
 

 

 

 

 

 

 

 

 - 1 -  

 

 

 
 

 

 

 

 

 

 

 

Carbon emission intensity measurement and spatial 1 

effect of high energy consuming industries: evidence 2 

from China 3 

Gang Zeng1, *, Dantong Liu2, Song Nie3, Teng Guan2, Yinjian Luo1, Junjie Chen1, Hui Gan2, 4 

Haoran Zheng2 5 

1. School of economics and management, Civil Aviation University of China, Tianjin, 6 

300300, China 7 

2. School of transportation science and engineering, Civil Aviation University of China, 8 

Tianjin，300300, China 9 

3. School of Economics, Nankai University, Tianjin, 300071, China 10 

Corresponding author*: gzeng666@foxmail.com 11 

 12 

Graphical Abstract 13 

mailto:gzeng666@foxmail.com


 

 

 

 

 

 

 

 

 - 2 -  

 

 

 
 

 

 

 

 

 

 

 

 14 

Abstract: high energy consumption industry is an important source of carbon dioxide 15 

emissions, and reducing pollution and carbon is an important measure for China to achieve the 16 

goal of "2030 carbon peak 2060 carbon neutral". Based on the improvement of the traditional 17 

calculation method of IPCC carbon emission intensity, this paper measures the carbon emission 18 

intensity, selects the data of high energy consuming industries in 30 provinces in China from 1997 19 

to 2022 as samples, uses the stipat model and Moran index to analyze the correlation of the 20 

influencing factors of carbon emission, and uses the spatial measurement model to study the 21 

spatial effect of carbon emission intensity. The results show that: first, the overall carbon emission 22 

intensity of high energy consuming industries shows a downward trend, with typical spatial 23 

heterogeneity. During the sample period, the carbon emission intensity of high energy consuming 24 
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industries in 30 provinces in China was calculated based on the IPPC method, with the overall 25 

decline. Second, the carbon emission intensity of high energy consuming industries has significant 26 

spatial autocorrelation characteristics. According to the global Moran index, the center of gravity 27 

moves from east to West as a whole. Third, the carbon emission intensity of high energy 28 

consuming industries is affected by multiple environmental factors. Industrial structure (INS), 29 

regional gross domestic product (GDP) and regional economic development (ECO) have a 30 

significant impact. Fourth, the carbon emission intensity of high energy consuming industries has 31 

a significant spatial spillover effect. According to the regression results of spatial Dobbin model 32 

with double fixed effects, the direct and indirect effects of carbon emission intensity of high 33 

energy consuming industries are significant. 34 

Key words: High energy consumption industry; Carbon emissions; Influencing factors; 35 

Spatial effect 36 
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1. Introduction 38 

Since the 21st century, environmental pollution and climate change caused by carbon 39 

emissions have attracted global attention. The potential problems caused by global climate change 40 

are considered to cause unpredictable "catastrophic" risks. According to the statistical prediction, 41 

the emission of greenhouse gases will lead to the increase of global temperature from 2030 to 42 

2050 or will reach 1.5 ℃. If climate change exceeds the upper limit of global temperature control, 43 

it will cause immeasurable damage to human society and ecology. The Chinese government 44 

attaches great importance to the issue of carbon emissions, and clearly puts forward the strategic 45 

goal of "2030 carbon peak and 2060 carbon neutrality" in 2019. In 2022, the Chinese government 46 

issued the implementation plan for carbon peaking in the industrial sector, which proposed that by 47 

2025, the energy consumption per unit of added value of China's industry would be reduced by 48 

13.5% compared with 2020. Building materials industry, steel industry, chemical industry and 49 

other industries are considered to be high energy consuming industries. High energy consuming 50 

industries are one of the main sources of carbon emissions in China, and carbon emissions from 51 

high energy consuming industries have typical regional differences. Research on the difference of 52 

carbon emission intensity of high energy consuming industries is conducive to regional emission 53 

reduction and the realization of double carbon goals. 54 

Revealing the temporal and spatial characteristics of carbon emission intensity of high energy 55 

consuming industries and analyzing the carbon emission trend of high energy consuming 56 
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industries have increasingly become the hot spot of carbon emission management and decision-57 

making. Scholars at home and abroad have carried out fruitful research on the characteristics of 58 

carbon emissions, carbon emissions measurement, influencing factors of carbon emissions and 59 

carbon emission reduction path. In terms of carbon emission characteristics, Wei et al. (2024) used 60 

panel data to analyze the spatial characteristics of carbon emissions of major urban 61 

agglomerations in China based on spatial econometric model, and proposed that collaborative 62 

management among different cities would help promote the sustainable development of regional 63 

urban agglomerations. Xu et al. (2023) analyzed the characteristics of urban residents' living 64 

carbon emissions through the spatial Markov chain model, and believed that the dynamic change 65 

of residents' carbon emissions was significantly affected by the geospatial spillover effect. Yue et 66 

al. (2024) constructed a super SBM model to measure energy efficiency, and used GIS spatial 67 

analysis method to describe its spatial pattern. It was found that the comprehensive energy 68 

efficiency of cities in the Yellow River Basin remained basically stable, but had a downward 69 

trend . These studies have important contributions to reveal the spatial characteristics of carbon 70 

emissions, and become an important basis for this study. 71 

In the calculation of carbon emission intensity, most scholars measure it based on IPCC 72 

method. Li  et al. (2024) used the IPCC inventory method to calculate the ratio of the total urban 73 

carbon emissions to the GDP of the corresponding region as the carbon emission intensity index . 74 

