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Abstract 

With the rapid expansion of science and technology, there is a growing hazard to public 

health from many forms of pollution in the air, particularly fine dust, which can aggravate or induce 

heart and lung disorders. Furthermore, this threat is expanding as a consequence of the rapid 



 

 

progression of technology. The purpose of this study is to make an attempt to forecast the fine dust 

concentration in Delhi eight hours in advance in order to reduce the potential adverse impacts on 

health. The objective of this study is to develop a multimodal deep learning framework that 

combines the architectures of Self Tuned Long Short Term Memory (STLSTM) and Concatenated 

Convolutional Neural Network (CCNN) in order to generate accurate predictions. This research is 

constructed using a dataset that contains both numerical and visual data. An STLSTM 

AutoEncoder is responsible for handling numerical time series data, in contrast to the 

Concatenated Visual Geometry Group Neural Network (CVGGNet) models (CVGG16 and 

CVGG19), which use image data to compare performance depending on network depth. Based on 

the results of the final investigation, it has been predicted that the deeper CVGG19 model performs 

up to 14.2% improved than modality models with single data input that simply use numerical data. 

The RMSE, MAE, SMAP of the proposed model is 3.87, 3.45, 09.87 respectively. When compared 

to the models with single data input, the multimodal deep learning model that makes use of both 

types of data performs significantly better. 

 

Keywords: Air Pollution, Fine Dust, Health Impact, Multimodal Deep Learning, STLSTM 

AutoEncoder and Concatenated VGGNet. 

 

I.INTRODUCTION 

The standard of life has increased as technology and science progress daily, but there is 

also an increase in air pollution in many forms. Heart and lung disorders are among the conditions 

that fine dust either causes or exacerbates [1]. Models for prediction of data from time series have 

been used in numerous research on air pollution to forecast fine dust and avert such health harm. 

Aerosol data, however, are not included in the majority of research, which instead contain a variety 

of data types (such as PM-10, temperatures, humid point, and wind speed). Because of atmospheric 

dispersion, the term "aerosol" refers to fine materials moving in the atmosphere, such as fine dust, 

and it is helpful for forecasting the movement and buildup of fine dust.  

Adding aerosol imaging information that is closely linked with tiny particles to the 

numerical datasets that performed best in prior study [2] improved the efficacy of the model. The 

satellite picture such as information on aerosol size distribution was included in the multimodal 

information set, and it was organised hourly to match the preset numerical information in hourly 

units. Additionally, the satellite picture offers aerosol data that covers the whole Korean Peninsula, 



 

 

making it possible to see the overall movement of fine particles across the peninsula.  

In this paper, we present a deep learning model that is a hybrid that combines the LSTM (Long 

Short Term Memory) series approach, which shows improved precision in time-series information 

forecasting, with the CNN parallel designs, useful for processing images for learning a particular 

information set. Processing a high number of features is necessary because the bidirectional deep 

learning model presented in this study combines the features of the image and numeric datasets 

that are processed using a CNN series model. Consequently, the LSTM series architecture used 

the LSTM AutoEncoder, which worked optimally when packed with multiple capabilities. A 

simple CNN as well as VGGNet (VGG16, VGG19) were utilized by the CNN series model in the 

prior study [2] to examine the differences as per depth of the network.A multi-layer standard deep 

CNN architecture, the VGGNet model was created by Oxford University researchers, the Visual 

Geometry Group. 

Therefore, compared to, the multidimensional deep learning models that used both 

numerical and visual data outperformed it. Using VGG19, the CNN series model with the deepest 

network depth, produced the best results out of all of them. Furthermore, we separated the image 

information into original and cropped photos, then ran a multidimensional deep learning model on 

each to examine the differences in performance. Utilizing katib, an adaptive hyperparameter 

optimization system, the model's hyperparameter set was tuned to optimal performance. The 

proposed model makes three notable contributions: 

1. The study introduces a novel multimodal deep learning framework that combines Self 

Tuned Long Short Term Memory (STLSTM) and Concatenated Convolutional Neural 

Network (CCNN) architectures. This approach is innovative in integrating both numerical 

and visual data to improve the accuracy of fine dust concentration predictions. 

2. By leveraging the strengths of both STLSTM for numerical time series data and CVGGNet 

(CVGG16 and CVGG19) for image data, the study achieves significant improvements in 

prediction accuracy. The deeper CVGG19 model, in particular, performs up to 14.2% 

better than models that use only numerical data. 

