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Graphical abstract 

 

Abstract 

Wastewater includes sewage water, which presents 
serious environmental problems that necessitate effective 
treatment techniques. Membrane Bioreactors (MBRs) have 
emerged as promising solutions, albeit plagued by 
membrane fouling and computational loading issues. To 
resolve these issues, this research article presents an 
innovative control strategy combining both artificial bee 
colony optimization (ABC) and recurrent neural network 
(RNN) to regulate the performance of MBR in sewage 
treatment. Initially, the influent wastewater data was 
collected and pre-processed using the regression 
imputation approach. RNN architecture was designed and 
trained using the pre-processed data to forecast the 
performance of the MBN system. Further, the ABC 
algorithm was applied to optimize the function of MBR by 
adjusting the control variables. The developed model was 
validated with the publically available wastewater 
treatment plan dataset and the effectiveness of the 
developed model was validated by performing intensive 
performance and comparative assessment. The 
performance evaluation demonstrates that the proposed 
methodology attained greater results of 98.59% effluent 

quality, 98.70% of nutrient removal efficiency, less 
computational time of 2.87s, and a low membrane fouling 
index of 1.23%. The comparative analysis illustrates that 
the presented approach achieved improved performances 
than the existing methodologies.  

Keywords: Artificial intelligence, sewage treatment, 
recurrent neural network, artificial bee optimization, 
membrane bioreactor 

Nomenclature 

MBR Membrane Bioreactors 

ABC artificial bee colony optimization 

RNN recurrent neural network 

AOX absorbable organic elements 

MBSP membrane-based separation  

ANN artificial neural network 

MLP multilayer perceptron 

RBF radial basis function 

FFNN feed-forward neural network 

ML machine learning 

OMER osmotic MBR 

AGS aerobic granular sludge 

LSTM long short-term memory 

COD chemical oxygen demand 

BOD biochemical oxygen demand 

TMP transmembrane pressure 

WWTP Wastewater Treatment Plant 

NMPC Model Predictive Control Design 

FLC Fuzzy logic control 

PSO Particle Swarm Optimization 

1. Introduction 

Owing to the increased industrial revolution, the existence 
of persistent and emergent pollutants including absorbable 
organic elements (AOXs) in wastewater is emerging as a 
global issue (Kamali et al. 2021). Recently, various 
innovative treatment approaches are designed to remove 
the pollutants present in the wastewater (Crini et al. 2022). 
But the selection of an appropriate approach is significant 
for the proper treatment of wastewater. Therefore, 
membrane-based separation techniques (MBSPs) are 
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utilized widely to treat the variety of polluted water and 
wastewater instigated from different municipal and 
industrial sources (Maqsood et al. 20222). However, this 
membrane-based approach was selected based on the 
wastewater pollution load and the chosen technique must 
be sustainable, eco-friendly, and feasible (Behera et al. 
2021). In addition, achieving sustainable development is 
important for designing eco-friendly, and economically 
feasible MBSPs for wastewater treatment (Fu et al. 2022). 
Recent studies reported that treatment proficiency is one 
of the parameters, which defines the selection of an 
appropriate approach among the conventional techniques 
(Fernandes et al. 2020). Currently, the MBSPs are assumed 
as the most effective method to handle the largely polluted 
water (Lalle et al. 2021). Moreover, the researches 
illustrate that the conventional techniques along with the 
integration of filtration of the biological treatment method 
provide highly effective isolation of the pollutants (Ahmed 
et al. 2021).  

This method integrates the benefits of physical isolation of 
the pollutant and their deprivation through micrograms (Lu 
et al. 2021). This makes the researchers concentrate on the 
development of MBRs. Therefore, to support industrial 
applications different kinds of aerobic and anaerobic MBRs 
are designed (Saidulu et al. 2021). However, they face 
some challenges in providing highly effective wastewater 
treatment (Pandey et al. 2021) The membrane fouling is 
one of the significant issues of the MBSPs, but managing 
the quality of the treated sewage is interconnected with 
the composition and performance of the microbial groups 
(Li et al. 2022). This shows that the design of integrated 
approaches like MBRs enables effective sewage treatment 
(O’Dwyer et al. 2020). But the existing parameter controller 
tools including the negative feedback control models are 
not accurate in confirming the high-quality water 
treatment (Xu et al. 2022). Hence, artificial intelligence (AI) 
approaches are deployed to control the entire wastewater 
treatment process. This approach enables the system to 
predict the control parameters, which the existing 
technique faces difficulty (Merabet et al. 2021; He et al. 
2022).  

