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GRAPHICAL ABSTRACT 

 

ABSTRACT 

Wastewater pollution is a major concern due to organic matter, pesticides, and other contaminants. 

Untreated discharge of this wastewater can pollute water resources and harm the environment. A 

data-driven approach for optimizing wastewater treatment systems and ensuring recycled water's 

safety and effectiveness by calculating energy, chemical, and greenhouse gas emissions. According 

to this study, the process of system optimization decreases the negative influence on the environment. 

This suggested research looks at the potential for reusing wastewater and purifying it so it can be used 

in coffee plants. A variety of methods for cleaning and disinfecting substances are detailed in the 

article. A wide range of physical, chemical, and biological processes can be utilized in these 

treatments. The primary objective of sewage wastewater treatment is to develop effective methods 

that ensure the safety and effectiveness of treated reused water for use in agriculture. data analysis 

using sensors Connected sensors that measure nutrients, pollutants, salinity, pH, organic matter, and 

toxins are being used to track various water quality measures. Fuzzy-based data processing utilizing 

FRNNs to handle uncertainties inherent in sensor data through fuzzy logic techniques. Recurrent 

neural networks capture temporal dependencies in the wastewater data, allowing for more accurate 
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predictions. Compared with the other existing algorithms, the proposed method has the efficient 

treatment of wastewater and its safe reuse for coffee cultivation, promoting water conservation and 

sustainable agricultural practices. 

Keywords: Wastewater treatment, Data Analysis, FE-RNN, IoT Sensors, Purity level indicator, 

Motor and power control system   
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1. Introduction 

The increasing urbanization and population of India have made water scarcity and stress a major issue 

in the nation. To save water from being wasted, it is crucial to recycle and reuse wastewater. 

Greywater, which includes water from sources such as showers, bathtubs, hand basins, washing 

machines, laundry troughs, and kitchen trash, is the most common kind of wastewater. Black water – 

toilet waste. sewage – a mix of greywater waste, black waste, and trade waste. industrial wastewater 

– all wastewater waste except sewage. Sewage water irrigation increases plant growth and reduces 

the need for chemical fertilizers [1]. There are main two types of coffee plantations for the cultivation 

of coffee beans such as Arabica coffee soil conditions thrive in well-drained, volcanic soils rich in 

organic matter. The optimal pH range is 6.0 to 6.5. These conditions are frequently encountered at 

elevated altitudes (about 3,000 feet and higher) with temperate temperatures and abundant 

precipitation. Water necessitates a constant level of wetness, but it is vulnerable to water logging. 

Precipitation is essential, with optimal levels falling within the range of 60-100 inches per year [2]. 

Still, soils that are well-drained and have a slightly acidic pH (at approximately 5.5 to 6.5) are 

preferred. Robusta is capable of thriving in lower altitudes (approximately sea level to 2,000 feet) and 

can tolerate elevated temperatures. Water requirements Robusta coffee is more drought-tolerant than 

Arabica and can endure lower levels of precipitation (approximately 40-60 inches per year). 

Nevertheless, optimal growth and production are still facilitated by consistent moisture. A balanced 

supply of macronutrients and micronutrients is necessary for water constituents [3].  On the other 

mutually beneficial ways, Robusta's unique needs could change slightly depending on the soil type. 

Regular soil testing will help you determine the best nutrient profile for your Robusta plantation. The 

treatment and disposal of this effluent will determine its environmental repercussions. The presence 

of dangerous bacteria along with additional pathogens in untreated sewage effluent poses a threat to 

the health of both humans and animals. Algae bloom and ecological disturbances caused by an 

overabundance of nutrients in water sources are further potential outcomes. The environmental 

impact of the effluent treatment system can be evaluated through data analysis. This encompasses the 
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assessment of variables such as greenhouse gas emissions, energy consumption, and chemical usage. 

The environmental impact can be reduced by optimizing the system by this analysis. 

Data Quality ensures high-quality sensor data covering various operating conditions (e.g., water flow 

rate, nutrient levels, contaminant concentrations). Data Preprocessing is to clean and pre-process the 

data by handling missing values, and outliers, and scaling sensor data to a common range. 

Environmental benefits of reusing sewage water Cultivating a sustainable future can alleviate water 

stress, reduce pollution, promote public health, increase food output, conserve energy, mitigate 

climate change, and restore habitat [4]. Maintaining nutrient levels is critical since recycled water 

contains high levels of specific nutrients such as nitrogen and phosphorus. To prevent harm to coffee 

plants, it is necessary to monitor nutrient levels and adjust watering operations accordingly. Water 

quality monitoring systems utilize IoT sensors to assess many physical attributes, including 

temperature, pH, conductivity, turbidity, and total dissolved solids (TDS) in the form of sand [5]. 

