset is described in Section 4, and the 
hyperparameter-based optimizing of the specified model is 
explained in Section 5. The experiment is described in 
Section 6, and Section 7 concludes with a discussion of 
future directions.  

2. Related research 

Numerous prediction time series models have been 
researched for the purpose of weather forecasting. In 
order to estimate future PM10 levels, (Athira et al. 2018) 
used deep learning models with AirNet, which is a time 
series of weather and pollution data. For data from time 
series learning in the present research, RNN, LSTM, and 
GRU were employed; GRU worked best because resource 
issues limited the usage of AirNet. (Chau et al. 2022) 
proposed using Conditions Normalized Models (WNM) 
based on deep learning to measure variations in air quality 
in Quito, Ecuador during the COVID-19 partial shutdown 
period.  

Furthermore, (Salman et al. 2018) introduced an LSTM 
model that investigates different topologies, including 
single- and multilayer LSTM, and adds intermediate 
variable signals to LSTM memory blocks in order to 
estimate conditions within the Indonesian airport region. 
The suggested model demonstrated how the addition of 
the intermediary variable could improve the predictive 
power of the model. 

For the purpose of forecasting PM2.5 levels in Beijing, 
China, Bekkar (2021) presented a hybrid model that 
combines CNN and LSTM. Based on the combination of 
models, we apply data from time series for retrieved values 
using LSTM and apply CNN to extract internal and spatial 
features for input values. In terms of performance, the 
proposed model outperformed the current deep learning 
models (LSTM, Bi-LSTM technology, GRU, and Bi-GRU). The 
previously stated studies, in contrast to our methodology, 
lack the use of multimodal data and instead employ time-
based prediction models like RNN, LSTM, and GRU. 

Few studies use multimodal data to improve the prediction 
performance of weather forecasting. A one-dimensional 
convolution layer of the CNN is used to extract and 
integrate the spatial correlation characteristics and local 
variation trends from multimodal air quality data Xie 
(2019). A GRU uses the CNN results to determine long-term 
dependencies. The suggested model outperformed the 
three single deep learning models that are currently in use: 
Artificial Neural Networks, LSTM, and GRU. 

Researcher in (Kalajdjieski et al. 2020) recommended using 
multiple modalities, which consists of picture images 
collected by cameras in Skopje and meteorological 
information obtained by sensors, for estimating (i.e., 
determine if photos obtained with observers are now 
polluted) by contaminants in the air in the Skopje 
geographical region in northern Macedonia. In the 
suggested approach, a new sub-model route joins the 
previously trained genesis modelling's analysis of picture 
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information, weather information, and all three levels that 
are linked to the entirety of the layer again. Pretrained 
inception, CNN, ResNet, and other models were 
outperformed by it in terms of performance. 

Our study is not the same as that of (Xie et al. 2019) and 
(Kalajdjieski et al. 2020). While (Xie et al. 2019) uses both 
numerical and image information for their multimodal 
data, we employ both numerical and image data from 
different places for things like wind speed, SO2, and PM10. 
Kalajdjieski's art attempts to categorize pictures into 
contaminatedor clean, making use of sensory 
meteorological data (temperature, for example). Our 
objective, in contrast to Kalajdjieski's work, is to forecast 
future PM10 levels using satellite images and numerical 
meteorological data. 