The utilization of the AI approach integrates the computer-
controlled machine pertaining such as generalization, and 
learning, which makes the system learn from experiences 
(data) for predicting the control parameters (Pan and 
Zhang, 2021). In this approach, the data related to sewage 
treatment are collected and utilized to predict the 
outcomes and control parameters in the future (Zhu et al. 
2022). Numerous researches described that the utilization 
of AI techniques increased the performance of various 
applications associated with agriculture, health, disaster 
management, etc., (Sharifi et al. 2021). In addition, it is 
deployed to predict environmental factors and control 
pollution. Moreover, the researchers demonstrated that 
the application of AI techniques such as artificial neural 
network (ANN), multilayer perceptron (MLP), radial basis 
function (RBF), feed-forward neural network (FFNN), etc., 
enables the system to manage the water quality and 
provide highly cleaned water in the polluted regions 

(Rehamnia et al. 2021). However, the performance of these 
systems depends on the quality of the training data and it 
faces high computational complexity. To resolve these 
issues, meta-heuristic algorithms such as genetic 
algorithms, particle swarm optimization, etc., are utilized. 
Moreover, the recent conventional approaches such as the 
machine learning (ML) based approach (Yaqub et al. 2022), 
AI-based prediction model (Viet et al. 2021), integrated 
ANN, and the adaptive network-based fuzzy system 
(Hosseinzadeh et al. 2021), etc., are prone to overfitting, 
interoperability, computational complexity, and its 
performance depends on the quality of the training set. 
Therefore, an artificial intelligence-based control strategy 
was designed for bioreactors in sewage treatment. 

When every aspect is considered, the RNN is good at 
managing different input lengths, remembering 
information, and processing sequential data. By efficiently 
recording temporal dependencies, it can analyze time-
series data and forecast future events. By simulating the 
exploitation and recruitment of food sources, ABC 
optimizes solutions repeatedly, taking inspiration from the 
foraging behavior of honeybee swarms. Across a wide 
range of optimization issues, this population-based 
approach finds applications and performs exceptionally 
well while exploring search areas. Wastewater treatment 
efficiency is increased by the MBR, which combines 
biological treatment and membrane filtration. MBR 
systems, which are essential in municipal and industrial 
wastewater treatment facilities, efficiently eliminate 
pollutants by using semi-permeable membranes. This 
results in effluent of a higher caliber than using traditional 
methods. 

The work combines the RNN control strategy with the ABC 
optimization technique to regulate MBR systems in sewage 
treatment shows its novelty. With the help of influent 
wastewater data, this novel method accurately forecasts 
MBR performance and adjusts operating parameters in real 
time. The suggested approach outperforms traditional 
control systems by integrating AI-based prediction with 
optimization to provide improved effluent quality, 
decreased membrane fouling, and increased nutrient 
removal efficiency, therefore solving important 
environmental concerns in wastewater treatment. 

The major contributions of the presented research work 
are described below, 

• Collect the MBR-sewage treatment database and 
pre-process the raw dataset to ensure the quality 
and reliability of the dataset. 

• Design the RNN architecture and train it using the 
pre-processed dataset to predict the performance 
of the MBR. 

• Applying the ABC approach optimizes the 
operation of the MBR by adjusting the control 
variables continuously. 

• Finally, the results of the developed model were 
examined and evaluated with traditional control 
strategies in terms of nutrient removal efficiency, 
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computational time, effluent quality, and 
membrane fouling index.  

The organization of the research paper is described as the 
2nd section analyzes the recent research articles related to 
the proposed work, the 3rd section describes the system 
model and its problems, the 4th section details the working 
of the proposed methodology, the 5th section analyzes the 
outcomes of the proposed work, and the 6th section 
demonstrates the research conclusion.  

2. Related works 

Some of the research works associated with the proposed 
work are reviewed as follows,  

Muhammad Yaqub and Wontae Lee (Yaqub and Wontae, 
2022) designed a machine learning (ML) based approach 
for predicting nutrient removal efficiency. This method 
deploys the anaerobic MBR and extreme gradient boosting 
design to identify the elimination of nutrients like nitrogen, 
ammonium, etc., from the water. The simulation results 
describe that the developed model enhances the 
functional efficiency of the anaerobic MBR. However, this 
technique is prone to overfitting challenges.  

In recent times, the osmotic MBR is being widely utilized 
for sewage treatment in various industrial and municipal 
corporations. Nguyen Duc Viet and Am Jang (Viet et al. 
2021) designed an AI-based prediction model for 
forecasting the osmotic MBR outcomes. This method 
improves the system's performance by minimizing the 
environmental impacts of wastewater. The extensive 
evaluation shows that the designed framework is highly 
effective in predicting and optimizing the osmotic MBR. But 
this method cannot handle the variations in the input data.  

Ahmad Hosseinzadeh et al (2020) proposed an integrated 
framework to predict water flux in osmotic MBR (OMBR). 
This method hybrid the ANN and the adaptive network-
based fuzzy system for effective and accurate forecasting 
of OMBR performance. The intensive simulation analysis 
demonstrated that this method earned a very low RMSE of 
0.252. Furthermore, a sensitivity assessment was made to 
evaluate the efficiency of the developed model under data 
variations. However, the training and optimization of this 
hybrid approach are computationally intensive and time-
consuming.  