Heavy metals, phosphates, nitrates, and chlorine are all part of the chemical characteristics. Algae, 

bacteria, and other little creatures are all part of the biological parameters. The IoT makes it easy to 

link sensors to the web, which allows for real-time data collecting and processing. Fuzzy Embedded 

Recurrent Neural Networks (FE-RNNs) are commonly employed to improve the efficiency of 

wastewater recycling processes. Comparing past and present statistics. During training, the model 

discovers the complicated correlations between different parameters. Once trained, the FE-RNN can 

forecast water quality using real-time sensor data from influent wastewater [6].  

2. Literature Survey 

The study of enhancing water quality through the salvaging of sewage wastewater has been actively 

researched throughout history. W. Janczukowicz et al. introduced a sustainable water management 

practice. Algorithms such as Artificial Neural Networks (ANNs) and Support Vector Machines 

(SVMs) can be employed to examine past data on meteorological conditions, soil moisture levels, 

and crop water requirements. Satellite and aerial images can be utilized to monitor the well-being of 

crops, determine the moisture content of soil, and identify regions that may be experiencing water 
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scarcity. The availability and quality of data are constrained [7].  A. Joaquin et al. introduced an 

adsorption method that entails the gathering of contaminants in water (adsorbates) on the surface of 

a solid material (adsorbent), either by physical or chemical mechanisms. This approach efficiently 

eradicates a wide range of pollutants, including dyes, heavy metals, chemical compounds, and 

pharmaceuticals. The effectiveness of adsorption depends on factors such as the characteristics of the 

adsorbent, the properties of the pollutants, and the current operating circumstances [8]. M.M Syeed 

et al proposed doing a comprehensive assessment of surface water quality by the analysis of several 

physical, chemical, and biological parameters to evaluate the overall state of the water body. The 

Water Quality Index (WQI) technique combines multiple water quality factors into a single numerical 

score, making it easier to understand and communicate water quality situations. The Pollution Index 

(PI) is a specialized tool used to detect and quantify the levels of pollution in surface water, similar 

to the Water Quality Index (WQI). Statistical techniques, such as correlation analysis, principal 

component analysis (PCA), and cluster analysis, are employed to detect patterns, relationships, and 

potential causes of pollution in water quality data [9]. P. Chang, et al, provide an innovative soft-

sensing model for wastewater treatment operations. Soft-sensing involves the estimation of 

challenging-to-measure indicators of effluent, such as 5-day Biological Oxygen Demand (BOD), by 

utilizing easily accessible sensor data for other parameters. This methodology provides instantaneous 

monitoring and enhanced regulation of the therapy procedure [10]. The work by H. Shabanizadeh et 

al utilizes Response Surface Methodology (RSM) to enhance the procedure. Response surface 

methodology (RSM) is a statistical technique used to examine the relationships and effects of several 

variables on a specific outcome. In this scenario, RSM is used to optimize the factors that affect the 

removal effectiveness of COD (Chemical Oxygen Demand) and turbidity. The criteria are expected 

to encompass the dosage of pomegranate seed powder, the initial pH of the effluent, and the duration 

of mixing time [11]. T. Mkilima et al. introduced an innovative method for treating slaughterhouse 

wastewater by integrating Microbial Fuel Cells (MFCs) and Electro-Fenton (EF) systems, resulting 

in improved treatment efficiency. The fundamental concept is to exploit the advantages of both 
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technologies: MFC bio-electrochemical systems employ electroactive bacteria to transform organic 

substances in wastewater into electrical energy. Microorganisms break down contaminants while also 

producing an electric current. EF systems utilize electrochemically produced hydroxyl radicals (OH•) 

to degrade organic pollutants in wastewater. These extremely reactive radicals efficiently break down 

intricate chemical compounds [12]. J. Wang et al suggested a concentration on appraising the water 

quality and estimating the pollution levels of Weishan and Luoma Lakes, situated in Xuzhou, Jiangsu 

Province, China. Evaluating water quality is essential for comprehending the condition of a water 

source and its appropriateness for different purposes, such as consumption, leisure activities, or the 

survival of aquatic organisms. Pollution evaluation helps identify the sources and types of 

contaminants impacting the water quality [13]. L. Sulistyowati proposed an Importance-Performance 

Analysis (IPA) technique to assess stakeholder perceptions of various water quality parameters. 

Stakeholders rate the importance of each parameter for maintaining good water quality and the 

performance of the current efforts in addressing those parameters. Parameters that have a significant 

impact but are currently performing are crucial areas for enhancement. The Terrain Analysis 

technique employs geographical data, including elevation and slope, to identify regions with a 

significant likelihood of water pollution. These regions are frequently linked to higher levels of water 

flow accumulation, rendering them more vulnerable to pollution runoff resulting from activities such 

as agriculture or industry [14]. Using criteria for water quality that have been measured, C. 

