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Abstract 

There is significant controversy over the overall effects of 
technological innovation on carbon balance. Based on 
panel data of agriculture from 28 provinces in China from 
2009 to 2021, utilizing ArcGIS and spatial Durbin model, the 
spatial-temporal patterns of agricultural technological 
innovation and carbon balance are analyzed, and furtherly 
the spatial effects of technological innovation on carbon 
balance are examined. The results indicate: (1) the overall 
agricultural carbon surplus in Chinese provinces has been 
continuously increasing from 2009 to 2021; (2) the direct 
effect of technological innovation on the carbon surplus in 
agriculture is significantly positive, while the spatial 
spillover effect is significantly negative; (3) the mediating 
effect results show that technological innovation affects 
the output of the agricultural sector and thereby influences 
agricultural carbon balance; (4) the impact of technological 
innovation on agricultural carbon balance exhibits an 
asymmetric spatial spillover effect. Advantageous regions 
suffer from the positive effects of spatial spillover, while 
non-advantageous regions benefit from the negative 

impacts of spillover, resulting in an overall negative effect. 
This study's findings play an important role in addressing 
the existing controversy over the overall effects of 
technological innovation on carbon balance and provide 
important insights for formulating policies on low-carbon 
technological innovation in agriculture. 

Keywords: Technological innovation effects, agricultural 
carbon balance, spatial spillover effects, direct effects, 
indirect effects 

1. Introduction 

In the context of actively promoting the dual-carbon 
strategy goals in China, research on agricultural carbon 
emissions has gradually become a hot topic. Technological 
innovation is considered one of the key means to address 
the issue of carbon emissions. However, there has long 
been controversy in economics regarding the role of 
technological innovation in solving environmental 
problems, with the earliest debates tracing back to the 
British economist Jevons, who proposed the famous 
"Jevons Paradox". This paradox points out that 
technological progress can improve resource utilization 
efficiency, thereby saving energy usage, but at the same 
time, it also reduces the relative prices of resource, 
inversely leading to the risk of excessive resource 
consumption and environmental degradation. 

For the calculation of carbon emissions and carbon sinks, 
China currently lacks direct monitoring data. Existing 
assessments of carbon balance are based on "top-down" 
inventory methods, model evaluation methods, or flux 
methods. Developed countries have already conducted 
research on atmospheric observation, inversion 
monitoring, and verification and support methods. The 
monitoring and evaluation of carbon emissions/sinks in 
China remains a key focus of current research. Current 
studies indicate that China's carbon balance over the past 
20 years has shown a trend of increasing firstly and then 
slowing down, with a spatial distribution pattern of "higher 
in the north, lower in the south, more in the east, and less 
in the west" (Yan L., Zong L., 2024). In terms of the Jevons 
paradox effect associated with technological innovation, 
while it aids in lowering carbon source emissions and 
boosting carbon sinks, demand and price effects can 
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potentially reverse the overall impact, resulting in a 
negative influence on carbon balance. In agriculture and 
animal husbandry, existing literature examines the 
controversy surrounding the impact of technological 
innovation on environmental carbon balance. Some 
studies suggest that technological innovation can enhance 
agricultural carbon surplus, while others argue that it 
diminishes agricultural carbon surplus. 

Research on the impact of technological innovation on 
carbon balance mainly focuses on carbon emissions. 
Mojority ofliterature studies indicate that green 
technology innovation aids in reduceinge carbon 
emissions. Qin (2023) constructed a spatial Durbin model 
to empirically test the external spillover effects of green 
technology innovation on industrial carbon emissions. 
Cheng et al. (2023) used ArcGIS spatial analysis and spatial 
Durbin model to examine the spatial effects of green 
technology innovation on industrial carbon dioxide 
emissions. Shen et al. (2023) constructed static and panel 
models to investigate the impact of green technology 
innovation on carbon emission intensity and the pathways 
of action. Duan and Jin (2021) applied the spatial Durbin 
model to empirically test the direct effects and spatial 
spillover effects of green technology innovation on low-
carbon productivity. Wang et al. (2021) established a 
spatial Durbin model (SDM) to study the relationship 
between green innovation and low-carbon productivity. 
Shi and Tang (2019) utilized panel data models to study the 
impact of low-carbon technology innovation on carbon 
emissions and the response of energy consumption to low-
carbon technology. Tian and Wu (2023) used a panel data 
Tobit model to test the independent and synergistic effects 
of urbanization, technological innovation, and regional 
carbon emission performance in three rural regions. Pei 
and Chen (2023) used a panel vector auto-regressive model 
to study the relationship between technological innovation 
and low-carbon productivity. Some studies have found that 
technological innovation has a negative or insignificant 
effect on low-carbon productivity. Some literature suggests 
that technological innovation reduces low-carbon 
productivity, such as Fang and Xue (2024) who constructed 
a spatial econometric model to study the negative effects 
of economic growth and technological innovation on 
carbon emissions. Lu et al. (2019) empirically tested the 
direct impact and spatial spillover effects of breakthrough 
low-carbon technology on carbon emissions using a 
dynamic spatial Durbin model (SDM). Some literature 
suggests that technological innovation has no significant 
effect on carbon productivity, such as Xu et al. (2020) who 
used a panel quantile model to compare the impact of 
energy use technology, carbon emission technology, and 
general technological innovation on regional carbon 
emissions. Chen (2019) analyzed the threshold effects and 
correlations between technological innovation, carbon 
emissions, and economic growth in China based on a 
nonlinear panel threshold model. 

Some literature has assessed the effects of carbon balance. 
Ding et al. (2024) measured the driving factors and 
spatiotemporal heterogeneity of carbon balance in rural of 
Shaanxi Province. Zhou et al. (2023) assessed the 

spatiotemporal distribution and influencing factors of 
carbon sources/sinks and carbon balance in the three 
northeastern provinces of China. Chen et al. (2023) 
combined carbon sources/carbon sinks with GDP data to 
explore the spatiotemporal variation characteristics of 
carbon emission intensity and carbon sink intensity at the 
provincial level in China from 2005 to 2020. Based on this, 
they analyzed the spatiotemporal changes in carbon 
balance over 15 years and used a geographical detector to 
identify the driving factors influencing carbon balance at 
different periods. Wang et al. (2016) calculated the 
spatiotemporal changes in carbon sources and carbon sinks 
in Henan Province. Wang et al. (2024). selected driving 
factors from both Shanxi and national levels to construct an 
open STIRPAT model, and applied scenario analysis to 
predict the carbon emissions in Shanxi Province from 2021 
to 2040, providing strategic solutions for energy 
conservation and emission reduction. 