3. The study's primary aim is to mitigate the adverse health impacts of fine dust pollution by 

forecasting its concentration in Delhi eight hours in advance. The improved prediction 

accuracy achieved through the multimodal deep learning model can provide timely 

warnings and enable better public health responses, thereby reducing the potential health 

risks associated with air pollution. 



 

 

The structure of the paper is as follows. The created dataset is presented in Section 3 and 

associated research is described in Section 2. Subsequently, the suggested framework for the 

dataset is described in Section 4, and the hyperparameter-based optimizing of the specified model 

is explained in Section 5. The experiment is described in Section 6, and Section 7 concludes with 

a discussion of future directions.  

 

II. Related Research  

Numerous prediction time series models have been researched for the purpose of weather 

forecasting. In order to estimate future PM10 levels, [3] used deep learning models with AirNet, 

which is  a time series of weather and pollution data. For data from time series learning in the 

present research, RNN,  LSTM, and  GRU were employed; GRU worked best because resource 

issues limited the usage of AirNet. [4] proposed using Conditions Normalized Models (WNM) 

based on deep learning to measure variations in air quality in Quito, Ecuador during the COVID-

19 partial shutdown period.  

Furthermore, [5] introduced an LSTM model that investigates different topologies, 

including single- and multilayer LSTM, and adds intermediate variable signals to LSTM memory 

blocks in order to estimate conditions within the Indonesian airport region. The suggested model 

demonstrated how the addition of the intermediary variable could improve the predictive power of 

the model. 

 For the purpose of forecasting PM2.5 levels in Beijing, China, Bekkar [6] presented a 

hybrid model that combines CNN and LSTM. Based on the combination of models, we apply data 

from time series for retrieved values using LSTM and apply CNN to extract internal and spatial 

features for input values. In terms of performance, the proposed model outperformed the current 

deep learning models (LSTM, Bi-LSTM technology, GRU, and Bi-GRU).The previously stated 

studies, in contrast to our methodology, lack the use of multimodal data and instead employ time-

based prediction models like RNN, LSTM, and GRU. 

Few studies use multimodal data to improve the prediction performance of weather 

forecasting.. A one-dimensional convolution layer of the CNN is used to extract and integrate the 

spatial correlation characteristics and local variation trends from multimodal air quality data Xie 

[7]. A GRU uses the CNN results to determine long-term dependencies.The suggested model 

outperformed the three single deep learning models that are currently in use: Artificial  Neural 

Networks, LSTM, and GRU. 



 

 

Researcher in [8] recommended using multiple modalities, which consists of picture 

images collected by cameras in Skopje and meteorological information obtained by sensors, for 

estimating (i.e., determine if photos obtained with observers are now polluted) by contaminants in 

the air in the Skopje geographical region in northern Macedonia. In the suggested approach, a new 

sub-model route joins the previously trained genesis modelling's analysis of picture information, 

weather information, and all three levels that are linked to the entirety of the layer again. Pretrained 

inception, CNN, ResNet, and other models were outperformed by it in terms of performance. 

Our study is not the same as that of [7] and [8]. While [7] uses both numerical and image 

information for their multimodal data, we employ both numerical and image data from different 

places for things like wind speed, SO2, and PM10. Kalajdjieski's art attempts to categorize pictures 

into contaminatedor clean, making use of sensory meteorological data (temperature, for example). 

Our objective, in contrast to Kalajdjieski's work, is to forecast future PM10 levels using satellite 

images and numerical meteorological data. 

In order to assemble multimodal data, this work added picture data, which contains 

information on the size of aerosol particles. Aerosol aids in the prediction of fine dust by indicating 

the likelihood of fine dust collection and movement owing to atmospheric diffusion.In order to 

improve performance, we created multimodal data using both numerical and picture data that are 

relevant to fine dust. Despite significant advancements in time series models for weather 

forecasting and air quality prediction, several research gaps remain. Most existing studies, such as 

those by [3], [4], [5], and [6], rely heavily on time-based prediction models like RNN, LSTM, and 

GRU, focusing primarily on single-modal data. While these models have shown promise in 

predicting PM10 and PM2.5 levels and enhancing predictive accuracy with intermediate variables 

or hybrid approaches, they do not incorporate multimodal data, which could provide a more 

comprehensive understanding of air quality dynamics. For instance, [7] demonstrated the potential 

of multimodal data by integrating one-dimensional CNN layers to capture spatial correlations from 

air quality data, yet this approach still lacks the depth of integrating diverse data sources. 