In order to assemble multimodal data, this work added 
picture data, which contains information on the size of 
aerosol particles. Aerosol aids in the prediction of fine dust 
by indicating the likelihood of fine dust collection and 
movement owing to atmospheric diffusion. In order to 
improve performance, we created multimodal data using 
both numerical and picture data that are relevant to fine 
dust. Despite significant advancements in time series 
models for weather forecasting and air quality prediction, 
several research gaps remain. Most existing studies, such 
as those by (Athira et al. 2018; Chau et al. 2022; Salman et 
al. 2018, and (Bekkar et al. 2021), rely heavily on time-
based prediction models like RNN, LSTM, and GRU, 
focusing primarily on single-modal data. While these 
models have shown promise in predicting PM10 and PM2.5 
levels and enhancing predictive accuracy with intermediate 
variables or hybrid approaches, they do not incorporate 
multimodal data, which could provide a more 
comprehensive understanding of air quality dynamics. For 
instance, (Xie et al. 2019) demonstrated the potential of 
multimodal data by integrating one-dimensional CNN 
layers to capture spatial correlations from air quality data, 
yet this approach still lacks the depth of integrating diverse 
data sources. Furthermore, Kalajdjieski (2020) utilized 
multimodal data combining images and meteorological 
information for pollution estimation, but their focus was on 
current pollution status rather than future predictions. Our 
study aims to bridge these gaps by employing both 
numerical and image data from various sources, including 
satellite images, to forecast future PM10 levels. This 
approach not only enhances the predictive performance by 
utilizing aerosol particle size information to indicate fine 
dust movement but also provides a robust framework for 
integrating multimodal data relevant to fine dust 
prediction. Thus, while previous research has laid the 
groundwork for air quality forecasting, the incorporation of 
diverse data modalities remains an underexplored area 
that our study seeks to address, offering a more holistic and 
accurate prediction model. 

3. Dataset 

In this study the open source dataset of 
https://www.kaggle.com/datasets/deepaksirohiwal/delhi-
air-quality has been utilized. This dataset comprises air 

quality data from Delhi, the national capital of India. It 
includes measurements of various pollutants, such as 
particulate matter (PM2.5 and PM10), nitrogen dioxide 
(NO2), sulfur dioxide (SO2), carbon dioxide (CO2), ozone 
(O3), and others.  

The data was collected from monitoring stations across 
different areas of Delhi over a period from November 25, 
2020, to January 24, 2023. This work used image as well as 
numerical data to anticipate fine dust beyond 8 hours, and 
the greatest results were achieved when input values 
dating back up to 5 hours were employed. To further 
increase performance, we combine equivalent numerical 
dataset from (Ko et al. 2021) with satellite image data to 
create a multimodal dataset in this study. 

3.1. Satellite picture database 

Because aerosol information [Ministry of Environment] can 
be used to determine movement and accumulation in 
accordance with atmospheric diffusion, it was used in this 
work to predict fine dust. As a result, we created a 
multimodal dataset using hourly satellite photos with 
information on aerosol particle size and numerical data. 
You can notice the general movement of fine dust over the 
Korean Peninsula by examining the satellite image, which 
includes aerosol data for the whole peninsula. 

 

Figure 1. Satellite picture of Delhi 

An instance of an image from satellite with a color caption 
for aerosol particle size located in the bottom right corner 
is presented in Figure 1. The size of aerosol particle is 
represented by α. The range of α is −0.5–3, and particles 
size is exponential applying the ratio of each wavelength to 
the appropriate optical thickness [National Meteorological 
Satellite Center]. Figure 1 illustrates how the colors change 
according on the range of α that is calculated. The blue 
sequence (α: 0–1) and purple sequence (α: −0.5–0) 
correspond to big aerosols like sea salt particles and yellow 
dust, respectively. The yellow and red series (α: 2-3) 
correlate to fine particles, such as smoke or pollution, 
whereas the green segment (α: 1-2) denotes medium-sized 
aerosols.  

https://www.kaggle.com/datasets/deepaksirohiwal/delhi-air-quality
https://www.kaggle.com/datasets/deepaksirohiwal/delhi-air-quality
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3.2. Cropped satellite picture database 

Cropping is the process of deleting portions of an image 
that are not wanted. The aerosol information for Korea 
along with other nations is shown in Figure 1. Nevertheless, 
as the numerical information generated is limited to the 
Delhi data, the remaining region in the satellite image is 
eliminated, as seen in Figure 2. The variation in prediction 
performance based on the satellite image datasets is then 
demonstrated.  

