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Abstract 

Wastewater pollution is a major concern due to organic 
matter, pesticides, and other contaminants. Untreated 
discharge of this wastewater can pollute water resources 
and harm the environment. A data-driven approach for 
optimizing wastewater treatment systems and ensuring 
recycled water's safety and effectiveness by calculating 
energy, chemical, and greenhouse gas emissions. 
According to this study, the process of system optimization 
decreases the negative influence on the environment. This 
suggested research looks at the potential for reusing 
wastewater and purifying it so it can be used in coffee 
plants. A variety of methods for cleaning and disinfecting 
substances are detailed in the article. A wide range of 
physical, chemical, and biological processes can be utilized 
in these treatments. The primary objective of sewage 
wastewater treatment is to develop effective methods that 
ensure the safety and effectiveness of treated reused 
water for use in agriculture. data analysis using sensors 
Connected sensors that measure nutrients, pollutants, 
salinity, pH, organic matter, and toxins are being used to 
track various water quality measures. Fuzzy-based data 
processing utilizing FRNNs to handle uncertainties inherent 
in sensor data through fuzzy logic techniques. Recurrent 
neural networks capture temporal dependencies in the 

wastewater data, allowing for more accurate predictions. 
Compared with the other existing algorithms, the proposed 
method has the efficient treatment of wastewater and its 
safe reuse for coffee cultivation, promoting water 
conservation and sustainable agricultural practices. 

Keywords: Wastewater treatment, data analysis, fe-rnn, 
iot sensors, purity level indicator, motor and power control 
system 

1. Introduction 

The increasing urbanization and population of India have 
made water scarcity and stress a major issue in the nation. 
To save water from being wasted, it is crucial to recycle and 
reuse wastewater. Greywater, which includes water from 
sources such as showers, bathtubs, hand basins, washing 
machines, laundry troughs, and kitchen trash, is the most 
common kind of wastewater. Black water–toilet waste. 
sewage–a mix of greywater waste, black waste, and trade 
waste. industrial wastewater–all wastewater waste except 
sewage. Sewage water irrigation increases plant growth 
and reduces the need for chemical fertilizers (Awasthi et al. 
2024). There are main two types of coffee plantations for 
the cultivation of coffee beans such as Arabica coffee soil 
conditions thrive in well-drained, volcanic soils rich in 
organic matter. The optimal pH range is 6.0 to 6.5. These 
conditions are frequently encountered at elevated 
altitudes (about 3,000 feet and higher) with temperate 
temperatures and abundant precipitation. Water 
necessitates a constant level of wetness, but it is vulnerable 
to water logging. Precipitation is essential, with optimal 
levels falling within the range of 60-100 inches per year 
(Selvanarayanan et al. 2024). Still, soils that are well-
drained and have a slightly acidic pH (at approximately 5.5 
to 6.5) are preferred. Robusta is capable of thriving in lower 
altitudes (approximately sea level to 2,000 feet) and can 
tolerate elevated temperatures. Water requirements 
Robusta coffee is more drought-tolerant than Arabica and 
can endure lower levels of precipitation (approximately 40-
60 inches per year). Nevertheless, optimal growth and 
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production are still facilitated by consistent moisture. A 
balanced supply of macronutrients and micronutrients is 
necessary for water constituents (Cargnin and Joao, 2024). 
On the other mutually beneficial ways, Robusta's unique 
needs could change slightly depending on the soil type. 
Regular soil testing will help you determine the best 
nutrient profile for your Robusta plantation. The treatment 
and disposal of this effluent will determine its 
environmental repercussions. The presence of dangerous 
bacteria along with additional pathogens in untreated 
sewage effluent poses a threat to the health of both 
humans and animals. Algae bloom and ecological 
disturbances caused by an overabundance of nutrients in 
water sources are further potential outcomes. The 
environmental impact of the effluent treatment system can 
be evaluated through data analysis. This encompasses the 
assessment of variables such as greenhouse gas emissions, 
energy consumption, and chemical usage. The 
environmental impact can be reduced by optimizing the 
system by this analysis. 