Some studies have explored the relationship between 
technological innovation and agricultural carbon 
sequestration. Cao et al. (2022) introduced agricultural 
carbon sequestration and carbon emissions as desirable 
and undesirable outputs, respectively, into the framework 
of agricultural production performance analysis. Using 
panel data from 31 provinces (including autonomous 
regions and central-controlled municipalities) from 2007 to 
2020 as samples, they evaluated the carbon sequestration 
effect and agricultural production performance using 
carbon measurement models, revealing their 
spatiotemporal characteristics. Shen and Zhou (2022) 
measured agricultural green TFP from the perspectives of 
carbon sequestration and carbon emissions based on 
provincial panel data in China from 2000 to 2019, and 
conducted spatial convergence analysis. Combining panel 
data from 42 low-carbon pilot provinces and cities in China 
from 2007 to 2015, Chen and Jiang (2017) analyzed the 
spatiotemporal trends of the development performance of 
low-carbon agriculture in China using carbon measurement 
models, super-efficiency SBM models, and ML efficiency 
indices, and then evaluated the effects of low-carbon 
agricultural policies in different regions. 

Limited research exists on the holistic effects of 
technological innovation on carbon balance in agriculture. 
Current studies have not thoroughly investigated the 
mediating effects of changes in agricultural product 
demand on the relationship between technological 
innovation and carbon balance, which is linked to the 
Jevons paradox. This impact is more pronounced in 
agricultural output than in industrial output. Hu et al. 
(2018) used panel data of 30 provinces in China from 2003 
to 2014 to study the influence of agricultural policies on 
agricultural technological innovation in the context of 
increasing environmental protection constraints, as well as 
the pathway through which technological innovation 
affects agricultural carbon emissions. Zhang and Wang 
(2020) studied the moderating effects of environmental 
regulations on the impact of agricultural technological 
innovation on agricultural carbon emissions using the 
System GMM method. Liu et al. (2022) constructed a 
spatial Durbin model and used a multiple mediation effects 
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model to analyze the transmission mechanism of the 
impact of green technological innovation on carbon 
productivity through three intermediate variables: 
industrial structure upgrading, development of circular 
agriculture, and substitution of transportation. He et al. 
(2021) combined traditional Durbin models and partitioned 
Durbin models to analyze the correlation of agricultural 
carbon emission, cooperation modes arrangement, and 
agricultural technology spillovers effect. 

 In conclusion, existing empirical studies consistently 
demonstrate the positive impact of green technology 
innovation on carbon emissions. However, there is limited 
research on the overall impact of technological innovation 
on carbon balance, leading to significant controversy 
among these studies. It is crucial to provide a unified 
explanation for these discrepancies and to uncover the 
pathways and mechanisms through which technological 
innovation affects carbon balance. This study's key 
contribution lies in analyzing the direct effects of 
technological innovation on agricultural carbon balance 
using data on Chinese agricultural technological innovation 
and carbon balance. Additionally, spatial econometric 
methods are utilized to investigate the spatial spillover 
effects of technological innovation on agricultural carbon 
balance. Subsequently, an intermediate effect model is 
developed to examine the asymmetric impact of 
technological innovation on carbon surplus in agricultural 
sectors (provinces), thus resolving the discrepancy of the 
opposite signs of direct and indirect effects and offering 
new insights into the empirical results on the effects of 
technological innovation on carbon balance. The findings of 
this study will serve as a scientific foundation for the 
comprehensive development of agricultural low-carbon 
policies at both national and regional levels. 

2. Theoretical analysis and research hypotheses 

The close economic ties between regions lead to the 
impact of regional technological innovation not only on the 
carbon balance of the local agriculture, but also on that of 
the adjacent areas. Based on existing research (Jin and Li, 
2023) this paper analyzes the effects of technological 
innovation on the carbon balance of agriculture from two 
dimensions: direct effects and spatial spillover effects (see 
Figure 1). 

2.1. Direct impact effects 

The impact of technological innovation on carbon balance 
is initiated through two processes. The first process is 
manifested as the growth of quantity and quality of 
agricultural production factors, which is directly driven by 
technological innovation. There are two main direct 
effects: 

Positive effects of technological innovation on carbon 
balance: By adopting innovative techniques, tools, and 
facilities that reduce carbon emissions and increase carbon 
sequestration, the carbon surplus in the area can be 
directly enhanced. 

Effect of increased planting scale: Through technological 
innovation that saves land, the same area of farmland can 

achieve more output, equivalent to increasing the 
cultivated area Similarly, technological innovations that 
save labor and capital can boost overall agricultural output 
in the same area by achieving greater productivity with the 
same input of labor and capital. Scaling up the planting 
operations can elevate the carbon surplus level in the local 
area, leading to a reduction in carbon emissions and an 
increase in carbon sequestration. Therefore, we have the 
following research hypothesis: 

Hypothesis 1: Technological innovation has a positive 
direct effect on the carbon balance of agriculture. 

2.2. Spatial spillover effects 

The second process that influences the carbon balance of 
technological innovation is the spatial diffusion process 
resulting from the impact and dissemination of the initial 
process, known as the spatial spillover effect. This effect 
primarily arises from the demand-increasing effect 
triggered by the quantity and quality impacts. The positive 
quantity or quality effects induced by the initial 
technological innovation lead to alterations in the relative 
prices of agricultural production factors in the region and 
neighboring areas, thereby influencing the demand and 
supply of production factors. This process will impact the 
carbon balance of agriculture. The environmental 
consequences brought about by demand growth align with 
the Jevons paradox, wherein an increase in demand will 
lead to a negative spatial spillover effect on the carbon 
balance of the region. 