 

Figure 2. Cropped from the satellite image for further processing 

4. Application of deep learning 

Depended on STLSTMs & CCNNs models, we build 
multimodal deep learning algorithms in this work. For 
historical data, LSTM constitutes a recognized DL, and for 
picture information, the CNNs is a well-known approach. 
For our multimodal deep learning approach, which handles 
both numerical and picture input, we mix the two models. 

4.1. AutoEncoder for STLSTM 

An issue with RNN (Goki, 2017) is that it cannot transfer 
historical data all the way through a large time series 
structure. This is resolved by the LSTM (Goki, 2017) model. 
There are other LSTM model variations, including 
bidirectional-LSTM. 

This study presents a multimodal deep learning system that 
combines CNN-treated visual information with LSTM-
treated numeric information. More characteristics follow, 
which results in more dimensions and more challenging 
acquisition. To address this, we use the LSTM AutoEncoder, 
that efficiently encrypts the high-dimensional input. In our 
case, we have already demonstrated that LSTM 
AutoEncoder performs better than the vanilla LSTM model 
(Athira et al. 2018). 

A layer on top of the LSTM layers in the LSTM AutoEncoder 
is used to extract characteristics by lowering the dimension 
of the input data (Hinton and Salakhutdinov, 2006) and 
producing original data using the features that are 
extracted. The AutoEncoder is commonly utilized for 
unsupervised or self-supervised learning scenarios in which 
the input and label are identical. However, in our earlier 
research (Athira et al. 2018), we employed the 
AutoEncoder for supervised learning. The LSTM 
AutoEncoder used in our earlier work (Athira et al. 2018) is 

seen in Figure 3. The decoder and encoder process the 
initial input values of the built model, which is data from 
the last five hours, to forecast PM10 values one to eight 
hours from now. 

 

Figure 3. Demonstrates the efficiency of the LSTM AEalgorithms 

in analysing the input information, which is a 5-hour series of 

values, and generates a total minimum dust value within 1-6 

hours 

4.2. Working of CCNNs 

First, we process satellite pictures using the fundamental 
CNN (Goki, 2017) in order to examine how well advanced 
CNN models, like VGGNet, perform. By processing a portion 
of the image rather than the full one, the CNN model is able 
to handle the problem of typical neural networks receiving 
inputs without the need for spatial or topological 
information. By doing this, the CNN is able to learn images 
while preserving their spatial information Convolution 
layers & pooling layers are so frequently employed in 
image processing to extract features from the image Figure 
4 depicts the basic CNN that was experimented extensively 
in this paper. It consists of two fully linked layers and three 
convolution/pooling layers. 

4.3. VGGNet 

Assess the efficacy of various CNNs, we experimented 
utilizing the VGGNet (Karan and Andrew, 2015), which is a 
more complex CNN than the basic CNN model. A CNN 
series model called VGGNet was created by the Visual 
Geometric Group, aOxford University research group. It is 
a multi-layered, conventional deep CNN architecture. We 
selected the VGGNet model due to practical challenges in 
experiments caused by other models, including the ResNet 
deep than VGGNet, requiring more storage space. 
Compared to the standard CNN model, the VGGNet model 
has a deeper model with a fixed filter size as tiny as 3 × 3. 

Rather than using a single convolution layer with large-
sized filters, VGGNet uses many convolution layers with 
small in size 3 × 3 filters. Furthermore, because the model 
can describe high-dimensional nonlinearity, performance 
improves as the model gets deeper. VGGNet is referred to 
as VGG16 in Figure 5 Six structures in all—A (11), A-LRN 
(11), B (13), C (16), D (16), and E (19)—were created by the 
VGG research team, and their performances were 
compared to see if there was a difference in performance 
based on depth. Consequently, it was verified that as the 
depth grew from 11, 13, 16, to 19 layers, the performance 
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got better. Satellite photos, as well as VGG16 and VGG19 in 
this paper, are processed using VGGNet. 