Data Quality ensures high-quality sensor data covering 
various operating conditions (e.g., water flow rate, nutrient 
levels, contaminant concentrations). Data Preprocessing is 
to clean and pre-process the data by handling missing 
values, and outliers, and scaling sensor data to a common 
range. Environmental benefits of reusing sewage water 
Cultivating a sustainable future can alleviate water stress, 
reduce pollution, promote public health, increase food 
output, conserve energy, mitigate climate change, and 
restore habitat (Alotaibi et al. 2024). Maintaining nutrient 
levels is critical since recycled water contains high levels of 
specific nutrients such as nitrogen and phosphorus. To 
prevent harm to coffee plants, it is necessary to monitor 
nutrient levels and adjust watering operations accordingly. 
Water quality monitoring systems utilize IoT sensors to 
assess many physical attributes, including temperature, 
pH, conductivity, turbidity, and total dissolved solids (TDS) 
in the form of sand (Dahiya et al. 2024). Heavy metals, 
phosphates, nitrates, and chlorine are all part of the 
chemical characteristics. Algae, bacteria, and other little 
creatures are all part of the biological parameters. The IoT 
makes it easy to link sensors to the web, which allows for 
real-time data collecting and processing. Fuzzy Embedded 
Recurrent Neural Networks (FE-RNNs) are commonly 
employed to improve the efficiency of wastewater 
recycling processes. Comparing past and present statistics. 
During training, the model discovers the complicated 
correlations between different parameters. Once trained, 
the FE-RNN can forecast water quality using real-time 
sensor data from influent wastewater (Selvanarayanan et 
al. 2024).  

2. Literature survey 

The study of enhancing water quality through the salvaging 
of sewage wastewater has been actively researched 
throughout history. W. Janczukowicz et al. introduced a 
sustainable water management practice. Algorithms such 
as Artificial Neural Networks (ANNs) and Support Vector 
Machines (SVMs) can be employed to examine past data on 
meteorological conditions, soil moisture levels, and crop 

water requirements. Satellite and aerial images can be 
utilized to monitor the well-being of crops, determine the 
moisture content of soil, and identify regions that may be 
experiencing water scarcity. The availability and quality of 
data are constrained (Janczukowicz and Rodziewicz, 2024). 
A. Joaquin et al. (2024) introduced an adsorption method 
that entails the gathering of contaminants in water 
(adsorbates) on the surface of a solid material (adsorbent), 
either by physical or chemical mechanisms. This approach 
efficiently eradicates a wide range of pollutants, including 
dyes, heavy metals, chemical compounds, and 
pharmaceuticals. The effectiveness of adsorption depends 
on factors such as the characteristics of the adsorbent, the 
properties of the pollutants, and the current operating 
circumstances (Joaquin et al. 2024). M.M Syeed et al 
proposed doing a comprehensive assessment of surface 
water quality by the analysis of several physical, chemical, 
and biological parameters to evaluate the overall state of 
the water body. The Water Quality Index (WQI) technique 
combines multiple water quality factors into a single 
numerical score, making it easier to understand and 
communicate water quality situations. The Pollution Index 
(PI) is a specialized tool used to detect and quantify the 
levels of pollution in surface water, similar to the Water 
Quality Index (WQI). Statistical techniques, such as 
correlation analysis, principal component analysis (PCA), 
and cluster analysis, are employed to detect patterns, 
relationships, and potential causes of pollution in water 
quality data (Syeed et al. 2023). P. Chang, et al, provide an 
innovative soft-sensing model for wastewater treatment 
operations. Soft-sensing involves the estimation of 
challenging-to-measure indicators of effluent, such as 5-
day Biological Oxygen Demand (BOD), by utilizing easily 
accessible sensor data for other parameters. This 
methodology provides instantaneous monitoring and 
enhanced regulation of the therapy procedure (Chang et al. 
2023). The work by H. Shabanizadeh et al utilizes Response 
Surface Methodology (RSM) to enhance the procedure. 
Response surface methodology (RSM) is a statistical 
technique used to examine the relationships and effects of 
several variables on a specific outcome. In this scenario, 
RSM is used to optimize the factors that affect the removal 
effectiveness of COD (Chemical Oxygen Demand) and 
turbidity. The criteria are expected to encompass the 
dosage of pomegranate seed powder, the initial pH of the 
effluent, and the duration of mixing time (Shabanizadeh 
and Taghavijeloudar, 2023). T. Mkilima et al. introduced an 
innovative method for treating slaughterhouse wastewater 
by integrating Microbial Fuel Cells (MFCs) and Electro-
Fenton (EF) systems, resulting in improved treatment 
efficiency. The fundamental concept is to exploit the 
advantages of both technologies: MFC bio-electrochemical 
systems employ electroactive bacteria to transform 
organic substances in wastewater into electrical energy. 
Microorganisms break down contaminants while also 
producing an electric current. EF systems utilize 
electrochemically produced hydroxyl radicals (OH•) to 
degrade organic pollutants in wastewater. These extremely 
reactive radicals efficiently break down intricate chemical 
compounds (Mkilima et al. 2024). J. Wang et al (2023) 
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suggested a concentration on appraising the water quality 
and estimating the pollution levels of Weishan and Luoma 
Lakes, situated in Xuzhou, Jiangsu Province, China. 
Evaluating water quality is essential for comprehending the 
condition of a water source and its appropriateness for 
different purposes, such as consumption, leisure activities, 
or the survival of aquatic organisms. Pollution evaluation 
helps identify the sources and types of contaminants 
impacting the water quality (Wang et al. 2023). L. 
Sulistyowati proposed an Importance-Performance 
Analysis (IPA) technique to assess stakeholder perceptions 
of various water quality parameters. Stakeholders rate the 
importance of each parameter for maintaining good water 
quality and the performance of the current efforts in 
addressing those parameters. Parameters that have a 
significant impact but are currently performing are crucial 
areas for enhancement. The Terrain Analysis technique 
employs geographical data, including elevation and slope, 
to identify regions with a significant likelihood of water 
pollution. These regions are frequently linked to higher 
levels of water flow accumulation, rendering them more 
vulnerable to pollution runoff resulting from activities such 