Jiahao Liang et al (2020) presented an aerobic granular 
sludge (AGS) approach for the management of flow back 
water from shale gas extraction. This method controls the 
environmental factors of the natural gas industry. The 
evaluation results effectively remove the effluents like 
COD, NH4+-N, and TN. In addition, the 3-layered ANN is 
responsible for eliminating the dynamics of pollutants 
present in the water. However, this approach is prone to 
membrane fouling.  

Typically, the MBR faces issues like fouling, which increases 
the cleaning and maintenance costs. To resolve these 
issues, Yasser Algoufily et al (2022) developed a prediction 
and monitoring framework to detect the fouling in MBR. In 
this approach, the total resistance of the membrane was 
determined using the stochastic design based on the 
information interconnected to membrane fouling. 

Moreover, an ANN-based control system was designed to 
manage the temperature in their setpoints. But this 
method produces false positives and negatives in the 
fouling prediction.  

For wastewater treatment, the anaerobic MBR is 
considered one of the most eco-friendly solutions. 
However, these MBRs are prone to fouling, thus it 
increases energy consumption and cost. Therefore, José M. 
Cámara et al (2023) presented an accurate fouling 
prediction framework using the neural network. The 
integration of both numerical and neural networks 
enhances prediction efficiency. However, this method 
demands large computational memory and power.  

Muhammad Yaqub et al (2020) designed a framework to 
predict the effluent removal efficiency of an anaerobic 
MBR using long short-term memory (LSTM). This method 
considers the influent wastewater features such as total 
nitrogen, ammonium, dissolved oxygen, etc., as inputs and 
the removal efficiency as output. Furthermore, data 
normalization and analysis were utilized in the system to 
increase its learning speed. The prediction outcomes 
describe that the designed model attained high accuracy. 
However, tuning the hyperparameters are complex in this 
approach. 

Yifeng Chen et al (2020) introduced an innovative algorithm 
using the backpropagation ANN and generalized regression 
neural system to measure the interfacial power 
interconnected with the MBR fouling. This method was 
trained and validated using the five apparent databases 
and a case study was made to evaluate the feasibility and 
robustness of the approach. The results validate that the 
designed framework achieved huge quantification 
efficiency. But the integration of these different techniques 
is complex and requires more resources.  

The incorporation of a hybrid ABC-RNN control technique 
specifically designed for MBR regulation in sewage 
treatment makes the suggested system unique. It 
combines artificial bee colony optimization and recurrent 
neural networks for effective prediction and optimization 
of MBR performance, in contrast to previous approaches 
that were prone to overfitting or computing intensity. By 
addressing issues like fouling and energy usage, this 
integration improves the quality of effluent and the 
effectiveness of nutrient removal. By utilizing the hybrid 
technique, it exceeds the constraints of traditional 
strategies and provides greater precision and adaptability 
to dynamic wastewater treatment processes. In the end, it 
results in notable enhancements to MBR performance and 
treatment efficacy as a whole.it leads to significant 
improvements in MBR operation and overall treatment 
effectiveness. 

3. System model and its problem 

An MBR is an emerging wastewater treatment approach, 
which integrates traditional biological treatment and 
membrane filtration into a single unit. Thus, it overcomes 
the typical sewage treatment model and provides greater 
effluent quality, a small footprint, etc. However, to confirm 
effective functioning and maintain optimal treatment 
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performance, it is important to design a control mechanism 
for MBRs in sewage treatment Jadhav et al. 2023). The 
control approach regulates and monitors the various 
parameters such as effluent flow rate, membrane fouling 
rate, etc., thereby ensuring optimal system performance. 
In recent times, various control strategies such as 
predictive control, adaptive control, model-based control, 
etc., are employed to optimize the process performance. 
However, they face difficulty in parameter tuning, 
reliability, interoperability, and model complexity. Hence, 
the artificial intelligence-based control mechanism was 
employed for MBR in sewage treatment. The AI-based 
models utilize the real-time data collected using the 
sensors and actuators and learn the interconnection 
between the input features and desired outcomes. Then, it 
adjusts the operational parameters based on the 
prediction to optimize the MBR performance. However, 
the efficiency of the model depends on the quality of 
collected data and requires a large-scale historical 
database for training. In addition, the AI-based models face 
difficulty in generalizing to unseen data (incoming input 
data). Hence, an optimized intelligent control mechanism 
was designed in this article to control the MBR in sewage 
treatment.  

4. Proposed methodology 

A novel hybrid ABC-RNN control strategy was designed to 
regulate the MBR in sewage treatment. This method 
integrates the benefits of recurrent neural systems (Xiao 
and Zhou, 2020) and artificial bee colony optimization 
(Wang et al. 2020). Initially, the influent wastewater 
database was collected and pre-processed. The pre-
processing involves data cleaning, data normalization, and 
feature engineering. After pre-processing, the filtered 
dataset was utilized to train the RNN model (Rajagopal et 
al. 2024). The RNN model was trained to predict the 
performance of the MBR system. The predicted MBR 
performances are passed to the optimization block, which 
modifies the control variables to optimize the MBR 
operation. The proposed framework is explained in Figure 
1.  