Furthermore, Kalajdjieski [8] utilized multimodal data combining images and meteorological 

information for pollution estimation, but their focus was on current pollution status rather than 

future predictions. Our study aims to bridge these gaps by employing both numerical and image 

data from various sources, including satellite images, to forecast future PM10 levels. This 

approach not only enhances the predictive performance by utilizing aerosol particle size 

information to indicate fine dust movement but also provides a robust framework for integrating 



 

 

multimodal data relevant to fine dust prediction. Thus, while previous research has laid the 

groundwork for air quality forecasting, the incorporation of diverse data modalities remains an 

underexplored area that our study seeks to address, offering a more holistic and accurate prediction 

model. 

III.Dataset  

In this study the open source dataset of 

https://www.kaggle.com/datasets/deepaksirohiwal/delhi-air-quality has been utilized. This dataset 

comprises air quality data from Delhi, the national capital of India. It includes measurements of 

various pollutants, such as particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur 

dioxide (SO2), carbon dioxide (CO2), ozone (O3), and others.  

The data was collected from monitoring stations across different areas of Delhi over a 

period from November 25, 2020, to January 24, 2023. This work used image as well as numerical 

data to anticipate fine dust beyond 8 hours, and the greatest results were achieved when input 

values dating back up to 5 hours were employed. To further increase performance, we combine 

equivalent numerical dataset from [2] with satellite image data to create a multimodal dataset in 

this study. 

3.1 Satellite picture Database 

Because aerosol information [9] can be used to determine movement and accumulation in 

accordance with atmospheric diffusion, it was used in this work to predict fine dust. As a result, 

we created a multimodal dataset using hourly satellite photos with information on aerosol particle 

size and numerical data. You can notice the general movement of fine dust over the Korean 

Peninsula by examining the satellite image, which includes aerosol data for the whole peninsula. 

An instance of an image from satellite with a color caption for aerosol particle size located 

in the bottom right corner is presented in Figure 1. The size of aerosol particle is represented by α. 

The range of α is −0.5–3, and particles size is exponential applying the ratio of each  wavelength 

to the appropriate optical thickness [10]. Figure 1 illustrates how the colors change according on 

the range of α that is calculated. The blue sequence (α: 0–1) and purple sequence (α: −0.5–0) 

correspond to big aerosols like sea salt particles and yellow dust, respectively. The yellow and red 

series (α: 2-3) correlate to fine particles, such as smoke or pollution, whereas the green segment 

(α: 1-2) denotes medium-sized aerosols.  

https://www.kaggle.com/datasets/deepaksirohiwal/delhi-air-quality


 

 

 

 

 

 

 

 

 

 

 

Figure 1. Satellite picture of Delhi 

 

3.2 Cropped Satellite Picture Database 

Cropping is the process of deleting portions of an image that are not wanted. The aerosol 

information for Korea along with other nations is shown in Figure 1. Nevertheless, as the numerical 

information generated is limited to the Delhi data, the remaining region in the satellite image is 

eliminated, as seen in Figure 2. The variation in prediction performance based on the satellite 

image datasets is then demonstrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2. Cropped from the satellite image for further processing 

 

IV. Application of Deep Learning 

Depended on  STLSTMs & CCNNs models, we build multimodal deep learning algorithms 

in this work. For historical data, LSTM constitutes a recognized DL, and for picture information, 

the CNNs is a well-known approach. For our multimodal deep learning approach, which handles 

both numerical and picture input, we mix the two models. 

4.1 AutoEncoder for STLSTM 

An issue with RNN [11] is that it cannot transfer historical data all the way through a large 

time series structure. This is resolved by the LSTM [11] model. There are other LSTM model 

variations, including bidirectional-LSTM. 

This study presents a multimodal deep learning system that combines CNN-treated visual 

information with LSTM-treated numeric information. More characteristics follow, which results 

in more dimensions and more challenging acquisition. To address this, we use the LSTM 

AutoEncoder, that efficiently encrypts the high-dimensional input. In our case, we have already 

demonstrated that LSTM AutoEncoder performs better than the vanilla LSTM model [2]. 