as agriculture or industry (Sulistyowati et al. 2023). Using 
criteria for water quality that have been measured, C. 
Chawishborwornworng put out a WQI model. 
Measurement mistakes, oversimplifications, and random 
fluctuations in water quality are some of the sources of the 
inherent inaccuracies in these models. To overcome this, 
the bootstrap method generates many "pseudo-datasets" 
that are resampled using the actual data as a replacement. 
The bootstrap method improves our understanding of 
model uncertainty and its effect on anticipated WQI values 
by training independent WQI models on each pseudo-
dataset and evaluating the ensuing variations. 
(Chawishborwornworng et al. 2024). Wastewater from the 
coffee processing industry often contains herbicides, 
organic debris, and other contaminants. The environment 
and water supplies are vulnerable to contamination from 
this wastewater if it is not treated before discharge. By 
reducing wastewater treatment requirements to an 
acceptable level, the fuzzy-embedded RNN-IoT system 
provides a long-term, environmentally friendly solution as 
shown in Table 1. 

Table 1. Existing work compared with the Proposed work 

Author Concept Algorithm Disadvantage Future Scope 

Jin et al. (2020) Assessing risks and 

benefits of reuse 

LCA (Life Cycle 

Assessment) 

Public perception, 

potential for pathogen 

contamination 

Develop standardized 

guidelines & regulations 

Wu et al. (2019) Optimizing 

treatment processes 

for irrigation 

Membrane filtration, 

reverse osmosis 

High operational costs, 

energy consumption 

Explore cost-effective 

advanced treatment 

technologies 

Qadir et al. (2010) Managing salinity 

issues 

Salinity modeling, 

leaching practices 

Salinity buildup in soil, 

potential for soil 

degradation 

Develop salt-tolerant 

crop varieties, improve 

irrigation management 

Pichel et al. (2021) Microbial risk 

mitigation strategies 

Pathogen detection 

methods, disinfection 

techniques 

Uncertainty of long-

term health effects 

Implement robust 

monitoring programs, 

research on novel 

disinfection methods 

Hussain et al. (2019) Economic aspects 

and social 

acceptance 

Cost-benefit analysis, 

social surveys 

Public education, 

capacity building 

programs 

Develop economic 

incentives for wastewater 

reuse in agriculture 

 

3. Materials and method 

The research focused on developing a more reliable 
method for treating recycled sewage water for coffee 
cultivation as indicated in Table 2. Current water quality 
assessments, based on outdated guidelines, often produce 
inaccurate results. The research addressed the Fuzzy 
Embedded RNN-IoT algorithm, which provides a more 
predictable way to transform wastewater into a 
sustainable and nutrient-rich irrigation source for coffee 
plants as shown in Figure 1. 

3.1. Sewage wastewater samples collection from coffee 
plantation 

Sewage wastewater from a coffee plantation that 
instigates from bathrooms and restaurants is also referred 
to as domestic wastewater (Fecal matter, Toilet paper, 
Food scraps, and Graywater (wastewater from showers, 
sinks, dishwashers, and washing machines). The 

wastewater flows into a settling tank these are large tanks 
that allow solids to settle out of the wastewater by gravity. 
The settled solids, called sludge, can then be removed and 
disposed of properly. Settling tanks are a simple and 
effective way to remove a significant amount of organic 
matter from wastewater.  