 

Figure 4. CNN model without pooling layers 

 

Figure 5. The VGG 16 models without pooling layers 

 

Figure 6. Data having different properties (numerical and image 

data) are embedded, extracted, and projected onto a common 

feature space 

4.4. Multimodal deep learning 

A combination of several methods, such text and picture, 
textual and sounds, or numerical information and picture, 
is called multimodal. The technique of creating and 
obtaining the deep learning approach is known as 
"multimodal deep learning" (Jiquan et al. 2011). We can 
correlate relationships between several modalities and 
address a variety of problems via multimodal deep 
learning. In this research, we build a multidimensional deep 
learning algorithm using numerical and picture data to 
learn various data associations based on time series 
features. Nevertheless, we must integrate these data 

because picture and numerical data have distinct 
properties. 

Numerous techniques exist for integrating data (Bae et al. 
2019). First, as As shown in Figure 6, information 
dimensions may be used to embed information with 
various properties and retrieve data with similar attributes. 
Consequently, information with different characterizations 
are directed towards a same range of features. Second, 
integration among learned represents is a method for 
combining different neural network algorithms with learnt 
visualisations, as seen in Figure 7 We apply both the 
integration between learnt representations and the 
integration with the data dimensions in this paper. For 
instance, we use LSTM for series of data and CNN for 
picture data during training. Each neural network's learned 
representations are linked and integrated to the 
component that is hidden, and learning is accomplished by 
determining the ideal weight associated with the hidden 
layer.  

 

Figure 7. Overall flow of the model 

The multimodal DL framework that we built in this paper is 
depicted in Figure 8. For the purpose of using data from the 
previous five hours as input, the numerical & image data 
must first be preprocessed. Even if they are the same, the 
two dimensions of data do not match. Preprocessing takes 
place during the five hours before. In order to maintain the 
spatial details of the image, we recover the feature 
mapping for picture information using a CNN-based 
techniques. 

An LSTM Autoncodertechniques was employed to process 
numerical data. Since our parameters rise when numerical 
and picture data are combined, the GRU framework 
(Mateus et al. 2021), another efficient time series 
information handles paradigm, is disregarded. The LSTM 
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model performs better in this scenario than the GRU 
model. 

Furthermore, to compare efficiency differences depending 
to networking depths, we employed their fundamental 
CNN & VGGNet models (VGG16, VGG19). The data are 
combined, nevertheless, in order to potentially increase 
the dimension and decrease the quality of the learning. We 
send the integrated multimodal data to our model's LSTM 
AutoEncoder to indicate the dimensionality after the 
multimodal data have been integrated. 

reduction & time series properties throughout the 
preparatory phase. 

Our multimodal deep learning algorithm differs from the 
existing multimodal deep learning algorithm used in earlier 
works in that it makes use of a prediction model for time-
series information in order to facilitate long-term 
dependency learning. The difficulty of classifying 
photographs as polluted or not, especially when combined 
with weather data, is addressed by Kalajdjieski (2020). 

 

Figure 8. DL Techniques with multiple modes: Using CCNN, the 

feature mapping of the picture information is first extraction. 

After that, a concatenate layer is used to integrate the feature 

map together numerical data, giving them time series properties 

then after the combined data is handled by the STLSTMs AE 

5. Optimizing Deep Learning Models 

This research optimises this hyperparameter to maximise 
the accuracy of the model. 

5.1. High-performance parameter 

A hyperparameter (Goki, 2017) is a value that the user has 
to actively set in order to use theprototype. For instance, 
batch size, epoch, and learning rate. Hyperparameter 
tuning is the process of examining the best 

hyperparameters to enhance accuracy, and determining 
the best values for this is never simple. The ideal value can 
be found by manually substituting the value, however this 
may consumed time and you might not obtain the 
optimized value if you start with the wrong criterion. As a 
result, in order to determine the ideal hyperparameter, the 
relevant search method must be chosen based on the 
implementing scenario. 