 

Figure 1. ABC-RNN framework 

4.1. Data accumulation 

Data accumulation involves the collection of influent 
wastewater data from the MBR-assisted sewage treatment 
process. The influent wastewater data includes the 
collection of information regarding the flow rate, pH, 
temperature, nutrient concentrations, chemical oxygen 
demand (COD), biochemical oxygen demand (BOD), etc. 
Flow rate determines the volume of wastewater arriving 
through the MBR system per unit of time. This enables us 
to understand the hydraulic loading on the MBR.  The 
temperature data defines the thermal criteria of the 
influent wastewater. It determines the rate of biological 
processes occurring in the MBR. The pH data defines the 
alkalinity and acidity of the influent wastewater and ranges 
from 0 to 14. COD information indicates the volume of 
oxygen required to oxidize organic elements chemically in 
the wastewater. This measures the organic pollutant load 
in the wastewater. BOD data denotes the quantity of 
oxygen necessary for the biological degradation of organic 
elements in wastewater. It measures the biodegradable 
organic content of the influent. Nutrient concentrations 
data involves the collection of nutrients present in the 
influent including nitrogen (ammonia, nitrite, and nitrate), 
phosphorus, and other components. This data helps to 
understand the wastewater composition and 
characteristics of the wastewater arriving in the MBR 
system. However, this collected data contains errors, 
outliers, missing values, etc., therefore, before the training 
process the collected data must be pre-processed.  

4.2. Data preprocessing 

The process of eliminating the errors, missing values, 
outliers, etc., from the collected database, is termed as 
data pre-processing. The data pre-processing involves 
three major steps namely, cleaning, normalization, and 
feature extraction. Data cleaning is the process of 
managing the missing values, outliers, and any 
inconsistencies present in the database. Here, the 
regression imputation approach was utilized to detect and 
resolve these issues in the dataset. This helps to confirm 
data quality and reliability. The regression imputation is an 
algorithm, which is mainly utilized to fill the missing values 
by detecting their values based on other attributes present 
in the database. This technique is based on the assumption 
that the missing values are interrelated to the values 
available in the dataset. Initially, this method detects the 
feature with missing values. Then the dataset is split into 
two parts: one part contains complete data (variables 
without missing values) and the other part with missing 
values (target attributes). A linear regression model was 
designed to detect the target attribute using the other 
variables available in the database. Further, the developed 
regression unit was applied to the part containing the 
missing values and the regression model considers the 
values present in the other part as inputs to predict the 
missing values for the target variable. Finally, replace the 
missing values with the predicted values in the dataset. 
Thus, the technique to replace missing values in the dataset 
by estimating their values based on other variables existing 
in the database is called regression imputation, and it is 
applied in the suggested study. 
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The first step is to locate the missing values in the dataset. 
Next, using the portion of the dataset that contains all of the 
data, a linear regression model is built. Using predictor 
variables found in the dataset, the regression model attempts 
to forecast the missing values. The mathematical formulation 
of the regression model is expressed in Eqn. (1). 

= + + + + + +0 1 1 2 2 3 3 .....v v v v n vn tM R R P R P R P R P E  (1) 

Where Mv defines the missing values, R0, R1, R2, R3,   Rn 
refers to the regression coefficients, Pv1, Pv2, Pv3,     , Pvn 
represents the predictor variables, and Et denotes the error 
term. The regression coefficients are determined using the 
part with complete data. After replacing the missing values, 
the database was normalized using the min-max scaling 
approach. This enables to avoid the biases due to 
differences in scales among the input attributes. Finally, 
feature extraction was performed, which involves 
capturing and extracting the most relevant features from 
the normalized database. In this process, the system 
extracts meaningful information and eliminates the 
meaningless data present in the dataset, thereby 
enhancing the learning process. This data standardization 
process converts the raw dataset into a suitable format for 
effective model training (Indira et al. 2022).  

4.3. RNN model training 

In the developed control strategy, the RNN was utilized to 
predict the performance of the MBR based on the historical 
influent wastewater data. The RNN is a kind of artificial 
neural network, which has the unique feature to maintain 
an internal state commonly known as a hidden state. The 
proposed work is utilized to learn and predict the 
interconnections and relationships between the input 
features and the outcomes.  Here, pre-processed data was 
fed into the model training block to train the RNN design. 
The RNN learns the interconnection between the influent 
data, MBR performance, and operational parameters. The 
typical RNN model contains three main layers namely, the 
input layer, the recurrent layers, and the output layer. It is 
important to note that the RNN model contains one or 
more recurrent layers and each layer comprises a sequence 
of recurrent units, which maintains a hidden state 
indicating the memory of the network. The input layer 
accepts the pre-processed database as inputs, the 
recurrent layers process the input sequences and learns 
the interconnections between the input sets and the 
desired results and the output layer detects the target 
values based on the processed input sequence. Before the 
training process, the pre-processed dataset must be split 
into input sets and corresponding target sets. Each input 
set comprises a sequence of time steps, while the target set 
consists of the desired outcomes for each time step 
(Rajaram et al. 2024). In the initial phase of training, the 
weights and biases of the RNN design were initialized with 
small random values. An accurate initialization of weights 
and biases enables the system to achieve better 
convergence during the training process. After 
initialization, the forward propagation step was performed. 
In this step, the input sets are fed into the RNN model to 
determine the predicted result.  At each time step, the 

recurrent layer progresses the input sets and updates the 
hidden state. After updating, the recurrent layer passes the 
hidden state to the next time step and this process 
continues until updating the final hidden state. The final 
hidden state is utilized to predict the output. The hidden 
state updation and output calculation are expressed in Eqn. 
(2), and (3). 