Once the wastewater is settled Ultraviolet (UV) is shown in 
Table 3. Disinfection is a method for disinfecting water and 
surfaces using ultraviolet light, particularly a specific 
wavelength within the UV-C spectrum (around 254 
nanometers). This light disrupts the DNA of 
microorganisms like bacteria, viruses, and protozoa, 
rendering them unable to reproduce or infect. DNA 
Disruption structure of microorganisms within the 
wastewater. Damaged DNA prevents them from 
reproducing, essentially rendering them inactive. The UV-
treated wastewater is free of harmful pathogens and can 
be safely used for irrigation on the coffee plantation. Unlike 
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chlorination, UV disinfection doesn't involve adding 
chemicals to the water. This eliminates the risk of harmful 
disinfection byproducts (DBPs), safe for the environment. 

 

Table 2. Wastewater Recycling Treatments Suitable for Coffee Plantation 

Treatment Stage Type of Treatment Depiction Detriment Fuzzy Logic and RNN Integration 

Preliminary Screening and Grit 

Removal 

Removes large objects like 

rags, sticks, and debris. 

inorganic materials like 

sand and gravel 

Reduces 

maintenance issues 

Sensors can track incoming 

water flow rate. The fuzzy 

system can adjust screen mesh 

size and grit removal frequency 

to optimize capture while 

minimizing energy usage. 

Primary Sedimentation Allows suspended solids to 

settle out of the 

wastewater through 

gravity settling in large 

tanks 

Removes a 

significant portion 

of organic matter 

and solids. 

Sensors can track sludge blanket 

depth and effluent turbidity. 

Chemical Neutralization Adjusts the pH of 

wastewater to a neutral 

range (pH 6.5-8.5) using 

acids or bases. 

Creates optimal 

conditions for 

biological 

treatment and 

protects 

equipment. 

The RNN can analyze historical 

data to predict upcoming 

influent with high or low pH 

Biological Trickling Filters Sprays wastewater over a 

fixed bed 

Simpler operation 

compared to 

activated sludge. 

The RNN can analyze historical 

data to predict future trends in 

organic matter content. 

Disinfection Ultraviolet 

Disinfection 

Exposes wastewater to UV 

light to inactivate bacteria 

and viruses. 

Effective 

disinfection, no 

chemical residual. 

Sensors can track UV lamp 

intensity and effluent flow rate. 

Table 3. Measuring Inland surface water, Total Suspended Solids, biochemical, chemical, Oxygen 

Parameter Units Relative Weight Date of Measurement Measured 
Value 

Weight Stand. Value 

(BOD, COD) mg/L 0.35, 0.20 05.27.2024-0.5.30.2024 0.15-0.20 3.5, 2.0 ≤30,≤250[ISW] 

(Na), (Cl) mg/L 0.01 05.27.2024-0.5.30.2024 0.05, 0.10 0.08 ≤10,≤50[ISW] 

pH - 0.15 05.27.2024-0.5.30.2024 0.20 1.5 6.5-8.5[ISW] 

(TSS) mg/L 0.15 05.27.2024-0.5.30.2024 0.10 1.5 ≤100[ISW] 

(TN) mg/L 0.10 05.27.2024-0.5.30.2024 0.10 1.0 ≤90 [ISW] 

(TP) mg/L 0.05 05.27.2024-0.5.30.2024 0.10 0.5 ≤70 [ISW] 

 

3.2. Purity level verification in recycled sewage water 

Untreated sewage water can harbor harmful pathogens 
like bacteria, viruses, and parasites. These can cause 
diseases in coffee plants, reducing yields and impacting 
bean quality. Safeguarding public  

 

Figure 1. Proposed Model for Recycling Sewage Wastewater 

health coffee beans irrigated with contaminated water can 
become carriers of pathogens. Consuming such coffee can 
pose health risks to humans. Many countries have 

regulations governing the use of recycled wastewater for 
irrigation, often specifying acceptable levels of 
contaminants like bacteria, heavy metals, and salinity 
indicating the purity level of water and whether water can 
be used for the coffee plantation or not. High levels of salts 
and sodium in inadequately treated wastewater can 
accumulate in the soil over time, negatively impacting its 
fertility and hindering future crop growth. Enhance the soil 
micro and macro nutrients needed. Macronutrients such as 
Nitrogen (N) are crucial for strong vegetative growth and 
abundant fruit sets. Deficiency leads to stunted growth and 
yellowing leaves. Phosphorus (P) promotes root 
development and overall plant health. Deficiency results in 
poor root growth and weak stems. Potassium (K) enhances 
disease resistance, water regulation, and fruit quality as 
indicated in Figure 2. As shown in Table 4 Micronutrients 
such as Magnesium (Mg) and Sulfur (S) both are essential 
for various plant functions and impact yield. Zinc (Zn) and 
Boron (B) are particularly important during flowering for 
good berry set and overall yield potential. Deficiency can 
lead to poor flower development and reduced fruiting. 
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Always ensure a proper pH level in the irrigation water 
(between 6.0 and 7.0) for optimal nutrient availability to 
the coffee plants (Selvanarayanan and Rajendran, 2023). 