Cui et al. (2024) used IPCC carbon accounting method to calculate the total amount and intensity 75 
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of China's agricultural carbon emissions from 2010 to 2021. Tian et al. (2024) calculated the 76 

carbon emission intensity factor of electric power with reference to the IPCC method [6]. Zhao 77 

and Xu (2023) calculated the energy carbon emissions of 17 primary energy sources in 47 sectors 78 

based on the IPCC method. Li et al. (2023) used IPCC method to quickly calculate China's carbon 79 

emission intensity. Therefore, it can be seen that the calculation model of carbon emission 80 

intensity using IPCC method has formed a relatively broad consensus (Wang et al., 2022; Ren et 81 

al., 2022; Li et al., 2022; Zhu et al., 2022; Wu et al., 2024; Jiang et al., 2024). 82 

The analysis of influencing factors of carbon emissions is also the focus of scholars at home 83 

and abroad. Common analysis methods include spatial autocorrelation, nuclear density estimation, 84 

Theil index and dagum Gini coefficient (Sun, et al, 2023; Ahn, et al, 2022; Hoang, et al, 2023; 85 

gharaei, et al, 2023). Peng et al (2024) estimated the spatial characteristics of agricultural carbon 86 

emissions based on the standard deviation ellipse method, and used the LMDI model to 87 

decompose the influencing factors of carbon emissions. Liu et al (2024) revised the gravity model 88 

to analyze the characteristics of urban carbon emission network, and analyzed the influencing 89 

factors of carbon emission based on social network and secondary assignment procedure method. 90 

Li et al (2024) studied the characteristics of carbon emissions in the Yangtze River Delta by using 91 

spatial autocorrelation analysis and Markov chain model, and analyzed the influencing factors of 92 

carbon emissions by using GTWR influencing factors analysis, and most of them use the model of 93 

parameter estimation to analyze. In addition, Li and Huang(2024) took the influencing factors of 94 
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carbon emissions as samples, introduced lasso variable selection method and BP neural network 95 

model to predict the peak value of carbon emissions, and proposed control measures. Shi et al 96 

(2024) used the bivariate spatial correlation analysis method to analyze the relationship between 97 

traffic informatization and carbon emissions, and used geographical detectors to explore the 98 

temporal and spatial characteristics of carbon emissions. Li et al (2024) analyzed the driving 99 

factors of the synergistic effect of urban pollution and carbon reduction by using the coupling 100 

coordination degree model and the convergence coefficient model. These studies pay attention to 101 

the application of spatial geographical model in the method, and at the same time, improve the 102 

traditional model to consider the influence factors of real situation on carbon emissions. 103 

To sum up, the research on carbon emission measurement, spatial characteristics and 104 

influencing factors is the current hot spot, which has aroused widespread concern. However, there 105 

are still some deficiencies in the current research: ① most studies focus on the carbon emissions 106 

of urban agglomerations, mainly from the regional perspective, such as the Yangtze River Delta, 107 

the Yellow River Basin, Guangdong, Hong Kong and Macao Bay area, and less on the analysis of 108 

high energy consumption industries. High energy consumption industry is one of the key areas of 109 

carbon emissions, so it is necessary to deepen the research on this industry and put forward 110 

targeted countermeasures. ② In terms of research methods, traditional models are mostly used to 111 

analyze the carbon emission intensity and influencing factors of high energy consuming 112 

industries, and the research on the integration of spatial correlation analysis and STIRPAT model 113 



 

 

 

 

 

 

 

 

 - 8 -  

 

 

 
 

 

 

 

 

 

 

 

is insufficient. This paper will improve the above deficiencies, take high energy consuming 114 

industries as the object, and comprehensively use the combination model to study the carbon 115 

emission intensity measurement and spatial effect of high energy consuming industries. The idea 116 

of this study is shown in Figure 1: 117 

Fig. 1 the train of thought of this paper 118 

2. Research methods and data sources 119 

2.1. Construction of carbon emission intensity calculation model 120 

The waste gas of high energy consuming industries mainly comes from fossil fuels. Referring 121 

to the research ideas of Cai, et al. (2021), and combining with the specific reality, this paper 122 
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assumes that the carbon in the supply of three major fossil fuels is equal to the carbon contained in 123 

the total consumption of 17 fossil fuels. 124 

In the calculation of carbon emissions, the calculation method used in this paper refers to 125 

Shan(Yuli, et al. 2018)According to their research, IPCC default value of greenhouse gas emission 126 

inventory was optimized, 47 departments consistent with those used in China's national accounts 127 

were used in the energy statistics system, and emission factors were updated. Therefore, the 128 

calculation formula of emissions from different industries is as follows: 129 

17

1

( )n nm m m nm

m

CE AD NCV EF O
=

=    (1) 130 

Including: 131 

CEn represents CO2 emissions from fossil fuel combustion in industry n; 132 

ADnm represents the average low calorific value of the m energy of the n industry; 133 