( )−=  +  +1T f hm T im T vH A W H W I B  (2) 

( )=  +T o om T oO A W H B  (3) 

Here HT defines the hidden state at a time step T, Af refers to 
the activation function of the recurrent layer, Whm denotes 
the weight matrix of the hidden state, Wim indicates the 
weight matrix for the input set, IT denotes the input 
sequence at a time step T, Bv defines the bias vector of the 
recurrent layer, OT represents the predicted output at a time 
step T, A0 indicates the output layer activation function, Wom 
refers to the weight matrix of the output layer, and B0 
defines the bias vectors of the output layer. Further, during 
the training process, the weight and biases of the RNN model 
are updated to reduce the errors in the prediction process. 
Typically, the gradient descent optimization approach has 
utilized the gradients of the loss function. The mathematical 
derivation for the updation of weight and bias is expressed 
in Eqns (4) and (5). 

= − Tn To aW W G  (4) 

= − sn so aB B G  (5) 

Where WTndefines the updated weight, WTorepresents the 
old weight, V indicates the learning rate, Ga refers to the 
gradient, which indicates the loss function relative to the 
weight and bias, Bsn defines the updated bias vector, andBso 
refers to the old bias vector. Finally, the backpropagation 
was utilized to measure the loss function of the gradient. 
The backpropagation technique propagates the error back 
through the recurrent layers, thus it minimizes the overall 
loss. The loss function measures the deviation between the 
actual and predicted outcomes at each time step. The loss 
function is formulated in Eqn. (6). 

( )
 

= − 
 


21

fn o v

m

L P A
S

 
(6) 

Where Lfn defines the loss function, Sm represents the 
training samples, Po denotes the predicted output, and Av 
refers to the actual value. The process is repeated 
iteratively until the prediction error achieves its minimum 
level. The predicted performances of the MBR such as 
effluent quality, membrane fouling, energy consumption, 
etc., are fed as inputs to the optimization block.  

4.4. Optimization 

The Artificial Bee Colony (ABC) algorithm rapidly searches 
for ideal solutions to control parameters, minimizing 
membrane fouling, and improving nutrient removal 
efficiency, all of which maximize the performance of MBR 
systems. By investigating and taking advantage of possible 
solutions, it imitates the foraging activity of bees to 
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enhance effluent quality and reduce energy usage. In the 
optimization block, the ABC approach uses the predicted 
MBR performance data to optimize the MBR operation. 
The ABC algorithm adjusts the control variables such as 
aeration rate, sludge wasting rate, membrane flux, etc., to 
optimize the MBR operation. This approach is developed to 
solve the optimization problems especially the issues in the 
control mechanism. As a result the wastewater treatment 
process is extremely effective and efficient. (Pushpavalli et 
al. 2024). In the ABC approach, initially, the population of 
employed bees is initialized with random control variable 
values indicating different sequences of control 
parameters for the MBR system. Further, evaluate the 
fitness of each employed bee's solution by passing the 
control variables into the MBR system and estimate the 
performance of the MBR corresponding to its control 
variables. The objective of the fitness function is to 
maximize the MBR operation by minimizing the energy 
consumption and membrane-fouling index and maximizing 
the effluent quality. The fitness solution of the ABC 
optimization is expressed in Eqn. (7). 

( ) ( ) ( ) ( )= + +1 2 3v c fi qC
Fv f E f M f E  (7) 

Where Fv(cv) defines the fitness value relative to the control 
parameters, f1f2 and f3 indicates the fitness parameters, 
which optimizes the MBR performances, Ec, Mfi, Eq and 
denotes the MBR performance metrics indicating energy 
consumption, membrane-fouling index, and effluent 
quality. After defining the fitness function, the employee 
bee phase begins. In the employee bee phase, each 
employed bee performs a local search operation by 
adjusting the control variables around its current solution. 
Further, generate a new solution by perturbing the current 
solution using a random displacement vector.  It is 
expressed mathematically in Eqn. (8). 

( ) ( ) ( )+ = + 1v v v fC x C x R x E  (8) 

Here Cv(x+1) defines the new solution defining the adjusted 
control variables, Cv(x)denotes the current position 
representing the control variables, Rv(x)refers to the 
random displacement vector for the employee bee x, and 
Ef denotes the exploration factor. After adjusting the 
control variables, evaluate the fitness function for the new 
solution in the MBR system. If the fitness value for the new 
solution is greater than the current solution, update the 
employed bee solution. It is expressed in Eqn. (9). 