 

Figure 2. Wastewater Purification Setup 

3.3. UV disinfection in recycled water 

Ultraviolet (UV) disinfection is a method that uses 
ultraviolet light, particularly a specific range called UV-C, to 
kill or inactivate microorganisms like bacteria, viruses, 
fungi, and protozoa. UV disinfection utilizes ultraviolet (UV) 
light, specifically a wavelength of around 254 nanometers 
(nm). UV light disrupts the DNA of bacteria, viruses, and 
other pathogens in the water, rendering them inactive and 
unable to reproduce. The water flows through a chamber 
equipped with UV lamps, ensuring proper exposure to the 
germicidal light. UV light disrupts the DNA or RNA of 
microorganisms (Alotaibi et al. 2024), preventing them 
from reproducing and causing infection. The effectiveness 
of UV disinfection is determined by the UV dose, which is 
the product of UV intensity (I) and exposure time (T) as 
illustrated in eq 1. 

( )
   

=   
   

2 2

uWsec uW
UV Dose   I  x T  sec

cm cm  
(1) 

Where I (uW/cm²): Effective UV lamp intensity reaching the 
target microorganism in the water. This value depends on 
lamp characteristics, water quality (turbidity, organic 
matter content), and lamp aging. T (sec). Exposure time is 
the time the water is exposed to the UV light within the 
disinfection chamber. This depends on the flow rate of the 
water and the design of the chamber (Surendran et al. 
2023). 

3.4. Built iot sensor network to monitor water quality 

The sensor measures the quality of the water after passing 
from the UV Disinfection panel. IoT Sensors as shown in 
Table 5 fixed in the pipe while water passes through water 
purity can be measured. IoT sensors such as pH Sensor 
Measure the acidity or alkalinity of the water where the 
range for water is between 6.5 and 8.5. Temperature 
Sensor Measures the temperature of the water. Water 
temperature can impact the amount of dissolved oxygen 
and the growth of bacteria. Low-Power Wide-Area 
Network (LPWAN) is ideal for battery-powered sensors as 
it consumes minimal power and offers long-range 
communication. Conductivity Sensor: Measures the 
electrical conductivity of the water, which can be an 
indicator of the presence of dissolved salts and minerals. 
Dissolved Oxygen (DO) Sensor Measures the amount of 
dissolved oxygen in the water. Oxygen is essential for 
aquatic life and can be impacted by pollution as shown in 
eq 2. Turbidity Sensor Measures the clarity of the water. 
Turbidity can be caused by suspended particles such as 
sediment, algae, or bacteria. Chlorine Sensor Measures the 
amount of chlorine in the water. Chlorine is a disinfectant 
that is used to kill bacteria.  

( )=   
In OutData DataNodeMCU f Arduino

 
(2) 

( )=   
In OutData DataCloud f NodeMCU

 
(3) 

( )( )=   
In OutData DataCloud f f Arduino

 
(3) 

Where Node MCU_Data_In represents data received by 
the Node MCU from the Arduino as indicated in eq 3, 
Arduino_Data_Out represents the data transmitted by the 
Arduino to the Node MCU, and the f () function represents 
the processing or formatting that might be applied to the 
data by the Arduino before sending it to the Node MCU. 
Cloud_Data_In represents the data received by the cloud 
platform from the Node MCU. Node MCU_Data_Out 
represents the data transmitted by the Node MCU to the 
cloud platform. f() function represents any processing or 
formatting applied by the Node MCU before sending data 
to the cloud as indicated in eq 4. This could involve data 
encryption, adding timestamps, or converting data to a 
specific format required by the cloud platform 

 

Table 4. Recommended Nutrient Concentration in Water for Coffee Plantation 

Nutrients Nitrogen (N) Phosphorus (P) Potassium (K) Magnesium (Mg) Sulfur (S) Zinc (Zn) Boron (B) 

Level (mg/L) 20-50 10-20 20-40 4-5 10-20 0.2-0.5 0.1-0.5 

Table 5. IoT Sensors Utilized in Wastewater Recycling Process 

IoT Sensors pH Sensor Temperature 
Sensor 

Conductivity 
Sensor 

Dissolved Oxygen 
(DO) Sensor 

Turbidity 
Sensor 

Chlorine Sensor 

Version Hach HQ40d 

probe 

DS18B20 sensor HI-8731 sensor YSI Pro ODO 

sensor 

Hach 

2100AN 

Myron L Company 

Pool Lab 1700 
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Collected information is transferred using the I2C (Inter-
Integrated Circuit) Protocol it is a moderate-speed protocol 
for communication between limited distances and 
connecting multiple sensors to a single microcontroller. 
The I2C protocol is connected to the Arduino for 
communicating via I2C and then sent to the Node MCU to 
establish a connection to the cloud platform (e.g., Amazon 
Web Services (AWS)) and transmit the received sensor 
data. 