Spatial spillover effects induced by changes in planting: 
Variations in demand will result in disparities in the 
adoption scale of technological innovations across 
different regions, causing the spatial spillover effects to 
diverge from the direct effects. For instance, regions with a 
significant original planting area may exhibit a relatively 
muted response to land-saving technological innovations, 
whereas regions with a smaller planting area may respond 
positively to the same type of technological innovation. 
This leads to a marginal shift in the direction of planting 
area contrary to the initial relative scale proportion, 
thereby generating effects on the carbon balance that are 
diametrically opposed to the direct effects, resulting in 
negative spatial spillover effects. 

Regional convergence effect of farming scale: According to 
the law of diminishing marginal returns, regions with 
different planting scales have divergent demands for 
technological innovation. In relatively land-abundant 
regions with large land scales, there will be less use of land-
saving technological innovations, while in relatively land-
scarce regions, the use of the same technology will 
increase. Under the influence of this marginal effect of 
technology use, the farming scales of regions will tend to 
converge. Specifically, regions with larger farming scales 
will relatively decrease their farming scale, while regions 
with smaller land scales will relatively increase their 
farming scale. In contrast to the direct effects, this 
influence leads to negative spatial spillover effects of 
technological innovation on the carbon balance. Based on 
this, this article proposes research hypothesis 2: 
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Hypothesis 2: Technological innovation has a significant 
negative spatial spillover effect on the carbon balance of 
agriculture. 

Negative spatial spillover effects occur through two 
channels: one is through the impact of technological 
innovation on the demand for agricultural products, which 
in turn affects the carbon balance, and the other is through 
the bias effect on the regional planting scale. Therefore, 
hypotheses 3 and 4 can be proposed: 

Hypothesis 3: The mediating effect of agricultural product 
demand is negative, that is, technological innovation will 
reduce the carbon surplus level by influencing the level of 
demand for agricultural products. This hypothesis will 
confirm the existence of the Jevons paradox. 

The carbon balance effects of technological innovation will 
have heterogeneous impacts on regions with different 
planting scales. By testing this hypothesis, the sign of the 
indirect effects and total effects on the carbon balance can 
be determined. 

Hypothesis 4: The proportion of planting scale has a 
negative mediating effect on the carbon balance of 
technological innovation. 

 

Figure 1. The Impact of technological innovation on agricultural 

Carbon balance 

3. Methods and data 

3.1. Research methods 

3.1.1. Spatial econometric model 

Introduction to a spatial econometric model analyzing the 
impact of technological innovation, population density, 
and clustering of agricultural industries on agricultural 
carbon balance is crucial. Common spatial econometric 
models include spatial autoregressive (SAR) models, spatial 
error (SEM) models, and spatial Durbin models (SDM). The 
specific models are outlined as follows: 

=  + +iSAR: CB ρW CB β X μ  
(1) 

= + = +iSEM: CB β X μ,μ λWμ ε  
(2) 

=  + + +i iSDM: CB W CB β X δ WX μ  
(3) 

In the equation, CB represents the dependent variable of 
carbon balance; X denotes all explanatory variables; ρi and 
δi are spatial autoregressive coefficients; W is the spatial 
weight matrix; βi represents the coefficients of X; and μ 
stands for the random error. 

3.1.2. The mediation effect model 

Construct the following model for testing the mediating 
effect, the model is as follows: 

= + + +0 1 1CB c c TI θX ε  
(4) 

=  + + +0 1 2M TI θX ε  
(5) 

= + + + +0 1 2 3CB γ γ TI γ M θX ε  
(6) 

In the equation，CB represents the dependent variable 

carbon balance; TI represents the core independent 
variable technological innovation; X represents other 
explanatory variables; M represents the mediating 
variables, including agricultural supply and demand and 
planting scale; c1 represents the total effect of 
technological innovation on carbon balance; ∂2 represents 
the effect of technological innovation on the mediating 
variable M; γ1 and γ2 respectively represent the effects of 
the mediating variable M on carbon balance and the direct 
effect of technological innovation on carbon balance after 
controlling for the mediating variable M. 

3.2. Variable selection 

3.2.1. Explained variables 

When conducting research and analysis using spatial 
econometric models, the carbon balance (CB) are selected 
as the dependent variable, and the measurement method 
is as follows: 

(1) Calculation of agricultural carbon emissions 

Based on the measurement methods in relevant literature, 
a framework for calculating agricultural carbon emissions 
in various provinces (including autonomous regions) of 
China is established from three aspects: paddy cultivation, 
agricultural land use, and livestock breeding. The 
calculation formula is as follows: 

= = it it iC C T  
(7) 

Where C is the total agricultural carbon emissions, Cit is the 
agricultural carbon emissions of the i-th carbon source in 
year t, Tit is the amount of the i-th carbon source in year t, 
and ∂i is the carbon emission coefficient of various carbon 
sources (see Appendix 1). 

(2) Calculation of agricultural carbon sequestration 

Chen et al. (2016) defined agricultural carbon 
sequestration as the fixation of atmospheric carbon by 
crops through photosynthesis during the growth process, 
as well as the amount of carbon absorbed by crops. 
Referring to the research of Li (2002), the carbon 
absorption of crops is calculated using the economic 
coefficients, carbon absorption rates, and moisture 
content of different crops (see Appendix 2). 

(3) Calculation of agricultural carbon balance 

The carbon balance can reflect the relationship between 
regional carbon emissions and carbon absorption, 
expressed as the difference between agricultural carbon 
absorption and agricultural carbon emissions. The 
calculation formula is: 
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= −CB S C  (8) 

The CB represents the agricultural carbon balance in a 
certain region in a certain year, where S stands for carbon 
sequestration and C stands for carbon emissions. When CB 
> 0, it indicates a carbon surplus in the region; when CB < 
0, it indicates a carbon deficit in the region; when CB = 0, it 
indicates carbon neutrality in the region (see Appendix 3 
and 4). 

3.2.2. Core explanatory variables 

Technological innovation (TI) is represented by the number 
of agricultural patent applications in various regions. 
Enterprise technological innovation is mainly measured 
from the perspective of innovation output, using the 
number of patent applications to gauge innovation output. 