( ) ( )( ) ( )( )( ) ( ) ( )

( ) ( )

+

  = +
= 
 =

1
; 1

;

v v
v vC x C x

up

v v

if Fv Fv C x C x
E x

else C x C x
 

(9) 

Where Eup defines the function for updating the employee 
bee solution, Fv (Cv(x+1)) refers to the fitness value for the 

new solution, and Fv (Cv(x)) defines the fitness value for the 

current solution. This process is iteratively repeated until 
the desired level of optimization is achieved. Thus, the 
proposed model continuously adjusts the control variables 
and optimizes the MBR performances.   

 

Figure 2. ABC-RNN workflow 

The workflow of the designed model is illustrated in Figure 
2. The optimization of MBR operation increases its 
performances such as effluent quality, and nutrient 
removal efficiency, and minimizes the energy 
consumption, and membrane-fouling index. This is 
achieved by continuously adjusting the control variables of 
the MBR such as aeration rate, hydraulic retention time, 
mixed liquor concentration, sludge waster flux, etc., to its 
optimal range.  

5. Results and discussion 

An optimized intelligent framework was developed to 
optimize the performance of the MBR system in sewage 
treatment. This method integrates the benefits of the ABC 
and RNN algorithms to regulate the operation of the MBR 
system. The RNN model was trained to forecast the 
performance of the MBR system and the predicted 
performances are fed into the optimization block. In the 
optimization block, the ABC approach was applied to 
optimize the performance by adjusting the control 
variables effectively. The designed framework was 
modeled and implemented in the MATLAB tool, version 
R2020a. Finally, the performances of the developed 
scheme were estimated and validated with some existing 
controller models.  

5.1. Dataset description 

The presented work was trained and tested with the 
publically available MBR plant dataset named "Wuhan 
MBR Dataset." The data was gathered since 2006 from a 
large-scale (industriak, municipal) MBR plant with a 
minimum design capacity of 10,000 m3/day in Wuhan, 
China. This database includes information related to the 
operational parameters such as influent flow rate, 
transmembrane pressure (TMP), mixer liquor suspended 
solids concentration, and water quality factors like nutrient 
concentrations including nitrogen, ammonia, phosphorus, 
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COD, BOD, etc. In this dataset, the information is collected 
on an hourly basis. 

5.1.1. Origin of data 

Important participants in this development include the 
Wuhan Sanjintan WWTP and the Fuzhou Yangli 
Wastewater Treatment Plant (WWTP) Phase IV, among 
others. In 2014, accomplished projects such as the Macau 
WWTP and the Chengdu Qingbaijiang WWTP (Upgrade) are 
notable for their significant capacity for the treatment and 
repurposing of industrial and municipal wastewater. The 
data includes significant contributions from companies 
such as Beijing Origin Water Technology Co., Ltd., which 
has emerged as a key player in the development of 
wastewater treatment infrastructure in China. This 
database was widely utilized by researchers and 
educational institutions for MBR performance prediction 
analysis.  

5.2. Training and testing performance 

Initially, the input database was split into two parts, 80% 
for training and the remaining 20% for testing purposes. 
During the training and testing phase, the model's 
performances are evaluated in terms of accuracy and loss. 
In the training phase, the accuracy defines the rate at which 
the proposed model predicts the MBR system 
performance. In addition, it indicates how well the 
developed approach is performing on the training database 
and it represents how fast the developed model learns the 
interconnections between the input data and the desired 
outcomes. The training accuracy is estimated by increasing 
the number of iterations from (0 to 500). The increasing 
curve of training accuracy demonstrates that the proposed 
model is more accurate in predicting the performance of 
the training data. During the initial training phase, the 
developed model attained 0.8, and it increases on 
increasing the number of epochs. In model training, the 
developed model achieved an appropriate accuracy of 
0.99.  

 

Figure. 3 Training and testing accuracy evaluation 

Similarly, the testing accuracy determines the rate at which 
the proposed model performs over the unseen test data. 
Typically, the RNN model learns the patterns and 
relationship between the input data and the desired 
outcomes in the training phase. In the testing phase, based 
on the trained information it predicts the performance of 
the MBR system for the incoming new dataset. The testing 

accuracy also offers an evaluation of how well the 
developed model generalizes and accurately predicts the 
performance of new data. The testing accuracy increases 
over the epochs, representing that the designed model 
generalizes well to the new data. The presented framework 
attains an appropriate testing accuracy of 0.98, which 
illustrates that it performs well on the test data. The 
training and testing accuracy of the developed model is 
evaluated in Figure 3.  