3.5. Fuzzy embedded recurrent neural network 

A Fuzzy Embedded Recurrent Neural Network (FE-RNN) 
combines the strengths of fuzzy logic and recurrent neural 
networks (RNNs) to offer improved interpretability and 
performance in embedded systems as indicated in Figure 
3. In data preprocessing, raw sensor data from the 
environment (wastewater recycling) is collected and 
undergoes cleaning, normalization, and scaling to prepare 
it for the FE-RNN. Fuzzification is similar to fuzzy logic 
systems, the FE-RNN employs membership functions to 
convert crisp sensor data into fuzzy membership values. 
These membership functions define input values belonging 
to a particular fuzzy set (e.g., "high temperature," "low 
pressure"). The fuzzy Rule Layer leverages fuzzy rules 
established by the developer. These rules define 
relationships between fuzzy inputs and fuzzy outputs as 
shown in eq 5 μ_A(x): Degree of membership of x in fuzzy 
set A, a, b, c, d: Parameters defining the triangle shape.  

( )


  − −  
= − = =   

− −   
  0,  , 1 ,     

A x

x a x c
max min a x d

b a d c
 

(5) 

An example rule is "if the temperature is HIGH and pressure 
is LOW THEN water quality is POOR.". Each rule contributes 
to the overall activation of a fuzzy output set (e.g., "poor 
water quality") as shown in eq 6. Fuzzy Inference Engine 
applies the fuzzy rules to the fuzzified sensor data. It 
considers the activation levels of each rule and combines 
them using fuzzy operators (e.g., AND, OR). 

( ) ( )

( )

       

     

If Temperature isHigh AND Pressure isMedium

Then FlowRate isLow
 

(6) 

( )( )=               
i x

AggregatedFuzzyOutput SUM for all activated rules i  (7) 

( )

( )( )




 
=  

 
 

 * 
         

x x
CrispOutput SUM for all possible xvalues

SUM x
 

(8) 

Where Multiple activated fuzzy rules contribute to the final 
fuzzy output, aggregation operators (e.g., SUM, MAX) 
combine these fuzzy outputs. De-fuzzification is the fuzzy 
output that needs to be converted back into a crisp value 
for decision-making. De-fuzzification techniques like the 
centroid or center-of-gravity methods are used to translate 
the fuzzy output set into a single numerical value as shown 
in eq 7&8. 

 

Figure 3. Proposed Algorithm Working Model 

 

4. Implementation and results 

In a real-world application, the AI system was deployed by 
placing Internet-of-Things (IoT) sensors in selected sewage 
wastewater used for irrigating agricultural fields. These 
sensors continuously gather real-time water quality data, 
including moisture content, temperature, pH, levels of 
various nutrients, and electrical conductivity. A pre-trained 
FE-RNN model was utilized to forecast specific water 
properties, such as nutrient content and pH, based on the 
sensor readings. The gathered data was then fed into the 
system to identify recurring patterns and trends in water 
quality, specifically to aid in managing coffee plantations as 
indicated in Figure 4. 

4.1. Evaluation setup 

IoT Sensors such as pH Sensor - Hach HQ40d probe, 
Temperature Sensor–DS18B20 sensor, Conductivity 
Sensor–HI-8731 sensor, Dissolved Oxygen (DO) Sensor- YSI 
Pro ODO sensor, Turbidity Sensor–Hach 2100AN, Chlorine 
Sensor–Myron L Company Pool Lab 1700. Personal 
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Computer (PC) with the following specifications Processor: 
operating system Windows 11, Intel Core i5–8600, 
Graphics Card: Nvidia GeForce 1050Ti 4GB, RAM: 16 GB, 
Storage: 250 GB SSD (fast boot and program loading) + 1 TB 
HDD (large data storage). Python 3.6, cloud platform AWS, 
Data Visualization Tools Matplotlib, DC Power Supply, 
Irrigation system actuator. Wi-Fi communication module–
Enables connection to a local Wi-Fi network for internet 
access. The suggested model is evaluated using False 
Negative, True Positive, True Negative, and False Positive 
metrics using the Fuzzy Embedded Recurrent Neural 
Network. 