NCVm represents the average low calorific value of different fossil fuels; 134 

EFmrepresents the CO2 emission coefficient of the m energy after renewal; 135 

Onmis the oxidation efficiency of the m energy in the n industry. 136 

Table 1 CO2 emission coefficient of different energy sources 137 

Energ
y fuel 
type 

raw 
coal 

Clean 
coal 

other 
Coal 

washing 

Coal 
brick 

coke 
coke 

coal gas 
other 
Gas 

Other coking 
products 

crud
e oil 

𝑁𝐶𝑉𝑚 0.21 0.26 0.15 0.18 0.28 1.61 0.83 0.28 0.43 

𝐶𝐶𝑛 26.32 26.32 26.32 26.32 
31.3

8 
21.49 21.49 27.45 

20.0
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𝐸𝐹𝑚 0.087 0.087 0.087 0.087 
0.10

4 
0.071 0.071 0.091 

0.07

3 

𝑂𝑛𝑚 0.94 0.98 0.90 0.90 0.93 0.99 0.99 —— 0.98 

Energy fuel 
type 

gasolin

e 

kerosen

e 

diesel 

oil 

fuel 

oil 

Other 

oil 

produ

ct 

liquefied 

petroleum gas 

Refinery 

natural 

gas 

natural gas 

𝑁𝐶𝑉𝑚 0.44 0.44 0.43 0.43 0.51 0.47 0.43 3.89 

𝐶𝐶𝑛 18.9 19.6 20.2 21.1 17.2 20 20.2 15.32 

𝐸𝐹𝑚 0.069 0.072 0.074 0.077 0.063 0.073 0.074 0.056 

𝑂𝑛𝑚 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 

The carbon emissions of high energy consuming industries can be obtained through the 138 

above methods. HECCI   represents the carbon emission intensity of high-energy-consuming 139 

industries; 
jGRO  is the total industrial output value of industry j ; 

jCE  is the CO2 emission of 140 

industry j , The specific calculation formula is as follows: 141 

 
1

1

HECCI

n

n

j

j

j

j

CE

GRO

=

=

=




 (2) 142 

2.2. Analysis of influencing factors of carbon emissions based on stipat model 143 

When considering the influence factors of carbon emissions, the classical model of IPAT 144 

equation was first used in history. However, the model has some limitations, that is, the model is 145 

too simple in theory, structure and other aspects. When analyzing, it is considered that all the 146 

possible related influencing factors considered in the model are the same. Therefore, in the later 147 

history, many scholars at home and abroad invested a lot of energy in the study of the optimization 148 
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model of environmental impact, so the stochastic environmental impact assessment model 149 

(STIRPAT model) came into being. 150 

STIRPAT model is an improved version of the model, which has been upgraded and 151 

improved on the basis of IPAT, and the influencing factors can be flexibly changed according to 152 

the needs of researchers. This paper will describe the influencing factors of carbon emission 153 

intensity of high energy consuming industries based on STIRPAT model. 154 

Referring to the research of Lian Yanqiong et al. (2024) [26], the general expression of 155 

STIRPAT model is as follows: 156 

b c dF Q P T e=    
 157 

Where F  represents carbon emissions, Q is the population size, P stands for economic level, 158 

T is for technological level. The specific values of the model parameters can be estimated by 159 

taking the derivative of both sides of the equation. 160 

2.3. Correlation analysis of carbon emission factors based on global Moran index 161 

3.4.2 Setting of spatial weight matrix 162 

There are generally two types of spatial weight matrices: geographical adjacency spatial 163 

weight matrix based on binary algorithm and spatial distance matrix based on linear Euclidean 164 

distance. Since the number of regions is small and the degree of compactness is large, this paper 165 

uses the formula to build the spatial weight matrix according to the geographical adjacency 166 
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between regions 167 

 
1,      and   are adjacent

0,       

n

ij

i j
W

else


= 


                     (3) 168 

3.4.3 Moran index model 169 

Spatial autocorrelation is the prerequisite for building a spatial econometric model. Through 170 

spatial autocorrelation analysis, we can verify whether there is a spatial correlation between the 171 

carbon emission intensity of high energy consuming industries in various regions, so as to 172 

correctly build a spatial econometric model of the national carbon emission intensity. Moran index 173 

is a commonly used indicator for global spatial autocorrelation analysis. It explores the spatial 174 

relationship between regions in the whole space and measures the spatial aggregation degree of 175 

carbon emissions from high energy consuming industries. Its theoretical formula is as follows: 176 

 

( )( )
1 1

2

1 1

Moran's I

n n

xy x y

x y

n n

xy

x y

a a a a

C W


= =

= =

− −

=




 (4) 177 

 