A layer on top of the LSTM layers in the LSTM AutoEncoder is used to extract 

characteristics by lowering the dimension of the input data [12] and producing original data using 

the features that are extracted. The AutoEncoder is commonly utilized for unsupervised or self-

supervised learning scenarios in which the input and label are identical. However, in our earlier 

research [2], we employed the AutoEncoder for supervised learning. The LSTM AutoEncoder 

used in our earlier work [2] is seen in Figure 3. The decoder and encoder process the initial input 

values of the built model, which is data from the last five hours, to forecast PM10 values one to 

eight hours from now. 



 

 

 

Figure 3. Demonstrates the efficiency of the LSTM AE algorithms in analysing the input 

information, which is a 5-hour series of values, and generates a total minimum dust value 

within 1-6 hours 

 

4.2 Working of  CCNNs  

First, we process satellite pictures using the fundamental CNN [13] in order to examine 

how well advanced CNN models, like VGGNet, perform. By processing a portion of the image 

rather than the full one, the CNN model is able to handle the problem of typical neural networks 

receiving inputs without the need for spatial or topological information. By doing this, the CNN is 

able to learn images while preserving their spatial information.Convolution layers & pooling layers 

are so frequently employed in image processing to extract features from the image.Figure 4 depicts 

the basic CNN that was experimented extensively in this paper. It consists of two fully linked 

layers and three convolution/pooling layers. 

4.3 VGGNet 

Assess the efficacy of various CNNs, we experimented utilizing the VGGNet [14], which 

is a more complex CNN than the basic CNN model. A CNN series model called VGGNet was 

created by the Visual Geometric Group, aOxford University research group. It is a multi-layered, 

conventional deep CNN architecture. We selected the VGGNet model due to practical challenges 

in experiments caused by other models, including the ResNet deep than VGGNet, requiring more 

storage space. Compared to the standard CNN model, the VGGNet model has a deeper model with 

a fixed filter size as tiny as 3 × 3. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CNN model without pooling layers  

 
Figure 5. The VGG 16 models without pooling layers 

 

 

Rather than using a single convolution layer with large-sized filters, VGGNet uses many 

convolution layers with small in size 3 × 3 filters. Furthermore, because the model can describe 

high-dimensional nonlinearity, performance improves as the model gets deeper. VGGNet is 

referred to as VGG16 in Figure 5 Six structures in all—A (11), A-LRN (11), B (13), C (16), D 

(16), and E (19)—were created by the VGG research team, and their performances were compared 

to see if there was a difference in performance based on depth. Consequently, it was verified that 



 

 

as the depth grew from 11, 13, 16, to 19 layers, the performance got better. Satellite photos, as 

well as VGG16 and VGG19 in this paper, are processed using VGGNet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Data having different properties (numerical and image data) are embedded, 

extracted, and projected onto a common feature space 

 

4.4 Multimodal Deep Learning 

      A combination of several methods, such text and picture, textual and sounds, or numerical 

information and picture, is called multimodal. The technique of creating and obtaining the deep 

learning approach is known as "multimodal deep learning" [15]. We can correlate relationships 

between several modalities and address a variety of problems via multimodal deep learning. In this 

research, we build a multidimensional deep learning algorithm using numerical and picture data 

to learn various data associations based on time series features. Nevertheless, we must integrate 

these data because picture and numerical data have distinct properties. 

Numerous techniques exist for integrating data [16]. First, as As shown in Figure 6, 

information dimensions may be used to embed information with various properties and retrieve 

data with similar attributes. Consequently, information with different characterizations are directed 

towards a same range of features. Second, integration among learned represents is a method for 

combining different neural network algorithms with learnt visualisations, as seen in Figure 7.We 

apply both the integration between learnt representations and the integration with the data 

dimensions in this paper. For instance, we use LSTM for series of data and CNN for picture data 



 

 

during training. Each neural network's learned representations are linked and integrated to the 

component that is hidden, and learning is accomplished by determining the ideal weight associated 

with the hidden layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Overall flow of the model  

The multimodal DL framework that we built in this paper is depicted in Figure 8. For the 

purpose of using data from the previous five hours as input, the numerical & image data must first 

be preprocessed. Even if they are the same, the two dimensions of data do not match.  