 

Figure 4. Real-Time Working Model Field Setup for Wastewater 

Recycling 

4.2. Performance evaluation compared with FE-RNN 

Accuracy reflects the overall effectiveness of the model in 
correctly classifying samples eq 9. It considers both true 
positives (correctly identified positive cases) and true 
negatives (correctly identified negative cases). High accuracy 
is desirable for wastewater recycling as shown in Table 6.  

+
=

       
 

 

TruePositives TrueNegatives
Accuracy

Total Samples
 

(9) 

Precision metric focuses on the proportion of positive 
predictions that were correct (true positives). It helps 

identify how good the model is at avoiding false positives, 
which can be crucial in both applications. For instance, a 
false positive in plant health monitoring might indicate a 
healthy plant needs treatment when it doesn't, leading to 
unnecessary resource use eq 10. Similarly, a false positive 
in wastewater recycling might suggest cleaner water than 
it is, posing potential risks.  

=
+

 

   

TruePositives
Precision

TruePositives FalsePositives  
(10) 

The recall metric emphasizes the model's ability to identify 
all actual positive cases (true positives). It helps assess how 
well the model avoids false negatives, which can also be 
significant eq 11. A false negative in wastewater recycling, 
a false negative might overlook inadequately treated 
water, compromising its safe reuse.  

=
+

 

   

TruePositives
Recall

TruePositives FalseNegatives
 

(11) 

The F1 Score metric eq 12 combines precision and recall 
into a single value, providing a more balanced view of the 
model's performance. A high F1 score indicates a good 
balance between identifying true positives and avoiding 
false positives/negatives.  

=
+

*
1  2*

Precision Recall
F Score

Precision Recall  
(12) 

Specificity metric specifically looks at the proportion of 
negative predictions that were truly negative (true 
negatives). It's relevant when negative cases are equally 
important to identify correctly. In wastewater recycling, a 
high specificity ensures the model can accurately classify 
safe wastewater for reuse eq 13. 

=
+   

TrueNegatives
Specificity

TrueNegatives FalsePositives
 

(13) 

 

Table 6. Performance Analysis for the Proposed Model 

Performance Precision Recall F1 Score Specificity Accuracy 

Support vector machine 79.66 78.23 78.77 80.41 80.72 

Random Forest 79.79 80.24 81.60 82.16 81.44 

GAN 82.50 82.61 82.80 84.13 82.02 

K-means clustering 85.98 86.23 87.12 87.89 86.12 

Feedforward Neural 

Network 

84.97 83.23 85.91 86.12 87.73 

Logistic Regression 88.23 89.21 90.24 89.77 89.74 

Proposed Model FE-RNN 92.40 92.45 93.22 94.78 96.21 

Recycled water is crucial for plant growth, and its quality is 
shown in Figure 5. Plants can't develop without nutrients 
like nitrogen and phosphorus. Still, there are hazards linked 
with waste from heavy metals like mercury, so it's 
important to handle or dispose of it properly. The level of 
dissolved salts in the effluent is known as salinity (Table 7). 
The waste's acidity or alkalinity is indicated by its pH. 
Extremely acidic or basic pH levels harm the environment 
because they are corrosive. 

Keeping an eye on the waste's pH level allows for better 
management and treatment decisions leading up to 
disposal. Keeping an eye on the amount of organic matter 

in trash can tell you a lot about how biodegradable it is and 
how much methane gas it could produce in landfills. It is 
possible to gauge the possible effects of certain 
contaminants on human and environmental health by 
keeping tabs on them. Some examples are substances that 
disturb the endocrine system, herbicides, and medications. 
The proposed method achieved 96.21% accuracy, while 
Support vector machine, Random Forest, GAN, K-means 
clustering, Feedforward Neural Network, and Logistic 
Regression obtained 80.72, 81.44, 82.02, 86.12, 87.73, 
89.74. Existing approaches take longer to calculate all 
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datasets. The suggested technique detects events better 
than current methods. 

 

Table 7. Wastewater Quality Observation and Quality Maintained 

Parameters Measured Method Value Range Units 

Nutrient Level Sensors and chemical analysis Nitrogen (N): 10-50 

Phosphorus (P): 2-10 

mg/L (milligrams per liter) 

Contaminant Mass spectrometry Lead (Pb): < 0.5  mg/L (milligrams per liter) 

Salinity Conductivity Meter Saline water: > 3  dS/m (deciSiemens per 

meter) 

pH Value pH meter 6.5 - 8.5 pH units 

Organic Matter Chemical Oxygen Demand (COD) test, Biological 

Oxygen Demand (BOD) test, Total Organic 

Carbon (TOC) analyzer. 