( )
2 1

n

x

x

a a

C
n

=

−

=


 (5) 178 

In the above formula, n  represents the total number of study areas, and 
xyw  is a spatial 179 

weight matrix; The geographical adjacency space weight matrix constructed by the binary 180 

algorithm in this study is obtained by nesting the geographical matrix and the economic matrix, 181 
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where the value range of I is [-1,1]. A larger absolute value indicates a higher degree of 182 

agglomeration or dispersion, that is, a region with a high or low value is adjacent to a region with 183 

a low or high value. I = 0 indicates that the industry is randomly distributed in space. In practical 184 

application, the spatial distribution characteristics of the industry in a region are generally judged 185 

by significance test under a given significance level. 186 

2.4. Construction of spatial effect model of carbon emission intensity 187 

At present, there are three commonly used spatial econometric models in the field of spatial 188 

research of carbon emission intensity: spatial Durbin model (SDM), spatial lag model (SLM), and 189 

spatial error model (SEM)Error! Reference source not found. As shown in: 190 

 191 

Figure 2 classification diagram of spatial model 192 

SLM: when the research variable is affected by the variables of adjacent units, it is necessary 193 

to introduce the lag term of the research variable based on the spatial panel data, indicating that 194 
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the research variable not only has spatial autocorrelation, but also is affected by the variable in 195 

other spaces.  As shown is in: 196 

 

NY WY I X WX u

u Wu

   

 

= + + + +

= +  (6) 197 

SEM: when the spatial disturbance term of the research variable affects this variable or other 198 

spaces, it is necessary to introduce the research variable error term based on the spatial panel data, 199 

indicating that the disturbance of one space will affect other spaces. The general expression is as 200 

follows: 201 

 
2, (0, )Y X W u u N I   = + + 

 (7) 202 

The spatial Durbin model (SDM) is a combination of SLM and SEM by introducing an error 203 

term into SLM. The general expression is as follows: 204 

 
2, (0, )Y WY X WX N I     = + + + 

 (8) 205 

Four tests are required to select the model for spatial research on carbon emission intensity. 206 

First, the panel data model is regressed by using the ordinary least squares (OLS) method. The 207 

common methods for further test are as follows: 208 

First, the residual test is performed on the regression data to determine whether the local 209 

Moran index under SLM and SEM models is significant. If both are significant, the second step 210 

robustness test is performed. If R-lmerror is significant, SEM is selected. If R-lmlag is significant, 211 

SLM is selected. If both are significant, the spatial Durbin model (SDM) is preliminarily 212 
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determined. After that, Hausmann test is required to determine whether the fixed effect or random 213 

effect is used. Then, LR test is used to determine which fixed effect is used and whether SDM will 214 

degenerate into SLM or SEM. 215 

2.5. Data sources 216 

The data about carbon emissions in this paper is from China carbon accounting database 217 

(CEADs). The indicators for measuring the influencing factors of traffic carbon emissions come 218 

from the yearbooks of national and local statistical bureaus such as China Industrial Statistics 219 

Yearbook, China Statistics Yearbook, China Energy Statistics Yearbook, and the statistical bulletin 220 

of social development. The study area includes 30 provinces and cities across the country (Tibet, 221 

Hong Kong, Macao and Taiwan are not included in the missing data). 222 

This paper describes the panel data of 30 provinces with a time span of 1997-2022 and a 223 

spatial span. According to the common practice in academia, some missing data are completed by 224 

linear interpolation or trend extrapolation. 225 

3. Result analysis 226 

3.1 Analysis of carbon emission intensity measurement results 227 

This paper first calculates the carbon emission intensity of China's 30 provincial high energy 228 

consuming industries based on IPPC method, which spans the period from 1997 to 2022. The 229 

relevant results are shown in Figure 3 and table 2. 230 
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 231 

Fig. 3 time variation trend of carbon emission intensity 232 

 233 

Table 2 carbon emission intensity results of high energy consuming industries in different 234 

regions 235 

region 
Carbon emission intensity 

region 
Carbon emission intensity 

2007 2012 2017 2022 2007 2012 2017 2022 

Beijing 0.77 0.50 0.23 0.17 Henan 2.66 1.88 1.24 0.59 

Tianjin 2.16 1.58 1.06 0.83 Hubei 2.24 1.39 0.72 0.66 

Hebei 3.74 2.78 1.77 1.39 Hunan 2.18 1.30 0.82 0.49 

Shanxi 4.01 7.32 10.50 7.21 Guangdong 1.03 0.85 0.58 0.47 

Inner 

Mongolia 
6.37 7.53 5.14 5.69 Guangxi 1.64 1.71 1.09 1.06 

Liaoning 3.99 3.04 2.38 2.87 Hainan 2.77 1.94 1.35 1.07 

Jilin 3.97 3.06 1.96 1.60 Chongqing 1.92 1.29 0.64 0.45 

Heilongjiang 3.63 3.57 2.89 2.19 Sichuan 1.97 1.21 0.61 0.60 

Shanghai 1.02 0.79 0.48 0.41 Guizhou 5.60 4.26 2.50 1.40 



 

 

 

 

 

 

 

 

 - 17 -  

 

 

 
 

 

 

 

 

 

 

 

Jiangsu 1.68 1.15 0.75 0.50 Yunnan 2.71 1.76 1.07 0.25 

Zhejiang 1.75 1.12 0.77 0.61 Shaanxi 4.12 2.86 2.97 2.19 

Anhui 2.49 1.94 1.34 0.93 Gansu 4.41 3.22 2.37 1.73 

Fujian 1.38 1.03 0.69 0.64 Qinghai 3.47 3.83 1.97 0.94 

Jiangxi 1.86 1.14 0.89 0.61 Ningxia 11.20 8.85 7.07 5.91 

Shandong 3.37 2.35 1.75 1.51 Xinjiang 4.36 4.50 4.05 3.58 

Overall, the carbon emission intensity of high energy consuming industries showed a 236 

downward trend during the sample period. The carbon emission intensity in 1997 was as high as 237 