 

Figure2. Trends and Structure of Carbon Balance and 

Technological Innovation Changes from 2009 to 2021 

3.2.3. Control variables 

(1) Population density (DENSITY) is represented by the ratio 
of the total population to the area of the region. The 
change in population density will affect various factors such 
as production, consumption, and others, thereby 
influencing the carbon balance. (2) Agricultural industry 
agglomeration (Industry) is measured by location entropy, 
that is, the ratio of the agricultural, forestry, animal 
husbandry, and fishery output value of region i in year t to 
the national agricultural, forestry, animal husbandry, and 
fishery output value, and the ratio of the total output value 
of region i in year t to the national total output value. 
Changes in the agglomeration of the agricultural industry 
can affect the total carbon emissions. (3) Government 
intervention (GOV) is represented by the ratio of local fiscal 
expenditure to GDP.The advancement and implementation 
of government-related policies can impact the regional 
carbon balance through adjustments in industrial 
structure, energy structure, and other aspects. (4) Level of 
financial development (FINANCIAL) is represented by the 
ratio of the balance of various loans of financial institutions 
at the end of the year to GDP.Financial development can 
influence regional carbon balance through foreign 
investment, loans, and other means. (5) Level of economic 
development (GDP_PC) is represented by per capita 
GDP.The improvement of the economic development level 
will lead to an increase in energy-intensive products, 
thereby increasing carbon emissions; furthermore, after 

the economic development level reaches a certain point, 
the industrial structure within the region will be optimized 
and upgraded, leading to a reduction in carbon emissions. 
(6) Economic growth rate (GROWTH RATE) is represented 
by the GDP growth rate Changes in the speed of economic 
growth can drive the optimization and upgrading of 
industrial structure and technological progress, thereby 
impacting the regional carbon balance. 

3.2.4. Mediating variables 

(1) Agricultural supply and demand (using lnGDP_pc as 
proxy index) – In order to obtain more robust regression 
results, the total agricultural output value is logarithmically 
centered, and the total agricultural output value can serve 
as a proxy variable for changes in agricultural demand; 

(2) Planting scale (PS) is represented by the proportion of 
the total planting area of crops in each province and city to 
the planting area of crops in various regions. 

3.3. Data source 

Panel data from 28 provinces and cities (Guizhou, Xinjiang, 
and Tibet not includes due to data sparsity issues) from 
2009 to 2021 are selected as the research sample. The data 
comes from the "China Statistical Yearbook" of previous 
years, the National Bureau of Statistics, and the statistical 
yearbooks of various regions. In order to meet the 
requirements of spatial econometrics for data 
completeness, linear interpolation is used to fill in missing 
data for the number of agricultural patent applications. 
Descriptive statistics for each variable are shown in 
Appendix 5. 

4. Analysis of results 

4.1. Spatial-temporal pattern and dynamic evolution of 
carbon balance 

(1) Evolution characteristics of carbon balance over 
time 

The above variables were calculated to obtain carbon 
emissions, carbon sequestration, and carbon balance 
results, as shown in Figure 2. From 2009 to 2021, 
agricultural carbon emissions showed a fluctuating 
downward trend, while agricultural carbon sequestration 
showed a fluctuating upward trend, increasing from 
61,182.08 million tons in 2009 to 71,784.09 million tons in 
2021, an increase of approximately 17%. The total carbon 
balance showed a continuous annual positively increase, 
rising from 32,826.59 million tons in 2009 to 44,771.42 
million tons in 2021, an increase of about 36%. In addition, 
technological innovation also showed an increasing trend 
year by year, with the number agricultural patent 
applications increasing from 53,939 in 2009 to 362,330 in 
2021. In terms of growth rate, the growth of technological 
innovation outpaced the growth of the carbon balance 
level. 

(2) Spatial evolution characteristics of carbon balance 

The carbon balance of each province and municipality are 
classified into four levels. Using 2010 as the base year, the 
rates of carbon balance and technological innovation for 
2015 and 2021 were calculated. Rates of Spatial 
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distribution maps of the carbon balance and technological 
innovation for each province (including autonomous 
region) in 2010, 2015, and 2021 were drawn using ArcGIS 
10.8. Comparing the spatial distribution maps of rates of 
carbon balance and technological innovation in 2010, 2015, 
and 2021, it reveals that with time going, the carbon 
balance in each province continues to increase positively. 
The carbon balance rates in Northeast China, Inner 
Mongolia, and Qinghai have significantly increased after 
2015. In addition, the overall technological innovation level 
of each province shows an increasing trend, in which Inner 
Mongolia, Qinghai, and Anhui have notably increased 
more. Specifically, after a sharp increase in 2015, the 
technological innovation rate in Hainan Province declined. 
(Figure 3) 

4.2. The impact of technological innovation on carbon 
balance: baseline regression results 

Table 1 presents the baseline regression results. The 
Ordinary Least Squares (OLS) regression indicates that 
technological innovation is significantly positive at the 1% 
level, regardless of whether control variables are included. 
This suggests that technological innovation significantly 
increases regional carbon balance positively. Using the 
logarithm of the number of graduates from general higher 
education institutions in the second order lag period as an 
instrumental variable for technological innovation, the 
results similarly demonstrate that technological innovation 
has a significant positive effect on carbon balance at the 1% 
level. Hypothesis 1 is therefore validated.  