Preprocessing takes place during the five hours before. In order to maintain the spatial details of 

the image, we recover the feature mapping for picture information using a CNN-based techniques.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: DL Techniques with multiple modes: Using CCNN, the feature mapping of the 

picture information is first extraction. After that, a concatenate layer is used to integrate 



 

 

the feature map together numerical data, giving them time series properties then after the 

combined data is handled by the STLSTMs AE 

 

An LSTM AutoEncoder techniques was employed to process numerical data. Since our 

parameters rise when numerical and picture data are combined, the GRU framework [17], another 

efficient time series information handles paradigm, is disregarded. The LSTM model performs 

better in this scenario than the GRU model. 

Furthermore, to compare efficiency differences depending to networking depths, we 

employed their fundamental CNN & VGGNet models (VGG16, VGG19). The data are combined, 

nevertheless, in order to potentially increase the dimension and decrease the quality of the learning. 

We send the integrated multimodal data to our model's LSTM AutoEncoder to indicate the 

dimensionality after the multimodal data have been integrated. 

reduction & time series properties throughout the preparatory phase. 

Our multimodal deep learning algorithm differs from the existing multimodal deep learning 

algorithm used in earlier works in that it makes use of a prediction model for time-series 

information in order to facilitate long-term dependency learning. The difficulty of classifying 

photographs as polluted or not, especially when combined with weather data, is addressed by 

Kalajdjieski [8]. 

 

V.Optimizing Deep Learning Models 

This research optimises this hyperparameter to maximise the accuracy of the model. 

5.1.High-performance parameter 

A hyperparameter [13] is a value that the user has to actively set in order to use 

theprototype. For instance, batch size, epoch, and learning rate. Hyperparameter tuning is the 

process of examining the best hyperparameters to enhance accuracy, and determining the best 

values for this is never simple. The ideal value can be found by manually substituting the value, 

however this may consumed time and you might not obtain the optimized value if you start with 

the wrong criterion. As a result, in order to determine the ideal hyperparameter, the relevant search 

method must be chosen based on the implementing scenario. 

5.2.Katib 

Katib [18] is a system that is part of the Kubeflow ML techniques that optimizes hyperparameters. 

Katib maximizes accuracy by utilizing many algorithms. Random search, search via grid, & 

Bayesian optimization are examples of common algorithms. Katib is designed to automate the 



 

 

hyperparameter tuning process in machine learning workflows. It efficiently manages experiments 

to optimize model performance by exploring various hyperparameter configurations. 

Among other techniques, we employed the random search method [19]. When it is not 

possible to investigate every option, random search is a great strategy to apply since it generates a 

mixture of random parameters. We experimented with a range of hyperparameters under different 

circumstances. however, the number of search instances increases significantly if the parameter's 

range contains decimal points. 

VI.Trial  

Every experiment pertaining to this suggested framework is conducted on a PC with an 

Intel(R) Core (TM) i3-8130U CPU running at 2.20 GHz, 64-bit OS x64, and 4.00 GB of RAM. 

All of the experiments are carried out using the Python programming languages. 

 

6.1.Experimental Configuration 

The objective of this work is to use the S_Ns' pollutant content and climatic parameters to 

estimate the AQI for S_L one hour in advance. To be more precise, the data from the preceding 24 

hrs are utilized to forecast their AQIs for the 25th hr. In order to conduct this test, 26,280 

information points are used.Of the database, 21,024 information, or 80% of the total, are used for 

training, while 5,256 data samples, or the remaining 20%, are utilized for testing. An essential first 

step toward a faultless and effective experiment is data normalization. Data normalization is 

crucial because it eliminates redundant data and, to some extent, various kinds of irregularities 

from the data. The time-series data fluctuates across a large range and is quite volatile. The entire 

process of learning slows down as a result. The data normalization procedure is used to expedite 

learning and scale the information between zero and one. The Min-Max technique is applied in 

this case. The data are transformed linearly using this normalization method.This involves taking 

the dataset's minimum and maximum values and replacing them with the following formula: 

 

𝒏norm =
(( high-low ) ∗ ( n-MinN ))

(MaxN − MinN)
                  (1) 

where the lowest and highest numbers of characteristic N in the input dataset are 

represented by MinN and MaxN, respectively.  

Equation 1 is used to transform the input value n, which is an attribute of N, to 𝒏norm .  

Their  parameters for the suggested hybrid forecasting model are shown in Table 1. 