4.35 tons/10000 yuan, which was due to the fact that China's industrialization was at an early 238 

stage of vigorous development, China's high energy consumption industry was running well, the 239 

production of coal, electricity, oil and other energy was growing rapidly, and fossil energy such as 240 

coal was rapidly consumed. As China continues to promote the adjustment of industrial structure 241 

and energy structure, and promote the green revolution and technological innovation, the carbon 242 

emission intensity of China's high energy consuming industries has been significantly reduced. By 243 

2022, the intensity has been adjusted to 1.12 tons/10000 yuan, about a quarter of that in 1997, and 244 

the carbon emission intensity of high energy consuming industries in most cities has been reduced 245 

to less than 1 ton/10000 yuan. 246 

According to the natural discontinuity method, the carbon emission intensity of high energy 247 

consuming industries is divided into five levels: ultra-high intensity, high intensity, medium 248 

intensity, low intensity and ultra-low intensity. Further, the spatial clustering analysis of carbon 249 

emission intensity of high energy consuming industries is carried out. As shown in Figure 4. 250 



 

 

 

 

 

 

 

 

 - 18 -  

 

 

 
 

 

 

 

 

 

 

 

 251 

Fig. 4 spatial clustering results of carbon emission intensity in different regions 252 

Locally, in 1997, the carbon emission intensity of high energy consuming industries in 253 

Shanxi reached 15.65 tons/10000 yuan, which is due to the problems of high energy consumption, 254 

serious environmental pollution and low resource utilization rate in its high energy consuming 255 

industries. With the integration and upgrading of the coal industry, the transformation of the coal 256 

industry to an efficient and clean direction has been promoted. By 2022, the carbon emission 257 

intensity of high energy consuming industries in Shanxi has decreased significantly, to 7.21 258 

tons/10000 yuan. In 1997, there were six ultra-high intensity regions, namely Shanxi, Inner 259 

Mongolia, Guizhou, Gansu, Ningxia and Xinjiang, all of which were located in the western region 260 
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except Shanxi; There are five high intensity regions, namely Hebei, Liaoning, Jilin, Heilongjiang 261 

and Qinghai. Hebei is located in the eastern region, Qinghai is located in the western region, and 262 

the rest are located in the northeast region; There are six areas of medium intensity type, namely 263 

Tianjin, Anhui, Shandong, Henan, Hubei and Shaanxi. Among them, Tianjin and Shandong are 264 

located in the eastern region, Shaanxi is located in the western region, and the rest are located in 265 

the central region. In 2022, the high intensity and medium intensity regions are mostly located in 266 

the central and western regions, and the eastern regions are mainly low intensity and ultra-low 267 

intensity regions. From 1997 to 2022, the ultra-high intensity areas were located in northern 268 

provinces except Guizhou, and the medium high intensity areas were located in northern 269 

provinces. 270 

At the regional level, the carbon emission intensity is basically "high in the West and low in 271 

the East" and "low in the South and high in the north", and the spatial difference in the north-south 272 

direction is greater than that in the east-west direction. As shown in Figure 5, from the perspective 273 

of the differences among the three regions in China, in 1997, the carbon emission intensity of high 274 

energy consuming industries in the eastern, central and western regions showed significant 275 

regional differences, with values of 3.15 tons/10000 yuan, 5.07 tons/10000 yuan and 4.88 276 

tons/10000 yuan, respectively. The carbon emission intensity in the central and western regions 277 

was much higher than that in the eastern regions, and was 1.61 times and 1.55 times higher than 278 

that in the eastern regions, respectively. In 2022, the carbon emission intensity of high energy 279 
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consuming industries in the eastern, central and western regions will be significantly adjusted, 280 

with values of 0.76 T/10000 yuan, 1.28 T/10000 yuan and 1.50 T/10000 yuan, respectively. The 281 

central and western regions are 1.68 times and 1.97 times that of the eastern regions, respectively. 282 

Therefore, this paper points out that there are significant differences in energy efficiency 283 

among the eastern, central and western regions, and the relative gap has not narrowed over time. 284 

In view of the differences in the north-south direction, in order to facilitate the investigation of the 285 

differences in the carbon emission intensity of high energy consuming industries between the 286 

northern provinces and other provinces, this paper takes Xinjiang, Gansu, Inner Mongolia, 287 

Ningxia, Shaanxi, Shanxi, Hebei, Liaoning, Jilin and Heilongjiang as a whole. In 1997, the carbon 288 

emission intensity of northern provinces and other provinces was 8.02 tons/10000 yuan and 3.28 289 

tons/10000 yuan, respectively, and the former was about 2.45 times that of the latter; In 2022, the 290 

value will be adjusted to 3.24 tons/10000 yuan and 0.66 tons/10000 yuan respectively, and the 291 

former is about 4.90 times that of the latter. Therefore, the carbon emission intensity of China's 292 

high energy consuming industries shows a significant trend of "high in the West and low in the 293 