 

Table 1. Benchmark Regression Results 

Variant Model   

OLS OLS IV 

TI 0.0181*** 0.0135*** 0.184*** 

 (0.00288) (0.00491) (0.0378) 

Control Variable NO YES YES 

Constant 1,267*** 1,159*** 1,437*** 

 (280.3) (375.4) (398.0) 

R-squared 0.0237 0.0060 0.4901 

N 364 364 308 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

 

 

Figure 3. Spatial Evolution of the Rate of Agricultural Carbon 

Balance and Technological Innovation in different Provinces of 

China in 2010,2015, and 2021 

The direct result of regional technological innovation is an 
enhancement in the output efficiency of agricultural 
production factors within the region, meaning that 
technological innovation enables the same resources and 
factors to achieve greater output. This relatively intensive 
production also reduces regional carbon emissions or 
increases carbon sequestration levels. Due to economies of 
scale, the impact of technological innovation on carbon 
balance varies asymmetrically across regions. In regions 
where agriculture has more advantages (with economies of 
scale), agricultural technological innovations are more 
easily promoted and applied, thus exhibiting a greater 
effect on carbon balance in these regions. Conversely, in 
regions where agriculture has less advantages, the 
diffusion and application of technological innovations are 
more difficult, resulting in a smaller positively effect on 
carbon balance. Conversely, a decline in economies of scale 
might lead to a negative effect on carbon balance. This 

effect will be reported in subsequent mediation effect 
tests. 

The baseline regression results failed to reveal spatial 
correlations between technological innovation and carbon 
balance. However, spatial spillover effects are crucial in 
understanding how technological innovation affects 
carbon balance. For instance, agricultural technological 
innovations in one region can easily be imitated by its 
neighbor regions through communication and trade, 
thereby enhancing and improving agricultural productivity 
in adjacent areas. When these innovations are widely 
applied across different regions, they influence supply and 
demand of agricultural market, which leading to internal 
differentiation and restructuring of agricultural production 
within each region. Such changes in agricultural production 
and supply will cause asymmetric variations in carbon 
balance across regions. Next, spatial econometric methods 
will be employed to further explore the spatial 
relationships between technological innovation and 
carbon balance. 

4.3. Spatial spillover effects of technological innovation on 
agricultural carbon balance 

According to the first law of geography, the carbon balance 
in each region is influenced not only by internal factors but 
also by the levels of carbon balance in neighboring regions 
(He et al,2021). Continuing to build spatial econometric 
models, we investigate the spatial impact of technological 
innovation on carbon balance. Firstly, introduce the inverse 
geographical distance weight matrix, which is calculated 
based on the latitude and longitude to represent the 
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reciprocal of the distance between different regions as the 
spatial inverse geographical distance weight matrix, 
examining the spatial correlation of carbon balance (Table 
2).we found that, except for the initial two years, the 
Moran's I for carbon balance in most years is significantly 

greater than zero, indicating a significant positive spatial 
autocorrelation in carbon balance. 

 

Table 2. Moran Index of Carbon Surplus 

Year Moran’sI Year Moran’sI 

2009 -0.001 2016 0.038* 

2010 -0.002 2017 0.037* 

2011 0.019* 2018 0.025* 

2012 0.021* 2019 0.030* 

2013 0.028* 2020 0.020* 

2014 0.024* 2021 0.035* 

2015 0.032*   

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

Table 3. Spatial econometric regression model results 

Variant Model 

OLS SAR SEM SDM 

TI 0.0135*** 0.0143*** 0.0156*** 0.0194*** 

 (0.00491) (0.00426) (0.00459) (0.00428) 

DENSITY -0.645*** -0.541* -0.587* -0.510 

 (0.238) (0.317) (0.321) (0.334) 

INDUSTRY -21.11 763.6*** 768.1*** 692.7*** 

 (616.8) (97.74) (97.91) (97.14) 

GOV 795.8 616.3 360.9 -14.06 

 (630.9) (579.4) (675.7) (670.3) 

GDP_PC 0.000535 0.00110 0.000887 -0.00274 

 (0.00171) (0.00163) (0.00162) (0.00239) 

GROWTH  -115.2 -130.0 -135.1 372.4 

 (325.9) (281.7) (315.0) (464.6) 

FINANCIAL 179.8 -13.30 23.04 11.23 

 (115.3) (86.80) (92.09) (113.8) 

Constant 1,159*** 374.7 527.7 157.4 

 (375.4) (362.3) (341.0) (1,073) 

rho  0.0855  -0.446** 

  (0.155)  (0.209) 

R-squared 0.0060 0.165 0.168 0.167 

N 364 364 364 364 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

 

For the determination of spatial econometric models, 
several diagnostic tests were conducted. Firstly, the LM 
test indicates that the R-LM-error value is not significant 
(see Appendix 6), which suggesting that the spatial lag 
model is more suitable for this spatial econometric studies. 
Secondly, the Hausman test shows a negative value, which 
means acceptance of the null hypothesis and of a random 
effects model. Finally, the LR and Wald tests show 
significant results at the 1% level, which rejecting the null 
hypothesis that the spatial Durbin model degenerates into 
a spatial lag model and spatial error model. To mitigate 
bias, the spatial Durbin model is ultimately chosen. 

The spatial econometric regression results are presented in 
Table 3. The results indicate a spatial correlation coefficient 
of -0.446, significant at the 5% level, suggesting a negative 
spatial spillover effect overall for carbon balance. 
Technological innovation shows a positive significant effect 
at the 1% level, indicating its promotion to carbon balance 
in the region. Additionally, agglomeration in the 

agricultural industry also significantly promotes carbon 
balance positively. Other control variables show no 
significance 

Decomposing spatial effects results are shown in Table 4. 
The results show that the direct effect of technological 
innovation is significantly positive at the 1% level. Which 
indicates that technological innovation plays a promotional 
role in the carbon balance for region’s agricultural sector, 
significantly enhancing region carbon balance. Meanwhile, 
the indirect effect of technological innovation is 
significantly negative at the 1% level, which suggesting a 
suppressive effect on the carbon balance of adjacent 
regions, which confirms Hypothesis 2. The impact of 
technological innovation on adjacent regions' carbon 
balance is primarily achieved through its influence on 
supply and demand of agricultural products. The 
theoretical analysis is as follows: in the first stage, the 
direct effect phase, technological innovation enhances the 
efficiency of agricultural production factors locally, thereby 
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directly increasing the agricultural carbon balance in one 
region. In the second stage, as technological innovation 
spills over through exchange and trade, adjacent regions 
also benefit from the improved efficiency of their 
production factors. During this process, changes in relative 
prices of production factors also affect their allocation. 
Such impacts vary across regions of with different factor 
proportions. For instance, technological innovations that 
demands less land will primarily promote the producing of 
regions of with less land, thereby mainly affecting the 
carbon balance of these regions positively. Conversely, 
regions with more agricultural land are less affected by the 
same technological innovation, which resulting in a less 
significant increase in spill-over effects.  