COD: 200–500, BOD: 100–300 mg/L (milligrams per liter) 

Pollutant Levels High-performance liquid chromatography 

(HPLC) 

ng/L  μg/L (nanograms per 

liter) 

 

 

 

Figure 5. A. Nutrients Level, B. Contamination, C. Salinity, D. pH 

Value, E. Organic Matter, F. Pollutants Level Monitoring based 

on Recycling Process over Time 

 

Figure 6. Overall Performance Evaluation 

4.3. Optimization of model 

Water quality is important for agriculture in coffee 
plantations any changes in soil, or water fertilizer will affect 
the growth and flavor of the coffee beans. The conversion 

of sewage water into agricultural land might cause disease 
spread to the plants.  With the proper monitoring and 
treatment water can be reused for coffee plantations.  

 

Figure 7. Purity Level Indicator 

 The dataset is collected using sensors. Training and 
evaluation are divided into training, validation, and testing 
sets in the ratio 60:20:20 using the FRNN, the validation set 
to monitor training progress and prevent overfitting, and 
the testing set for final performance evaluation. 
Hyperparameter: learning rate is 0.01, number of hidden 
layers is 3. Loss Function Selection Choose a loss function 
appropriate for your task (e.g., mean squared error for 
regression problems). The loss function quantifies the 
difference between the FRNN's predictions and the desired 
outputs achieved 96.21% as shown in Figure 7. As shown in 
Figure 6 Water Purification Stages has each square depicts 
a different treatment process, such as Filtration: Removing 
physical impurities like particles or suspended solids, 
Chemical Treatment: Using chemicals to neutralize 
contaminants or adjust water chemistry, Biological 
Treatment: Employing microbes to break down organic 
matter, and Disinfection: Eliminating harmful bacteria or 
pathogens. Color-coded squares of each square might 
indicate the level of water purity achieved at that particular 
treatment stage. Dark green is very impure wastewater, 
Light shade green is partially treated wastewater, dark blue 
is moderately treated wastewater, light blue is nearly 
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purified wastewater, and white is fully purified 
wastewater. Training accuracy metric reflects the 
percentage of training samples the FE-RNN correctly 
classified during training. 

 High training accuracy suggests the model is learning the 
patterns in the training data. The validation accuracy 
metric reflects the percentage of validation samples the FE-
RNN correctly classified on unseen data. It provides a 
better estimate of how well the model will generalize to 
new data as shown in Figure 8.  

 

Figure 8. Training and Validation Accuracy, Training and 

Validation Loss, confusion Matrix of Fuzzy Embedded Recurrent 

Neural Network 

Training Loss metric measures the difference between the 
FE-RNN's predictions and the actual targets in the training 
data. A decreasing training loss indicates the model is 
improving its ability to fit the training data. Validation Loss 
Similar to training loss, validation loss measures the 
difference between predictions and targets on unseen 
validation data. A stable or decreasing validation loss 
suggests the model is learning without overfitting the 
training data. 

5. Conclusion and future direction 

The world faces a serious challenge in water scarcity. With 
a growing population and uneven water distribution, 
millions struggle to access this vital resource. Sewage 
wastewater, once treated, can become a valuable resource 
and offers several environmental and economic benefits. 
Sewage wastewater undergoes various treatment stages 
before reuse. These may include physical removal of solids, 
biological treatment to break down organic matter, and 
disinfection to kill harmful bacteria. IoT sensors can 
continuously measure parameters like pH, conductivity, 
and nutrient levels. This data is vital for controlling the 
treatment process and ensuring that recycled water meets 
quality standards. Collected information is trained and 
validated using the FE-RNN model. Compared with other 
existing models the proposed model achieved 96.21% of 
accuracy, Precision 92.40%, Recall 92.45%, F1 Score 
93.22%, specificity 94.78%. Future scope to develop early 
industrial waste leak detection using sensors can detect 
leaks in pipes or treatment systems, allowing for prompt 
repair and minimizing water loss integration with smart 
irrigation systems. 

Data availability 

The dataset utilized and analyzed in our research is publicly 
accessible to the Wastewater Recycling and Quality 

Monitoring for use in coffee plantation Zenodo 
communities raveena R. (2024). Wastewater Quality 
Monitoring. Zenodo. https://doi.org/10.5281/ 
zenodo.12591349 The coding system along with additional 
data are accessible upon adequate request from the initial 
and coauthor authors. 
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