Table 1: The suggested hybrid prediction model's parameter description 



 

 

 

CNN_Block GRU_Block  

Epoch Filter_size 
Dropo

ut 

No. of neurons 
Dropo

ut 
Layer

1 

Layer

2 

Layer

3 

Layer

1 

Layer

2 

Layer

3 

 

73 73 73 0.7 17 17 17 0.7 5-151 

73 73 73 0.7 33 33 33 0.7 5-151 

73 73 73 0.7 65 65 65 0.7 5-151 

73 73 73 0.7 81 81 81 0.7 5-151 

73 73 73 0.7 129 129 129 0.7 5-151 

 

6.2.Assessment 

This section evaluates the suggested prediction model and the imputation procedure for 

filling in the dataset's missing values in order to determine their suitability. 

6.2.1. Assessment of the suggested imputation technique for the replacement of missing 

values 

Numerous imputation algorithms are now in use. They are frequently employed in dataset 

replacement for missing values. Average Imputing [19], An autoregressive , also [20], the highest 

probability [21], K-NN, also [22], and Bagging the following section [23] are a few of the well-

known attribution algorithms [24,25]. The suggested imputation algorithm is compared to the 

current imputing techniques in order to assess its applicability. Table 2 presents the findings. 

6.2.2.The prediction model's assessment 

It is crucial to assess a model's performance once it has been built. All regression models, 

regardless of kind, need to go through an evaluation process in order to filter the model's errors 

and compare the suggested model's performance to that of the established models. Here, three 

assessment measures are applied to assess the hybrid prediction model's effectiveness. They are 

listed below. 

The Mean Absolute Error (MAE) : is a commonly used error evaluation technique for 

predicting the mistakes in a time-series study. The procedure to ascertain loss of function MAE is 

applied during training. The MAE is better able to depict the real-world errors that were made 

during the prediction framework's training phase. The formula for MAE is  

 MAE =
1

𝑁
∑  

𝑁

𝑖=1

|𝑋𝑖 − 𝑌𝑖|                  (2) 



 

 

RMSE, is a useful tool for analyzing the discrepancy between the observed and anticipated 

values. A reduced RMSE score is always indicative of a high-quality prediction model. RSME is 

then computed as 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  

𝑁

𝑖=1

  (𝑋𝑖 − 𝑌𝑖)2              (3) 

Symmetric Mean Absolute Percentage Error, (SMAPE), is an error evaluation technique.Thus, 

SMAPE is defined by applying the subsequent formula: 

SMAPE =
100%

𝑁
∑  

𝑁

𝑖=1

|𝑋𝑖 − 𝑌𝑖|

(|𝑋𝑖| + |𝑌𝑖|)/2
                  (4) 

where i  is the number of observations, 𝑌𝑖  is the actual value, 𝑋𝑖  is the predicted value. The 

efficiency of our suggested work is assessed by contrasting the same framework with a few 

common models, such as: 

– Support Vector Regressor, or SVR  

– Stacked LSTM: The forward as well as backward time-series data are analyzed 

using three Bi-Directional LSTM layers. 

– GRU: Bi-GRU is applied in three layers. 

– CBGRU  

– DAQFF 

 

VII.Findings and Discussion 

7.1.STLSTM-CCNN Simulation 

STLSTM-CCNN were simulates using the factors  shown in Table 1 in order to obtain the 

best outcome possible for the suggested STLSTM-CCNN framework. In fig 9 From there, it is 

evident that, with 32 neurons and a 16-epoch number, STLSTM-CCNN is producing prediction 

results that are more accurate. Here, the drop-out layers of the CNN & GRU blocks are both 

employed with a rate of dropout of 0.6 in order to get around the overfitting issue. These 

parameters are applied to the remaining experiments. 

The STLSTM-CCNN simulates with different wind speed threshold values for the adjacent 

Place's Impact (NPI) method in order to determine the optimal thresholds value for the wind speeds 

(𝜙) for each of the adjacent station. Based on the results of the studies, the threshold value 𝜙 has 



 

 

been allocated to the following stations: 1.74 m/s for Richmond, 2.05 m/s for St. Marry, 1.77 m/s 

for Bringelly, 1.93 m/s for Liverpool, and 1.76 m/s for Randwick.  

 

  

(a) RMSEs.                                                 (b) MAEs. 

Figure 9. Analysis of performance (a) RMSEs (b) MAEs. 