The results of Table 4 indicate a significant negative spatial 
spillover effect, suggesting that the changes in supply and 

demand of agricultural products are substantial enough to 
result in a dominant negative spatial spillover effect in 
regions of with larger agricultural land areas. Further 
decomposition and intermediate effect analysis of the 
spatial effects are presented below. 

Additionally, population density inhibits region carbon 
balance, indicating that as population density increases in 
a region, carbon balance will decrease. Agricultural 
industry agglomeration promotes regions carbon balance 
positively, indicating that higher levels of agricultural 
industry agglomeration facilitate an increase in carbon 
surplus. Government intervention and economic 
development have a significantly positive impact on the 
carbon balance of adjacent regions and a negative impact 
on themselves’ carbon balance, albeit not significant. 

 

Table 4. Decomposition o fspatial effects 

Variant Direct effect Indirect effect Total effect 

TI 0.0212*** -0.0563*** -0.0351*** 

 (0.00449) (0.0133) (0.0123) 

DENSITY -0.535* 0.395 -0.140 

 (0.320) (0.947) (1.016) 

INDUSTRY 711.0*** -264.4 446.6 

 (92.89) (459.3) (459.5) 

GOV -123.2 2,975*** 2,852*** 

 (656.1) (1,082) (919.1) 

GDP_PC -0.00321 0.0189*** 0.0157*** 

 (0.00231) (0.00390) (0.00307) 

GROWTH RATE 417.7 -586.1 -168.4 

 (479.1) (552.9) (292.9) 

FINANCIAL 21.79 -294.7 -272.9 

 (118.7) (240.2) (218.6) 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

 

4.4. Robustness test 

The robustness test is conducted using adjacent spatial 
weight matrix and geographical distance spatial weight 
matrix (inverse of squared distance) as spatial weights, and 
the results are consistent with those in the previous 
section. Observed that technological innovation has a 
significant positive effect on regional carbon balance, while 
its spatial effect is significantly negative (see Table 5). This 
demonstrates the robustness of the conclusion. 

4.5. Examination of the impact pathways of technological 
innovation on agricultural carbon balance 

Further exploration is into the mechanisms through which 
technological innovation affects the spatial effects of 
carbon balance. Based on baseline assumptions, further 
verify how technological innovation in the second phase 
drives changes in agricultural supply and demand. 
According to the conclusion of negative spatial spillover 
effects, two scenarios can be hypothesized: (1) The 
diffusion and promotion of technological innovation 
increase the demand for agricultural products, thereby 
increasing the regional agricultural production value. (2) 
The increase in agricultural output value results in regions 
of with more farmland region obtaining negative marginal 

output values. According to the asymmetric impact on 
carbon balance, these regions will also experience negative 
spatial spillover effects. Conversely, regions of with a less 
farmland will exhibit positive spillover effects. (3) If the 
proportion of farmland in a region exceeds that of regions 
with an average farmland proportion, it can be inferred 
that the overall spatial spillover effect of technological 
innovation on carbon balance is negative. The mediation 
effects model can effectively verify the above mechanisms. 

4.5.1. Mediation effects of agricultural product demand 

Using agricultural production total value as a proxy variable 
for agricultural product demand, mediation effect tests 
were conducted. Sobel tests show a Sobel coefficient of -
0.003034, indicating an indirect effect of -0.003034 and a 
direct effect of 0.017783, and show statistically significant. 
Table 6 presents the results of the mediation effect tests. 
Column 2 indicates a positive effect of technological 
innovation on carbon balance. The positive coefficient in 
column 3 suggests that technological innovation increases 
regional agricultural GDP, validating the mechanism of the 
first stage that technological innovation enhances the 
supply and demand of region agricultural products. The 
significance of technological innovation and agricultural 
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GDP ratio at the 1% level in column 4 indicates a 
suppression effect of agricultural GDP in enhancing carbon 
balance, with negative spatial spillover effects. 

 

Table 5. Robustness Test Results 

Variant Neighborhood space 
weight matrix 

Geographic distance spatial weight 
matrix (inverse of distance squared) 

Geographic distance spatial weighting 
matrix (inverse of distance) 

TI 0.0213*** 0.0220*** 0.0194*** 

 (0.00433) (0.00447) (0.00428) 

DENSITY -0.889** -0.621* -0.510 

 (0.364) (0.339) (0.334) 

INDUSTRY 700.0*** 735.8*** 692.7*** 

 (99.35) (99.00) (97.14) 

GOV 249.4 -129.7 -14.06 

 (648.7) (661.4) (670.3) 

GDP_PC -0.00121 -0.00154 -0.00274 

 (0.00215) (0.00228) (0.00239) 

GROWTH RATE 523.2 391.1 372.4 

 (425.7) (447.6) (464.6) 

FINANCIAL 64.22 60.74 11.23 

 (109.6) (111.6) (113.8) 

Constant 1,315** 87.37 157.4 

 (615.1) (619.7) (1,073) 

rho 0.129* 0.0275 -0.446** 

 (0.0705) (0.0985) (0.209) 

R-squared 0.168 0.145 0.167 

N 364 364 364 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

Table 6. Mediation Effect Test Results 

Variant CB lnGDP_pc CB 

TI 0.085*** 4.57e-06*** 0.0178*** 

 (0.012) (1.60e-06) (0.00417) 

lnGDP_pc   -663.1*** 

   (145.0) 

DENSITY 0.432*** -1.350*** -2.338*** 

 (0.129) (0.274) (0.538) 

INDUSTRY 1621.075*** -5.76e-06*** 909.6*** 

 (143.249) (1.00e-06) (105.3) 

GOV -2642.020*** 0.200 -433.7 

 (912.520) (0.193) (734.2) 

GDP_PC -0.014*** -0.0361 -0.00379 

 (0.005) (0.0477) (0.00272) 

GROWTH RATE -6819.871*** -0.000956*** 431.3 

 (1268.608) (0.000201) (498.1) 

FINANCIAL -1755.535*** 0.248*** -85.52 

 (236.798) (0.0383) (123.2) 

Constant 4385.594*** 5.549*** 2,080** 

 (0.420) (0.157) (901.4) 

sobel test   Z=-2.429 

   |Z|>0.97 

Mediation effect   statistically significant 

R-squared 0.618 0.994 0.978 

N 364 364 364 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

 

4.5.2. Mediation effects of relative advantages of 
agricultural production 

To express the relative advantages of agricultural 
production in various regions, the proportion of each 

region’s crop planting area in all regions’ total planting area 
year by year is used to as a proxy index. We examined 
whether this ratio serves as a mediation in the impact of 
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technological innovation on agricultural carbon balance, 
and to what extent it mediates the effects. 