5.2. Katib 

Katib (Lee et al. 2020) is a system that is part of the 
Kubeflow ML techniques that optimizes hyperparameters. 
Katib maximizes accuracy by utilizing many algorithms. 
Random search, search via grid, & Bayesian optimization 
are examples of common algorithms. Katib is designed to 
automate the hyperparameter tuning process in machine 
learning workflows. It efficiently manages experiments to 
optimize model performance by exploring various 
hyperparameter configurations. 

Among other techniques, we employed the random search 
method (James and Yoshua, 2012). When it is not possible 
to investigate every option, random search is a great 
strategy to apply since it generates a mixture of random 
parameters. We experimented with a range of 
hyperparameters under different circumstances. however, 
the number of search instances increases significantly if the 
parameter's range contains decimal points. 

6. Trial 

Every experiment pertaining to this suggested framework 
is conducted on a PC with an Intel(R) Core (TM) i3-8130U 
CPU running at 2.20 GHz, 64-bit OS x64, and 4.00 GB of 
RAM. All of the experiments are carried out using the 
Python programming languages. 

6.1. Experimental Configuration 

The objective of this work is to use the S_Ns' pollutant 
content and climatic parameters to estimate the AQI for 
S_L one hour in advance. To be more precise, the data from 
the preceding 24 hrs are utilized to forecast their AQIs for 
the 25th hr. In order to conduct this test, 26,280 
information points are used of the database, 21,024 
information, or 80% of the total, are used for training, while 
5,256 data samples, or the remaining 20%, are utilized for 
testing. An essential first step toward a faultless and 
effective experiment is data normalization. Data 
normalization is crucial because it eliminates redundant 
data and, to some extent, various kinds of irregularities 
from the data. The time-series data fluctuates across a 
large range and is quite volatile. The entire process of 
learning slows down as a result. The data normalization 
procedure is used to expedite learning and scale the 
information between zero and one. The Min-Max 
technique is applied in this case. The data are transformed 
linearly using this normalization method. This involves 
taking the dataset's minimum and maximum values and 
replacing them with the following formula: 

( ) ( )( )
( )

=
−

norm 

 high-low  *  n-MinN 

MaxN MinN
n

 

(1) 
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where the lowest and highest numbers of characteristic N 
in the input dataset are represented by MinN and MaxN, 
respectively.  

Equation 1 is used to transform the input value n, which is 
an attribute of N, to nnorm.  

Their parameters for the suggested hybrid forecasting 
model are shown in Table 1. 

 

Table 1. The suggested hybrid prediction model's parameter description 

CNN_Block GRU_Block 

Epoch Filter_size 
Dropout 

No. of neurons  

Dropout  

Layer1 Layer2 Layer3 Layer1 Layer2 Layer3 

73 73 73 0.7 17 17 17 0.7 5-151 

73 73 73 0.7 33 33 33 0.7 5-151 

73 73 73 0.7 65 65 65 0.7 5-151 

73 73 73 0.7 81 81 81 0.7 5-151 

73 73 73 0.7 129 129 129 0.7 5-151 

 

6.2. Assessment 

This section evaluates the suggested prediction model and 
the imputation procedure for filling in the dataset's missing 
values in order to determine their suitability. 

6.2.1.  Assessment of the suggested imputation technique 
for the replacement of missing values 

Numerous imputation algorithms are now in use. They are 
frequently employed in dataset replacement for missing 
values. Average Imputing (James and Yoshua, 2012), An 
autoregressive, also (Tsai et al. 2018), the highest 
probability (Kulurkar et al. 2023), K-NN, also (Enders, 2001), 
and Bagging the following section (Andiojaya and 
Demirhan, 2019) are a few of the well-known attribution 
algorithms (Asokan and Preethi, 2021; Preethi et al. 2024). 
The suggested imputation algorithm is compared to the 
current imputing techniques in order to assess its 
applicability. Table 2 presents the findings. 