 

7.2.Effectiveness of suggested imputation techniques for replaced missed values 

The efficacy of the suggested imputation algorithm in substituting absent values  

The univariate time-series dataset has 5%, 10%, 15%, 20%, and 30% of its data randomly removed 

in order to test the efficacy of the suggested imputation algorithm. The missing values are then 

replaced using the tried-and-true imputation procedures. The RMSE and MAE are computed based 

on the predictions made by the prediction model. The performance of different imputation 

techniques on the deletion of the aforementioned data segments from the dataset is shown in Table 

2. This table shows that all of the imputation algorithms' errors grow as the proportion of missing 

values rises. Additionally, compared to other imputation methods that have a rising percentage of 

missing values, the rise in predictions error rates is substantially smaller. In contrast, the 

Mean/Mode impute algorithm performs the worst and increases error rates. With the exception of 

the bagging technique, it is evident that the suggested seasonality-based imputation approach 

yields the least amount of error. The Bagging algorithm outperforms the suggested Seasonality-

based imputation approach by a little margin their losing percentage is larger or equal to 15%. 

However, it can also be seen that its RMSE as well as MAE are marginally higher than 

those of the Bagging method alone when the missing amount is more than or equal to 15%. It is 

clear from this debate that missing values more than 10% can likewise be accommodated by the 



 

 

Seasonality-based imputation technique suggested in this letter. Less than 10% of the dataset 

utilized for the proposed work are missing values. Because the suggested imputation algorithm 

learns seasonal patterns and manages the missing information appropriately, it performs better. 

Table 2: An assessment of the suggested imputation techniques performance 

 

Techniques % of missing  ranges 

5% 10% 15% 20% 30% 

RMS

Es 

MA

Es 

RMS

Es 

MA

Es 

RMS

Es 

MA

Es 

RMS

Es 

MA

Es 

RMS

Es 

MA

Es 

Average 4.56 4.09 5.63 6.99 7.30 7.87 8.35 8.76 8.97 9.34 

Autoregressive 2.82 2.45 3.36 3.01 3.80 3.98 4.91 5.12 5.74 7.22 

Maximum_likelih

ood 

3.14 

71 

2.96 

13 

3.42 

06 

3.48 

76 

4.00 

19 

4.72 

04 

5.48 

11 

6.88 

72 

6.25 

53 

7.11 

45 

K-NNs 4.22 3.97 4.33 4.67 4.98 6.54 5.67 7.68 7.98 8.76 

Bagging 3.81 3.42 4.34 3.98 4.65 5.67 6.76 7.89 6.78 5.87 

Proposed 3.72 3.54 3.76 3.87 3.87 4.76 5.67 6.78 6.78 6.54 

 

 

7.3.Performance assessment taking surrounding areas' air quality into account 

Two phases of experiments are conducted to investigate the possibility that the 

environmental condition of a given location may be influenced by that of its neighbors.There are 

two phases: 

– The pollutant amount of S_Ns is taken into account when predicting the AQI of 

S_L.  

– Without taking into account the pollutant content of S_Ns, the AQI of S_L is 

estimated. 

Table 3 demonstrates that the experiment performs better in estimating the air quality index 

(AQI) of S_L when the amount of pollutants associated with S_Ns are taken into account. 

However, it is evident that when the impact of S_Ns' pollutant concentrations is disregarded in the 

diagnosis of S_Ls' air health, the mistake rates increase. 



 

 

 

Table 3 compares performance both with and without taking into account the influence of 

nearby locations 

Parameters RMSE

s 

MAEs SMAPEs 

Places for neighbor (considered) 2.9013 2.2730 8.9340 

Place for neighbor (Ignoring) 3.7621 2.8932 10.8762 

 

7.4.Comparative study with other models 

All of the current models, including SVR, BiLSTM, Bi-GRU, CBGRU, and DAQFF, have 

their RMSE, MAE, and SMAPE values computed in order to assess the correctness of the findings 

produced by our suggested model, STLSTM-CCNN. The performance assessment of the 

suggested model, as well as Bi-LSTMs technology, SVRs, Bi-GRUs, CB-GRUs, & DAQFFs, is 

displayed in Table 4.  

It is evident that out of all the models, the suggested model, STLSTM-CCNN, makes the 

fewest mistakes. In order to assess the prediction models more critically, a compared is made with 

the same Database from Australia's New South Wales, and the resulting performance graphs are 

shown in Figure 10.Plotting of the expected versus real AQI is done there. The outcome is 

magnified here for the 1000 information points. For every model, the data point is displayed from 

02/07/2019 at 01:00 hours till 12/08/2019 at 16:00 hours.It is evident from the graphical 

representations of all three conventional shallow forecasting models (Figures 10a, 10b, and 10c) 

outperform their conventional MLs  Techniques SVR. This is because the three graphs show that 

the wave peaks and wave valleys of LSTM and GRU agree more frequently than those of SVR. 