East", "low in the South and high in the north", and the spatial difference in the north-south 294 

direction is greater than that in the east-west direction. 295 
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Fig. 5 time variation trend of carbon emission intensity in different regions 296 

3.2 Analysis of the impact of carbon emission intensity based on stipat model 297 

Referring to the literature on the influencing factors of carbon emissions at home and abroad, 298 

and based on the availability of data, the following eight factors are finally considered as the 299 

influencing factors of carbon emission intensity, which are distributed as follows: industrial 300 

structure, energy structure, regional economic development level, urbanization rate, technological 301 

innovation, foreign trade, industrial agglomeration and enterprise scale. 302 

According to STIRPAT model, when constructing the equation, it is necessary to first 303 

determine the explained variable a on the left side of the equation and the explanatory variables on 304 
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the right side of the equation, such as B, C, D, etc., as shown in the following formula.  305 

 ln ln ln ln ln lnA a b B c C d D e= + + + +  (9) 306 

The ordinary panel data regression model of influencing factors of carbon emission intensity 307 

of high energy consuming industries in various regions of the country can be obtained, and the 308 

equation constructed is as follows: 309 

 

1 2 3 4

5 6

ln ln ln ln ln

ln ln

mn mn mn mn mn

mn mn mn

mnCE a b INS b GDP b ECO b URB

b TRA b INA c

= +

+

+ + +

+ +
 (10) 310 

Where ln represents the natural logarithm; m stands for 30 provincial districts,311 

1 30( )m m N   ; n indicates the time range, 1 26( )n n N   ; , ,mn mn mnx y z  are expressed as 312 

fixed effects, elastic coefficients of explanatory variables and random error terms of Chinese 313 

provinces, respectively. 314 

Table 3 basic information of various variables 315 

variable symbol unit definition 

Carbon emissions 

Carbon intensity in high-energy intensive industry 
CE 

Million 

tons 

Carbon emission intensity of 30 

provinces and cities in China 

industrial structure 

Industrial structure 
INS 

100 

million 

yuan 

Industrial added value 

Regional GDP per capita 

Gross Domestic Product 
GDP 

100 

million 

yuan 

GDP of 30 provinces and cities in 

China 

Regional economic development level 

Economic level 
ECO 

100 

million 

yuan 

Per capita GDP 

Urbanization rate 

Urbanization level 
URB % 

Proportion of urban population in 

total population 

Foreign trade TRA % 
Proportion of total import and 

export trade in GDP 
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Industrial Agglomeration INA % 
Average number of employees in 

high energy consuming industries 

3.3 Correlation analysis of carbon emission factors based on global Moran index 316 

In order to ensure the scientific and reliable results, Stata, geoda and MATLAB were used for 317 

statistical calculation, and the results showed amazing consistency, such as Table 4 global Moran 318 

index results Error! Reference source not found. As shown in. 319 

 320 

Table 4 global Moran index results 321 

Year 2007 2012 2017 2022 

Moran's I 0.1086 0.1467 0.1104 0.0815 

z 1.8790 2.2604 1.9423 1.5284 

p-value 0.0602 0.0238 0.0521 0.1264 
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 322 

Figure 6 Moran scatter diagram of characteristic years 323 

dUsing formula (4) to test the carbon emission intensity of China's provincial high energy 324 

consuming industries in the four characteristic years of 2007, 2012 and 20172022, the vertical 325 

coordinate is the global moran's I, and the horizontal coordinate is the spatial lag term of moran's 326 

I. taking the origin of the two coordinate axes as the center, the spatial region is divided into four 327 
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quadrants. The lower quadrants are L-L and H-L from left to right, and the upper quadrants are L-328 

H and H-H from left to right. 329 

According to the test results in the above table and the significance level test, at the 10% 330 

confidence level, 0<moran's I<1, Z≥1.69，P≤0.1， It shows that the overall carbon emissions of 331 

high-carbon manufacturing industry have spatial autocorrelation. Among them, the number of "H-332 

H" (high-high) regions and provinces increased from 7 in 2007 (Figure ce-2007) to 9 in 2012 and 333 

2017 (Figure ce-2012, ce-2017), and finally changed to 7 in 2022 (Figure ce-2022) in 2017, while 334 

the number of "L-L" (low-low) regions and provinces increased from 9 to 11 and finally changed 335 

to 12, which also showed that the carbon emissions of high energy consuming industries were 336 

becoming closer, and the spatial spillover effect of carbon emissions among provinces showed a 337 

deepening trend. 338 

3.1. Analysis on the results of spatial effect model of carbon emission intensity 339 

3.3.1 LM inspection results 340 

Lagrange and robust Lagrange test (LM Test) are used to judge whether there is spatial 341 

relationship between variables and the type of spatial relationship, and to judge the robustness of 342 

SDM model and SEM model. 343 

The LM test results are shown in Table 5. The p-value values of the spatial error model and 344 

the spatial lag model are less than 0.05, that is, both models are applicable at the 95% confidence 345 
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level, and their robustness has passed the test. Therefore, the spatial Dobbin model should be 346 

selected to describe the spatial characteristics of the national carbon emission intensity. 347 