Sobel tests were used to examine the role of this ratio as a 
mediation in the process of technological innovation 
promoting agricultural carbon balance (see Table 7). The 
Sobel coefficient was 0.00365, with an indirect effect of -
0.003365 and a direct effect of 0.018114, both statistically 
significant. Specifically, column 2 shows a positive effect of 
technological innovation on carbon balance. The negative 
coefficient in column 3 indicates that as the level of 
technological innovation increases, the proportion of 
regional crop planting areas decreases. Column 4 shows 
that technological innovation and the proportion of 
regional crop planting areas are significant at the 1% level, 
indicating a suppression effect of the proportion of regional 
crop planting areas in impact of technological innovation 
on carbon balance, along with spatial negative spillover 
effects. 

The above mediation tests demonstrate that the diffusion 
and promotion of technological innovation increase the 
demand for agricultural products and consequently 
increase the total regional agricultural production value. 
Changes in the supply and demand of agricultural products 

lead to regions with agricultural advantages obtaining 
negative marginal output values, thus experiencing 
negative spatial spillover effects. Conversely, regions with 
non-advantages exhibit positive spatial spillover effects. 
This paper calculates the median value of the proportion of 
annual crop planting areas in each region to the total 
planting area of all regions. Regions where the proportion 
of annual crop planting areas to the total planting area of 
all regions is greater than the median value are defined as 
advantaged regions; conversely, they are defined as 
disadvantaged regions. In total, agricultural areas 
accounting for 80.1% in advantaged regions and 19.9% in 
disadvantaged regions, advantaged regions have a larger 
total cultivated area, leading to an overall negative spatial 
spillover effect of technological innovation on carbon 
balance. In summary, we have validated hypotheses 3 and 
4, namely that the carbon balance effects of technological 
innovation will heterogeneously impact agricultural 
advantaged and disadvantaged regions, with the 
proportion of planting scale serving as a negative 
mediation effect in technological innovation on carbon 
balance. 

 

Table 7. Mediation Effect Test 

Variant CB PS CB 

TI 0.0147*** -4.85e-08** 69,436*** 

 (0.00425) (2.14e-08) (10,488) 

PS   0.0181*** 

   (0.00402) 

DENSITY -1.704*** -5.94e-06** -1.292** 

 (0.536) (2.69e-06) (0.507) 

INDUSTRY 745.2*** 0.00380*** 481.0*** 

 (102.0) (0.000513) (103.7) 

GOV 461.6 -0.00261 642.6 

 (729.5) (0.00367) (685.2) 

GDP_PC 3.74e-05 7.82e-09 -0.000505 

 (0.00267) (1.34e-08) (0.00250) 

GROWTH RATE 298.9 -0.00249 472.1 

 (512.6) (0.00258) (481.9) 

FINANCIAL -61.59 -0.000455 -30.02 

 (126.9) (0.000638) (123.2) 

Constant 6,134*** 0.0256*** -1,712*** 

 (1,943) (0.00977) (393.3) 

sobel test   Z=-2.147 

   |Z|>0.97 

Mediation effect   statistically significant 

R-squared 0.976 0.998 0.979 

N 364 364 364 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

 

5. Conclusion and recommendations 

The effect of technological innovation on the carbon 
balance of agriculture and animal husbandry is a 
contentious issue. This study employs ArcGIS spatial 
analysis and spatial Durbin model to discuss the spatial 
effects of technological innovation on the carbon balance 
of agriculture section across 28 provinces in China from 

2009 to 2021. By controlling for major confounding factors 
such as population density, agricultural industry 
agglomeration, government intervention, economic 
development, financial development, and economic 
growth, the following main conclusions and 
recommendations are derived: 

5.1. Main conclusions 
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(1) Technological innovation has a significantly positive 
effect on the carbon balance of agriculture, notably 
increasing the carbon balance positively. The direct effect 
of technological innovation occurs through influencing the 
combination and reconfiguration of production factors 
within a region, leading to enhancements in the quantity or 
quality of production factors. This efficiency improvement 
promotes an increase in regional carbon balance. 

(2) Technological innovation exhibits a significant negative 
spatial spillover effect on agricultural carbon balance. The 
direct effect of technological innovation first impacts the 
supply of production factors. This increase in supply 
triggers changes in the supply and demand of agricultural 
products and production factors. For regions with 
agricultural advantages, the efficiency gains and output 
expansion effects due to economies of scale result in a 
positive spatial spillover effect. Conversely, for non-
agricultural advantaged regions, the spatial spillover effect 
is negative due to the relative price decrease of production 
factors, who favoring imported agricultural products over 
themselves’ production, thereby lowering their carbon 
balance of agriculture. By examining the mediation effect 
of agricultural product demand in agriculturally 
advantaged areas, the study confirms the basic conclusion 
that both spatial spillover effects and total effects are 
negative. This suggests that although technological 
innovation enhances agricultural production efficiency and 
increases carbon surplus, competition and suppression 
from neighboring regions actually result in an overall 
negative impact on carbon balance. 

(3) Agricultural industry agglomeration has a significantly 
positive direct effect on the carbon balance, without 
showing significant spatial spillover effects. Thus, the 
clustering of agricultural industries can increase the 
regions’ carbon balance along with no significantly 
affecting the carbon balance of adjacent regions. 