6.2.2. The prediction model's assessment 

It is crucial to assess a model's performance once it has 
been built. All regression models, regardless of kind, need 
to go through an evaluation process in order to filter the 
model's errors and compare the suggested model's 
performance to that of the established models. Here, three 
assessment measures are applied to assess the hybrid 
prediction model's effectiveness. They are listed below. 

The Mean Absolute Error (MAE): is a commonly used error 
evaluation technique for predicting the mistakes in a time-
series study. The procedure to ascertain loss of function 
MAE is applied during training. The MAE is better able to 
depict the real-world errors that were made during the 
prediction framework's training phase. The formula for 
MAE is  

=

= −
1

1
MAE

N

i i
i

X Y
N  

(2) 

RMSE, is a useful tool for analyzing the discrepancy 
between the observed and anticipated values. A reduced 
RMSE score is always indicative of a high-quality prediction 
model. RSME is then computed as 

( )
=

= −
2

1

1 N

i i
i

RMSE X Y
N  

(3) 

Symmetric Mean Absolute Percentage Error, (SMAPE), is an 
error evaluation technique. Thus, SMAPE is defined by 
applying the subsequent formula: 

( )=

−
=

+


1

100%
SMAPE

/ 2

N
i i

i i i

X Y

N X Y  

(4) 

where i is the number of observations, Yi is the actual value, 
Xi is the predicted value. The efficiency of our suggested 
work is assessed by contrasting the same framework with 
a few common models, such as: 

Support Vector Regressor, or SVR  

Stacked LSTM: The forward as well as backward time-series 
data are analyzed using three Bi-Directional LSTM layers. 

GRU: Bi-GRU is applied in three layers. 

CBGRU  

DAQFF 

7. Findings and discussion 

7.1. STLSTM-CCNN Simulation 

STLSTM-CCNN were simulates using the factors shown in 
Table 1 in order to obtain the best outcome possible for the 
suggested STLSTM-CCNN framework. In Figure 9 From 
there, it is evident that, with 32 neurons and a 16-epoch 
number, STLSTM-CCNN is producing prediction results that 
are more accurate. Here, the drop-out layers of the CNN & 
GRU blocks are both employed with a rate of dropout of 0.6 
in order to get around the overfitting issue. These 
parameters are applied to the remaining experiments. 

The STLSTM-CCNN simulates with different wind speed 
threshold values for the adjacent Place's Impact (NPI) 
method in order to determine the optimal thresholds value 

for the wind speeds () for each of the adjacent station. 

Based on the results of the studies, the threshold value  
has been allocated to the following stations: 1.74 m/s for 
Richmond, 2.05 m/s for St. Marry, 1.77 m/s for Bringelly, 
1.93 m/s for Liverpool, and 1.76 m/s for Randwick.  
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Figure 9. Analysis of performance (a) RMSEs (b) MAEs 

7.2. Effectiveness of suggested imputation techniques for 
replaced missed values 

The efficacy of the suggested imputation algorithm in 
substituting absent values The univariate time-series 
dataset has 5%, 10%, 15%, 20%, and 30% of its data 
randomly removed in order to test the efficacy of the 
suggested imputation algorithm. The missing values are 
then replaced using the tried-and-true imputation 
procedures. The RMSE and MAE are computed based on 
the predictions made by the prediction model. The 
performance of different imputation techniques on the 
deletion of the aforementioned data segments from the 
dataset is shown in Table 2. This table shows that all of the 

imputation algorithms' errors grow as the proportion of 
missing values rises. Additionally, compared to other 
imputation methods that have a rising percentage of 
missing values, the rise in predictions error rates is 
substantially smaller. In contrast, the Mean/Mode impute 
algorithm performs the worst and increases error rates. 
With the exception of the bagging technique, it is evident 
that the suggested seasonality-based imputation approach 
yields the least amount of error. The Bagging algorithm 
outperforms the suggested Seasonality-based imputation 
approach by a little margin their losing percentage is larger 
or equal to 15%. 