Table 5 LM inspection results 348 

Test Statistic df p-value 

Spatial error:    

Moran's I   8.995 1 0.000 

Lagrange multiplier                       76.094 1 0.000 

Robust Lagrange multiplier                  5.629 1 0.018 

Spatial lag:    

Lagrange multiplier                       79.946 1 0.000 

Robust Lagrange multiplier                6.482 1 0.011 

3.3.2 Hausmann test results 349 

Hausmann test is to judge whether the original hypothesis is tenable according to the 350 

significance of the results under the condition that the explanatory variable and individual effect 351 

are not relevant. When p value<0.05, it indicates that fixed effect can be used. 352 

The Hausmann test result (chi2 (3)=280.06, which was calculated by Stata, Prob > chi2 = 353 

0.0000）， Therefore, the original hypothesis can be rejected in the 95% confidence interval, so 354 

the fixed effect should be used. 355 

3.4.3 Wald test and LR test results 356 

Wald test and LR test are conducted to determine whether SDM will degenerate into SAR or 357 

SEM model and further select which fixed effect should be used for SDM. 358 

There are two test criteria for LR test: the hypothesis of "two-way" and "individual" and the 359 

hypothesis of "time" and "two-way". When the current one is significant but the latter is not 360 
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significant, the individual fixed effect is selected; when the latter is significant but the former is 361 

not significant, the time fixed effect is selected; when both are significant, the double fixed effect 362 

is selected. 363 

Wald test results (chi2 (4)=99.24, prob>chi2=0.0000; chi2 (5)=156.04, Prob > chi2 = 364 

0.0000）， It is easy to know that SDM will not degenerate into SAR or SEM models at 95% 365 

confidence level. 366 

LR test results (SEM nested within SDM: lr chi2 (5)=123.63, prob>chi2=0.0000; SAR nested 367 

within SDM: lr chi2 (5)=178.66, prob>chi2=0.0000) (ind nested within both: lr chi2 (12)=72.87, 368 

prob>chi2=0.0000, time nested within both: lr chi2 (12)=649.52, Prob > chi2 = 0.0000）。 369 

Yi Zhi can refuse to use time fixed effect and individual fixed effect at 95% confidence level, 370 

so double fixed effect should be selected. 371 

To sum up, this paper selects the SDM model with double fixed effects to study the temporal 372 

and spatial differences of carbon emission intensity of high energy consuming industries in China. 373 

3.5 Regression results of SDM model with double fixed effects 374 

Based on the double fixed SDM model, the regression results of different variables are 375 

obtained by bringing in relevant data, as shown in the table. The coefficient of interactive terms 376 

represents that the core explanatory variables in the surrounding areas can promote (positive 377 

coefficient)/inhibit (negative coefficient) the promotion of the explained variables in the region. 378 
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  value of the spatial autocorrelation coefficient (which must be significant, p<0.1) 379 

indicates that there is a negative (coefficient is negative)/positive (coefficient is positive) spatial 380 

spillover effect of the explained variable in the local region. Here, the positive and negative 381 

directions represent whether the promoting or inhibiting directions are the same, the same is 382 

positive, and the different is negative. 383 

Table 6 regression results of SDM model 384 

Explanatory 

variable 

regression 

coefficient 
Z-statistics P 

Interactive 

item 

regression 

coefficient 
Z-statistics P 

INS .0510768 9.12 0.000 WxINS .2481082 2.92 0.004 

GDP -.013449 -6.25 0.000 WxGDP -.0190093 -0.62 0.538 

URB -63.83334 -0.65 0.516 WxURB -3110.934 -2.77 0.006 

ECO -.0027053 -4.51 0.000 WxECO -.0539931 -6.95 0.000 

TRA 80.6649 1.72 0.085 WxTRA 955.5775 1.81 0.070 

    ρ × CE -.8956155 -3.54 0.000 

It can be seen from the results that foreign trade (TRA) and urbanization rate (urb) failed to 385 

pass the significance test of 95% confidence level. The three explanatory variables of industrial 386 

structure (INS), regional gross domestic product (GDP) and regional economic development level 387 

(ECO) all passed the significance test. 388 

The regression coefficient of industrial structure is positive, indicating that industrial 389 

structure has a positive impact on carbon emission intensity. It indicates that CE will increase by 390 

0.051% for every 1% increase in industrial added value of high energy consuming industries 391 

nationwide. The regional GDP and the level of regional economic development have a negative 392 

impact on carbon emission intensity, indicating that for every 1% increase in regional GDP and 393 
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per capita GDP, CE will decrease by 0.013% and 0.003%. 394 

The spatial autocorrelation coefficient is significantly negative, indicating that the carbon 395 

emission intensity of high energy consuming industries across the country has obvious spatial 396 

spillover effect. For every 1% change in the carbon emission intensity of adjacent areas, the 397 

carbon emission intensity of high energy consuming industries in the city will change by 0.9% in 398 

the opposite direction, which is the so-called "siphon effect".𝜌 399 

The spatial interaction coefficient of industrial structure is significantly positive, indicating 400 

that the gross industrial output value of high energy consuming industries in adjacent cities is 1%, 401 

and CE in this region increases by 0.25%, which has a significant promoting effect. 402 