Thus, it may be said that SVR is a shallow machine learning model, whereas LSTM and GRU are 

shallow deep learning models. 

Upon consulting Table 4, it is evident that GRU consistently exhibits the lowest error when 

compared to LSTM and SVR. Figure 10 presents a comparison between the shallow deeper 

techniques architecture and their integration of many DLs  architectures. Figure 10 makes it 

evident that CBGRU, a hybrid of 1D-CNNs and Bi-GRUs, and DAQFFs, a hybrid of LSTMs and 

1D-CNN, exhibit superior accuracy in comparison to the DLs framework  GRU. It is evident by 

looking at Figure 10a, 10b, 10c, 10d, 10e, &10f that the suggested model, STLSTM-CCNN, is 



 

 

doing better than the other models. The agreement between the wave peaks along with wave 

troughs between the actual and anticipated values is superior to that of any other model illustrated. 

Figure 11 shows the boxplot deviation analysis to illustrate their efficiency of their different 

forecasting techniques.  

Measured  deviation is the discrepancy between the actual and expected results. Shorter 

whiskers and thicker boxes are used to depict more centralized data. Plotting makes it evident that 

the suggested models, CBGRU and STLSTM-CCNN, have medians close to zero and notches 

close to zero. When focusing on this boxplot, it is evident that the STLSTM-CCNN forecasting 

model has the fattest boxes with the smallest whiskers out of all the models depicted in Figure 11. 

Therefore, based on this finding, it can be said that when it comes to predicting a place's AQI, 

STLSTM-CCNN has the highest accuracy.  

The merging of many DL architectures in the proposed model's AQI prediction is the key 

component that makes it successful.There are two main reasons why STLSTM-CCNN is 

performing better than all other models: 

– In order to estimate the AQI of S_L, STLSTM-CCNN can take into account not 

only the air pollution intensity elements of S_L, but also the PM2.5 along with the 

additional meteorological variables of the neighboring S_Ns. 

– The sequence of CNN layers functions as a building block that enables the model 

to retrieve increasingly significant local complicated information from the input 

windows. Furthermore, STLSTM-CCNN makes advantage of the GRU block.The 

GRU block is made up of three stacks of Bi-GRU, each of which can abstract a 

temporal feature and the time-series data's backward and forward (both 

ways)dependencies. 

Table 4: Comparison of various Techniques performances 

Techniques RMSEs MAEs SMAPEs 

LSTMs 7.12 6.76 19.32 

SVRs 7.24 6.87 18.98 

GRUs 5.87 4.84 13.70 

CBGRUs 4.54 3.56 11.54 

DAQFFs 4.87 4.54 14.76 

STLSTM-

CCNNs 

3.87 3.45 09.87 
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(c) GRUs. (d)CBGRUs. 
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Figure 10. Efficiency graph for LSTMs, SVRs, GRUs, CBGRUs, DAQFFs, 

STLSTM-CCNNs, and GRUs. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: A boxplot that shows how different forecasting models' predictions differ 

from one another 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 12: Simulated stations for air pollution monitoring from the dataset 

 

VIII. Conclusion 

This research study utilized a dataset comprising both numerical and visual data. The STLSTM 

AutoEncoder handled the numerical time series data, while the Concatenated Visual Geometry 

Group Neural Network (CVGGNet) models (CVGG16 and CVGG19) used image data to 

compare performance based on network depth. The results of the final investigation 

demonstrated that the deeper CVGG19 model performed up to 14.2% better than modality 

models with single data input that used only numerical data. The multimodal deep learning 

model, which integrated both types of data, significantly outperformed the models with single 

data input. In principle, our method can be utilised in any application that involves the 

connection of sensor and picture data, and the utilisation of both of these in conjunction with 

one another may be beneficial to the learning process. To be more specific, the application of 

our methods in circumstances where there are classes that are imbalanced in multi-

modal classifications is extremely favourable. This encompasses the utilisation of 

hyperspectral pictures alongside with sensor data for the purpose of monitoring and diagnosing 

dangerous circumstances in a variety of sectors, including agriculture, geology, and 

environmental sciences. Optimization strategy has been planned to enhance the current models 

performance as future enrichments. 
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