However, it can also be seen that its RMSE as well as MAE 
are marginally higher than those of the Bagging method 
alone when the missing amount is more than or equal to 
15%. It is clear from this debate that missing values more 
than 10% can likewise be accommodated by the 
Seasonality-based imputation technique suggested in this 
letter. Less than 10% of the dataset utilized for the 
proposed work are missing values. Because the suggested 
imputation algorithm learns seasonal patterns and 
manages the missing information appropriately, it 
performs better. 

 

Table 2. An assessment of the suggested imputation techniques performance 

Techniques 

% of missing ranges 

5% 10% 15% 20% 30% 

RMSEs MAEs RMSEs MAEs RMSEs MAEs RMSEs MAEs RMSEs MAEs 

Average 4.56 4.09 5.63 6.99 7.30 7.87 8.35 8.76 8.97 9.34 

Autoregressive 2.82 2.45 3.36 3.01 3.80 3.98 4.91 5.12 5.74 7.22 

Maximum_likelihood 3.1471 2.9613 3.4206 3.4876 4.0019 4.7204 5.4811 6.8872 6.2553 7.1145 

K-NNs 4.22 3.97 4.33 4.67 4.98 6.54 5.67 7.68 7.98 8.76 

Bagging 3.81 3.42 4.34 3.98 4.65 5.67 6.76 7.89 6.78 5.87 

Proposed 3.72 3.54 3.76 3.87 3.87 4.76 5.67 6.78 6.78 6.54 

Table 3. compares performance both with and without taking into account the influence of nearby locations 

Parameters RMSEs MAEs SMAPEs 

Places for neighbor (considered) 2.9013 2.2730 8.9340 

Place for neighbor (Ignoring) 3.7621 2.8932 10.8762 

 

7.3. Performance assessment taking surrounding areas' air 
quality into account 

Two phases of experiments are conducted to investigate 
the possibility that the environmental condition of a given 
location may be influenced by that of its neighbors. There 
are two phases: 

The pollutant amount of S_Ns is taken into account when 
predicting the AQI of S_L. 

Without taking into account the pollutant content of S_Ns, 
the AQI of S_L is estimated 

Table 3 demonstrates that the experiment performs better 
in estimating the air quality index (AQI) of S_L when the 
amount of pollutants associated with S_Ns are taken into 
account. However, it is evident that when the impact of 
S_Ns' pollutant concentrations is disregarded in the 
diagnosis of S_Ls' air health, the mistake rates increase. 

7.4. Comparative study with other models 

All of the current models, including SVR, BiLSTM, Bi-GRU, 
CBGRU, and DAQFF, have their RMSE, MAE, and SMAPE 
values computed in order to assess the correctness of the 
findings produced by our suggested model, STLSTM-CCNN. 
The performance assessment of the suggested model, as 
well as Bi-LSTMs technology, SVRs, Bi-GRUs, CB-GRUs, & 
DAQFFs, is displayed in Table 4.  

It is evident that out of all the models, the suggested 
model, STLSTM-CCNN, makes the fewest mistakes. In order 
to assess the prediction models more critically, a compared 
is made with the same Database from Australia's New 
South Wales, and the resulting performance graphs are 
shown in Figure 10. Plotting of the expected versus real AQI 
is done there. The outcome is magnified here for the 1000 
information points. For every model, the data point is 
displayed from 02/07/2019 at 01:00 hours till 12/08/2019 
at 16:00 hours. It is evident from the graphical 
representations of all three conventional shallow 
forecasting models (Figures 10a, 10b, and 10c) outperform 
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their conventional MLs Techniques SVR. This is because the 
three graphs show that the wave peaks and wave valleys of 
LSTM and GRU agree more frequently than those of SVR. 
Thus, it may be said that SVR is a shallow machine learning 
model, whereas LSTM and GRU are shallow deep learning 
models. 

 

Figure 10. Efficiency graph for LSTMs, SVRs, GRUs, CBGRUs, 

DAQFFs, STLSTM-CCNNs, and GRUs 

Upon consulting Table 4, it is evident that GRU consistently 
exhibits the lowest error when compared to LSTM and SVR.  