 

Figure 4. Training and testing loss evaluation  

Similarly, the training and testing losses were evaluated in 
Figure 4. The training loss indicates the error occurred 
during the model training. It measures the variation 
between the actual and predicted performance of the MBR 
system in the training set. The loss function present in the 
RNN model evaluates the training loss and it estimates how 
efficiently the developed model is learning from the 
training samples. From the performance evaluation, it is 
observed that the training loss decreases over several 
iterations. This demonstrates that the developed model 
accurately predicts the performance of the MBR system 
with a minimum loss percentage of 0.03. On the other 
hand, the testing loss determines the deviation between 
the predicted and actual outcomes for the testing set. It is 
also known as evaluation loss or validation loss. It measures 
how well the system generalizes to unseen data. Similar to 
the training loss, it is evaluated using the loss function in 
the RNN model. The presented approach attained a very 
low loss rate of 0.04 for the testing samples, and it 
decreases with increasing the number of epochs.  

5.3. Comparative analysis 

In this section, the performances such as effluent quality, 
energy consumption, computational time, membrane 
fouling index, nutrient removal efficiency, and sludge 
production rate are examined and validated with the 
conventional control strategies. The existing control 
methods utilized for performance validation include 
Nonlinear Model Predictive Control Design (NMPC) (Guo et 
al. 2020), Fuzzy logic control (FLC) (Singh et al. 2023), 
Particle Swarm Optimization (PSO) (Ye et al. 2021), ANN 
(Algoufily et al. 2022), and MLP (Yaqub et al. 2022). 

5.3.1. Effluent quality 

Effluent quality represents the number of removed 
pollutants or the amount of treated water discharged from 
the MBR system. It defines the effluent pollutant 
concentration which is the concentration of contaminants 
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present in the treated water. In addition, it indicates the 
pollutant removal efficiency, which is determined by 
comparing the influent and effluent pollutant 
concentration and it is formulated in Eqn. (10). 

 −
=   
 

100
ip ep

q

ip

C C
Ef

C
 

(10) 

Where Efq indicates the effluent quality rate, Cip refers to 
the concentration of influent pollutant, and Cep represents 
the concentration of effluent pollutant. The greater rate of 
effluent quality defines that the concentration of 
pollutants in the treated water is very low.  

 

Figure 5. Validation of effluent quality 

The objective of the proposed work is to optimize the MBR 
system performances such as effluent quality, membrane 
fouling index, etc. The integration of the proposed control 
strategy in the MBR system enables it to achieve a greater 
effluent quality rate of 98.56%. Further, to validate that the 
attained effluent quality rate is higher than existing 
models, it is compared with conventional methods like 
NMPC, FLC, PSO, ANN, and MLP. The incorporation of these 
control methodologies in the MBR system earned effluent 
quality of 85.17%, 92.86%, 84.10%, 91.28%, and 87.12%, 
respectively. This comparative performance evaluation 
determines that the optimization of MBR operation using 
the proposed model enhances the effluent quality. The 
comparative performance of effluent quality is shown in 
Figure 5.  

5.3.2. Membrane fouling index 

The membrane-fouling index is an important performance 
metric, which illustrates the working efficiency of the MBR 
system. It measures the fouling of the membranes in an 
MBR system during wastewater treatment. Moreover, it 
estimates the extent of fouling on the membrane surface, 
which affects the functional efficiency of the MBR system. 
The mathematical formula for the calculation of it is 
expressed in Eqn. (11). 

−
 −

=  
  

1 100t t
mdi

r

Tmd Tmd
T

T A
 

(11) 

Where Tmdi denotes the transmembrane index (TMP), Tmdt 
defines the transmembrane pressure at the current time 
step t, Tmdt−1 represents the transmembrane pressure at 
the previous time step t−1, ΔT refers to the time interval 
between the measurements, and Ar denotes the area of the 

membrane surface. The greater TMP index represents a 
rapid increase in pressure and a higher rate of fouling.  

 

Figure 6. Comparative performance of membrane fouling index 

The membrane fouling index performance of the MBR was 
examined to evaluate the effectiveness of the developed 
control mechanism in optimizing the TMP index. The 
comparative performance of the membrane fouling index 
is displayed in Figure 6. The integration of the proposed 
control design in the MBR system enables it to attain a 
lower fouling index of 1.24%. On the other hand, the 
existing techniques such as NMPC, FLC, PSO, ANN, and MLP 
obtained 5.87%, 4.90%, 6.23%, 4.61%, and 5.43%, of the 
TMP index, respectively. From the comparative analysis, it 
is clear that the developed control design effectiveness 
minimizes the fouling index.  

 

Figure 7. Evaluation of nutrient removal efficiency 

5.3.3. Nutrient removal efficiency 

The nutrient removal efficiency quantifies how effectively 
the MBR system removes the nutrient components such as 
ammonia, nitrogen, phosphorus, etc., from the wastewater 
during the treatment process. It measures the rate at which 
the MBR system reduces the nutrient content from the 
wastewater. The formula for the estimation of nutrient 
removal efficiency is expressed in Eqn. (12). 