3.6 Analysis of direct and indirect effects 403 

Further Using Stata software, the direct and indirect effects of carbon emissions can be 404 

calculated. The relevant results are shown in Table 7: 405 

Table 7 direct and indirect effects of explanatory variables 406 

Explanatory 

variable 

Direct effect Indirect effect 

regression 

coefficient 
Z-statistics P 

regression 

coefficient 
Z-statistics P 

INS .0467449 8.82 0.000 .1162225 2.21 0.027 

GDP -.0133488 -6.69 0.000 -.004778 -0.28 0.778 

URB 13.63158 0.16 0.876 -1709.622    -2.68 0.007 

ECO -.0015748 -2.73 0.006 -.0288478 -3.70 0.000 

TRA 60.45676 1.43 0.153 506.7319 1.74 0.081 

The first type of explanatory variable has both direct and indirect effects. Industrial structure 407 

(INS) and regional economic development level (ECO) belong to this type of explanatory 408 



 

 

 

 

 

 

 

 

 - 30 -  

 

 

 
 

 

 

 

 

 

 

 

variable, as shown in table 46. The direct effect and indirect effect of regional economic 409 

development level (ECO) are significantly positive, indicating that the industrial added value of 410 

high energy consuming industries has a significant impact on the local carbon emission intensity 411 

in the same direction, and will also have the same impact on the surrounding areas.- 412 

The direct and indirect effects of regional economic development level (ECO) are 413 

significantly negative, indicating that every 1% increase in per capita GDP in each region will 414 

reduce CE by 0.002% and 0.029% in itself and adjacent cities, respectively. This result shows that 415 

with the improvement of economic level, the investment in environmental governance and carbon 416 

emission control will increase, which will lead to the reduction of carbon emission intensity. 417 

The second type of explanatory variable has only direct effect, but no indirect effect. Only the 418 

direct effect of regional gross domestic product (GDP) is significantly negative, and the indirect 419 

effect is not significant, indicating that every 1% increase in regional GDP can only reduce the 420 

city's carbon emission intensity by 0.013%. It can be seen that the increase of the level of 421 

economic development has an inhibitory effect on carbon emissions. When developing the 422 

economy, the increase of local fiscal revenue is conducive to optimizing the industrial structure 423 

and reducing energy consumption. 424 

The third type of explanatory variable is the variable with indirect effect and no direct effect. 425 

Only the urbanization rate (urb) belongs to this type of variable, indicating that the higher the 426 

proportion of urban population in the total population in the region, the greater the impact on the 427 
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reduction of carbon emissions in the surrounding areas. 428 

The fourth type of explanatory variable is that there is neither direct effect nor indirect effect, 429 

and the impact of foreign trade (TRA) on carbon emissions in the region and surrounding areas is 430 

not significant. 431 

4. Conclusion 432 

Based on the panel data of 30 high energy consuming industries in China from 1997 to 2022, 433 

this paper measures the carbon emission intensity of 30 high energy consuming industries, 434 

constructs stipat model and spatial econometric model, and analyzes the spatial spillover effect 435 

and spatial heterogeneity combined with their spatial correlation. The main conclusions are as 436 

follows: 437 

First, the carbon emission intensity of high energy consuming industries is declining as a 438 

whole, with typical spatial heterogeneity. During the sample period, the carbon emission intensity 439 

of high energy consuming industries in 30 provinces in China was calculated based on the IPPC 440 

method, with the overall decline. At the same time, from the perspective of regional distribution, 441 

there are significant differences in carbon emission intensity among the eastern, central and 442 

western regions, which are basically high in the West and low in the East, high in the north and 443 

low in the south, and the spatial difference in the north-south direction is greater than that in the 444 

east-west direction. 445 

Second, the carbon emission intensity of high energy consuming industries has significant 446 
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spatial autocorrelation characteristics. According to the calculation of global Moran index, its 447 

center of gravity is roughly distributed in the border zone between Shanxi and Shandong, and is 448 

generally located in the regional zone of 907.6494 ° -1094.336 ° E and 3906.624 ° -3958.002 ° n, 449 

moving from east to West as a whole. 450 

Third, the carbon emission intensity of high energy consuming industries is affected by 451 

multiple environmental factors. With the higher level of regional development, the optimization of 452 

industrial structure, technological progress and other factors affecting carbon emission intensity 453 

are restrained. CE will increase by 0.051% for every 1% increase in industrial added value of high 454 

energy consuming industries nationwide. For every 1% increase in regional GDP and per capita 455 

GDP, CE will be reduced by 0.013% and 0.003%, respectively. For every 1% increase in per 456 

capita GDP in each region, CE in itself and adjacent cities will be reduced by 0.002% and 0.029%, 457 

respectively. 458 

Fourth, the carbon emission intensity of high energy consuming industries has a significant 459 

spatial spillover effect. According to the regression results of spatial Dobbin model with double 460 

fixed effects, the carbon emission intensity of high energy consuming industries in the city will 461 

change by 0.9% in the opposite direction for every 1% change in the carbon emission intensity of 462 

high energy consuming industries in adjacent provinces. 463 
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