 

Figure 10 presents a comparison between the shallow 
deeper techniques architecture and their integration of 

many DLs architectures. Figure 10 makes it evident that 
CBGRU, a hybrid of 1D-CNNs and Bi-GRUs, and DAQFFs, a 
hybrid of LSTMs and 1D-CNN, exhibit superior accuracy in 
comparison to the DLs framework GRU. It is evident by 
looking at Figure 10a, 10b, 10c, 10d, 10e, & 10f that the 
suggested model, STLSTM-CCNN, is doing better than the 
other models. The agreement between the wave peaks 
along with wave troughs between the actual and 
anticipated values is superior to that of any other model 
illustrated. Figure 11 shows the boxplot deviation analysis 
to illustrate their efficiency of their different forecasting 
techniques.  

Figure 11. A boxplot that shows how different forecasting 

models' predictions differ from one another 

 

Figure 12. Simulated stations for air pollution monitoring from 

the dataset 

Measured deviation is the discrepancy between the actual 
and expected results. Shorter whiskers and thicker boxes 
are used to depict more centralized data. Plotting makes it 
evident that the suggested models, CBGRU and STLSTM-
CCNN, have medians close to zero and notches close to 
zero. When focusing on this boxplot, it is evident that the 
STLSTM-CCNN forecasting model has the fattest boxes with 
the smallest whiskers out of all the models depicted in 
Figure 11. Therefore, based on this finding, it can be said 
that when it comes to predicting a place's AQI, STLSTM-
CCNN has the highest accuracy.  

The merging of many DL architectures in the proposed 
model's AQI prediction is the key component that makes it 
successful. There are two main reasons why STLSTM-CCNN 
is performing better than all other models: 

In order to estimate the AQI of S_L, STLSTM-CCNN can take 
into account not only the air pollution intensity elements 
of S_L, but also the PM2.5 along with the additional 
meteorological variables of the neighboring S_Ns. 

 

Table 4. Comparison of various Techniques performances 

Techniques RMSEs MAEs SMAPEs 

LSTMs 7.12 6.76 19.32 

SVRs 7.24 6.87 18.98 

GRUs 5.87 4.84 13.70 

CBGRUs 4.54 3.56 11.54 

DAQFFs 4.87 4.54 14.76 

STLSTM-CCNNs 3.87 3.45 09.87 
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The sequence of CNN layers functions as a building block 
that enables the model to retrieve increasingly significant 
local complicated information from the input windows. 
Furthermore, STLSTM-CCNN makes advantage of the GRU 
block. The GRU block is made up of three stacks of Bi-GRU, 
each of which can abstract a temporal feature and the 
time-series data's backward and forward (both ways) 
dependencies. 

8. Conclusion 

This research study utilized a dataset comprising both 
numerical and visual data. The STLSTM AutoEncoder 
handled the numerical time series data, while the 
Concatenated Visual Geometry Group Neural Network 
(CVGGNet) models (CVGG16 and CVGG19) used image data 
to compare performance based on network depth. The 
results of the final investigation demonstrated that the 
deeper CVGG19 model performed up to 14.2% better than 
modality models with single data input that used only 
numerical data. The multimodal deep learning model, 
which integrated both types of data, significantly 
outperformed the models with single data input. In 
principle, our method can be utilised in any application that 
involves the connection of sensor and picture data, and the 
utilisation of both of these in conjunction with one another 
may be beneficial to the learning process. To be more 
specific, the application of our methods in circumstances 
where there are classes that are imbalanced in multi-
modalclassifications isextremely favourable. This 
encompasses the utilisation of hyperspectral pictures 
alongside with sensor data for the purpose of monitoring 
and diagnosing dangerous circumstances in a variety of 
sectors, including agriculture, geology, and environmental 
sciences. Optimization strategy has been planned to 
enhance the current models performance as future 
enrichments. 
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