 −
=  
 

100nc nc
Rf

nc

I E
N

I
 

(12) 

Where NRf is the nutrient removal efficiency, Inc refers to 
the concentration of nutrients in the wastewater, and Enc 
defines the effluent nutrient concentration.  
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The nutrient removal efficiency is one of the important 
performance metrics of the MBR system, which defines the 
quality of treated water. Achieving greater nutrient 
removal efficiency is significant for regulatory compliance 
and environmental protection. The nutrient removal 
efficiency of the developed model is compared with 
existing methods like NMPC, FLC, PSO, ANN, and MLP. 
These traditional control designs attained 85.98%, 92.46%, 
81.23%, 90.37%, and 85.89%, of nutrient removal 
efficiency, respectively. The nutrient removal efficiency 
attained by the proposed model is 98.70%, which is high 
compared to the nutrient removal efficiency achieved by 
the conventional models. This comparative assessment 
validates that the optimization of the MBR function and 
control variables using the developed control model 
increases nutrient removal efficiency. The evaluation of 
nutrient removal efficiency is visualized in Figure 7. 

5.3.4.  Computational time 

The computation complexity defines the time consumed by 
the proposed model for performing data pre-processing, 
model training, optimization process, and other 
computational tasks. The computational time attained by 
the developed model is tabulated in Table 1. The total 
computational time achieved by the presented model is 
2.87s, in which the system consumed 0.42s for pre-
processing the dataset, 1.20s for RNN model training, 0.65s 
for the optimization process, and 0.60s for other 
computational tasks.  

 

Figure 8. Computational time validation 

The computational time validation is important to manifest 
the effectiveness of the designed framework. The 
comparative analysis of computational time is displayed in 
Figure 8. The designed framework consumed very less time 
2.87s, whereas, the traditional control designs like NMPC, 
FLC, PSO, ANN, and MLP consumed 7.09s, 5.98s, 8.11s, 
6.32s, and 7.52s, respectively. The comparison of 
computational time manifests that the designed model 
quickly learns the interconnection between the input 
features and desired performances and effectively 
optimizes it with minimum time consumption.  

 

Table 1. Computational Time Analysis  

Tasks Time (s) 

Data-processing  0.42 

RNN model training 1.20 

Optimization process 0.65 

Other computational tasks 0.60 

Total computational time 2.87 

Table 2. Numerical analysis of comparative performance validation 

Approach  Effluent quality (%) Energy consumption (W) Nutrient removal 
efficiency (%) 

Computational time 
(s) 

Membrane fouling 
index (%) 

NMPC 85.17  85.98 7.09 5.87 

FLC 92.86  92.46 5.98 4.90 

PSO 84.10  81.23 8.11 6.23 

ANN 91.28  90.37 6.32 4.61 

MLP 87.12  85.89 7.52 5.43 

Proposed  98.56 27.9 98.70 2.87 1.24 

 

5.3.5. Energy consumption 

Energy consumption (W) refers to the quantity of electrical 
power used when the Membrane Bioreactor (MBR) 
operates in sewage treatment. Sustainable wastewater 
treatment depends on the efficient use of energy 
resources, which is indicated by a lower value in this 
parameter. The suggested approach shows its efficacy in 
optimizing energy usage and encouraging energy-efficient 
MBR operations by attaining a noticeably lower energy 
consumption of 27.9 watts in comparison to alternative 
control strategies. 

The overall numerical analysis of the comparative 
performance is tabulated in Table 2. It lists the 
performances such as effluent quality, membrane-fouling 
index, nutrient removal efficiency, energy consumption, 
and computational time attained by the traditional 
approaches and the developed framework. This 
comprehensive performance comparison demonstrates 
that the integration of the proposed method in the MBR 
system optimizes its operations and improves 
performance. Furthermore, it is observed that the 
utilization of neural network-based control strategies in the 
MBR system provides better performances than the typical 
controller designs such as PSO and NMPC.  
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6. Conclusion 

The presented research work develops an innovative 
approach ABC-RNN approach to optimize the performance 
of the MBR in sewage treatment. This hybrid approach 
provides a comprehensive solution to improve MBR 
performance by leveraging the benefits of optimization and 
intelligent models. In the proposed framework, the RNN 
design examines and learns the patterns and relationships 
between the input and output parameters to predict the 
dynamic performance of the MBR system. The ABC block 
utilizes these predicted outcomes and intelligently 
searches for the best control variables to optimize the MBR 
performances. Thus, the developed hybrid model controls 
the varying influent parameters and system dynamics 
effectively. The developed model was modeled in MATLAB 
and evaluated with the publically available Wuhan MBR 
database. Finally, a comprehensive comparative 
assessment was carried out with the existing NMPC, ANN, 
FLC, PSO, and MLP models to validate the performances of 
the proposed model. The comparative analysis illustrates 
that the performances such as effluent quality and nutrient 
removal efficiency are improved by 14.46% and 17.47%, 
and the membrane-fouling index and computational time 
are 3.37%, and 3.11s, respectively. Hence, it is proved that 
the optimization of MBR in sewage treatment using the 
proposed ABC-RNN model enhanced the effluent quality, 
minimized the membrane fouling index, improved the 
nutrient removal efficiency, and decreased the time 
consumption.  
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