5.2. Policy recommendations 

(1) Encourage and support technological innovation, 
especially innovations that can enhance the carbon surplus 
of agriculture and animal husbandry, to promote carbon 
emission reduction. 

(2) Consider the negative spatial spillover effects across 
provinces when formulating policies, and fully consider the 
diffusion and impact of technological innovation between 
different regions. It is necessary for all regions to 
continuously increase investment in agricultural and 
animal husbandry production, enhancing the relative 
advantage of local agricultural production. This should not 
be abandoned based on market principles or by assuming 
agriculture and animal husbandry are weak industries in 
the region economics. The advantageous position of 
agricultural and animal husbandry production will play a 
crucial role in continuously enhancing carbon surplus 
through ongoing technological innovation. 

(3) Implement national-level low-carbon strategic subsidies 
for technological innovation among agricultural and animal 
husbandry practitioners. By subsidizing technological 
innovation, the spillover effects of innovation can be 
realized, thereby increasing the overall effect of carbon 

surplus in agricultural and animal husbandry production. 
Preserve and gradually expand agricultural and animal 
husbandry production, appropriately control agricultural 
product imports, or adopt quota management for 
agricultural product imports, vigorously promote the 
application and implementation of technological 
innovation projects in large-scale agricultural production, 
and fully exploit the effect of enhancing carbon surplus in 
advantageous agricultural and animal husbandry 
production. 

(4) Further promote and facilitate the industrial clustering 
of agricultural and animal husbandry production through 
various means, including low-carbon policy subsidies or tax 
reductions, to achieve scale and industrialization. This will 
help enhance the local carbon surplus level. 

(5) Encourage sustainable agricultural and animal 
husbandry practices to reduce carbon emissions and 
increase carbon surplus. This includes adopting more 
environmentally friendly agricultural and animal husbandry 
technologies, reducing resource waste, and improving 
production efficiency. 

(6) Provide training and support for agricultural and animal 
husbandry practitioners to help them better adapt to 
changes in new technologies and industrial structures. This 
will facilitate the smooth implementation of carbon 
emission reduction policies. 
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Appendix 

Appendix 1. Carbon Emission Sources and Carbon Emission Coefficients for Agricultural Land Use 

Carbon source Carbon emission factor Data sources 

Fertilizer 0.8956kg·kg-1 Oak Ridge National Laboratory 

Pesticides 4.9341kg· kg-1 Oak Ridge National Laboratory 

Agricultural Film 5.1800kg· kg-1 Nanjing Agricultural University 

Agricultural Diesel 0.5927kg· kg-1 United Nations Intergovernmental Panel on Climate Change 

Plowing 312.6000kg· hm-2 China Agricultural University 
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Irrigation 25.0000kg· hm-2 Dubey 

 

Appendix 2. Types of Livestock Breeding and Emission Coefficients 

Emission source Enteric fermentation Fecal emissions Data sources 

CH4 Kg/(head·year) CH4 Kg/(head·year) N2O Kg/(head·year) 

cow 80.47 5.14 1.320 Guidelines for the 

preparation of 

provincial greenhouse 

gas inventories 

Horses 18 1.09 0.330 

Donkey 10 0.6 0.188 

Mule 10 0.6 0.188 

camel 46 1.28 0.330 

Pig 1 3.12 0.227 

goat 8.33 0.17 0.093 

Sheep 8.13 0.15 0.093 

Appendix 3. Methane Emission Coefficients from Rice Fields 

Shore Emission factor Data sources 

North China 234.0kg· hm-2 Guidelines for the preparation of provincial greenhouse gas 

inventories 

Eastern China 216.9kg· hm-2  

South Central China 250.3kg· hm-2  

Southwest China 161.4kg· hm-2  

Northeast China 168.0kg· hm-2  

Northwest China 231.2kg· hm-2  

Note: North China: Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia; East China: Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, 

Shandong; Central and South China: Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan; Southwest China: Chongqing, Sichuan, 

Guizhou, Yunnan, Tibet; Northeast China: Liaoning, Jilin, Heilongjiang; Northwest China: Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang. 

Appendix 4. Carbon sequestration rate, Water content and Economic factor to crops 

Kind Carbon sequestration rate Water content (%) Economic factor 

rice (crop) 0.414 12 0.45 

Wheat 0.4853 12 0.4 

Corn 0.4709 13 0.4 

Beans 0.45 13 0.34 

Potato 0.4226 70 0.65 

Cotton 0.45 8 0.1 

Rapeseed 0.45 10 0.25 

Peanuts 0.45 10 0.43 

Sugar cane 0.45 50 0.5 

Sugar beet 0.4072 75 0.7 

Tobacco 0.45 85 0.55 

Vegetables 0.45 90 0.6 

Appendix 5. Descriptive Statistics of Variables 

Variant Sample size Average value Standard 
deviation 

Minimum value Maximum values 

Carbon Surplus (CS) 364 1396.539 1472.598 -483.911 5829.203 

Technological Innovation (TI) 364 7154.997 8068.394 9 50674 

Population Density (DENSITY) 364 495.716 718.044 7.711 3950.794 

Agricultural Industry 

Agglomeration (INDUSTRY) 

364 1.161 0.629 0.048 3.543 

Government intervention (GOV) 364 0.249 0.111 0.105 0.758 

Level of Financial Development 

(FINANCIAL) 

364 1.438 0.461 0.665 2.774 

Level of Economic Development 

(GDP_PC) 

364 53371.753 29466.588 12802 187526 

Economic Growth Rate 

(GROWTH RATE) 

364 0.104 0.056 -0.053 0.282 

Value of agricultural 

production(lnGDP_pc) 

364 7.154   1.108  4.469   8.708 

Planting scale(PS) 364  0.036  0.026  0.001  0.096 

Appendix 6. Inspection Results 
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Model checking W 

LMlag 23.183*** 

R-LM-lag 0.099* 

LM-error 22.888*** 

R-LM-error 2.433 

Wald-spatial-lag 43.20*** 

Wald-spatial-error 36.13*** 

LR-spatial-lag 40.97*** 

LR-spatial-error 40.40*** 

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. 

 

 