Chawishborwornworng put out a WQI model. Measurement mistakes, oversimplifications, and 

random fluctuations in water quality are some of the sources of the inherent inaccuracies in these 

models. To overcome this, the bootstrap method generates many "pseudo-datasets" that are resampled 

using the actual data as a replacement. The bootstrap method improves our understanding of model 

uncertainty and its effect on anticipated WQI values by training independent WQI models on each 

pseudo-dataset and evaluating the ensuing variations. [15] Wastewater from the coffee processing 

industry often contains herbicides, organic debris, and other contaminants. The environment and 

water supplies are vulnerable to contamination from this wastewater if it is not treated before 
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discharge. By reducing wastewater treatment requirements to an acceptable level, the fuzzy-

embedded RNN-IoT system provides a long-term, environmentally friendly solution as shown in 

Table 1. 

   Table 1. Existing work compared with the Proposed work 

Author Concept Algorithm Disadvantage Future Scope 

Jin et al. 

(2020) 

[16] 

Assessing risks 

and benefits of 

reuse 

LCA (Life Cycle 

Assessment) 

Public 

perception, 

potential for 

pathogen 

contamination 

Develop 

standardized 

guidelines & 

regulations 

Wu et al. 

(2019) 

[17] 

Optimizing 

treatment 

processes for 

irrigation 

Membrane 

filtration, reverse 

osmosis 

High operational 

costs, energy 

consumption 

Explore cost-

effective advanced 

treatment 

technologies 

Qadir et 

al. (2010) 

[18] 

Managing 

salinity issues 

Salinity 

modeling, 

leaching 

practices 

Salinity buildup 

in soil, potential 

for soil 

degradation 

Develop salt-tolerant 

crop varieties, 

improve irrigation 

management 

Pichel et 

al. (2021) 

[19] 

Microbial risk 

mitigation 

strategies 

Pathogen 

detection 

methods, 

disinfection 

techniques 

Uncertainty of 

long-term health 

effects 

Implement robust 

monitoring 

programs, research 

on novel disinfection 

methods 

Hussain 

et al. 

Economic 

aspects and 

Cost-benefit 

analysis, social 

surveys 

Public education, 

capacity building 

programs 

Develop economic 

incentives for 
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(2019) 

[20] 

social 

acceptance 

wastewater reuse in 

agriculture 

3. Materials and Method 

The research focused on developing a more reliable method for treating recycled sewage water for 

coffee cultivation as indicated in Table 2. Current water quality assessments, based on outdated 

guidelines, often produce inaccurate results. The research addressed the Fuzzy Embedded RNN-IoT 

algorithm, which provides a more predictable way to transform wastewater into a sustainable and 

nutrient-rich irrigation source for coffee plants as shown in Figure 1. 

  Table 2. Wastewater Recycling Treatments Suitable for Coffee Plantation 

Treatment 

Stage 

Type of 

Treatment 

Depiction Detriment Fuzzy Logic and RNN 

Integration 

Preliminary Screening and 

Grit Removal 

Removes large 

objects like rags, 

sticks, and debris. 

inorganic materials 

like sand and gravel 

Reduces 

maintenance issues 

Sensors can track 

incoming water flow 

rate. The fuzzy system 

can adjust screen mesh 

size and grit removal 

frequency to optimize 

capture while 

minimizing energy 

usage. 

Primary Sedimentation Allows suspended 

solids to settle out of 

the wastewater 

through gravity 

settling in large tanks 

Removes a 

significant portion 

of organic matter 

and solids. 

Sensors can track sludge 

blanket depth and 

effluent turbidity. 
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Chemical Neutralization Adjusts the pH of 

wastewater to a 

neutral range (pH 

6.5-8.5) using acids 

or bases. 

Creates optimal 

conditions for 

biological treatment 

and protects 

equipment. 

The RNN can analyze 

historical data to predict 

upcoming influent with 

high or low pH 

Biological Trickling 

Filters 

Sprays wastewater 

over a fixed bed 

Simpler operation 

compared to 

activated sludge. 

The RNN can analyze 

historical data to predict 

future trends in organic 

matter content. 

Disinfection Ultraviolet 

Disinfection 

Exposes wastewater 

to UV light to 

inactivate bacteria 

and viruses. 

Effective 

disinfection, no 

chemical residual. 

Sensors can track UV 

lamp intensity and 

effluent flow rate. 

 

3.1. Sewage Wastewater Samples Collection from Coffee Plantation 

Sewage wastewater from a coffee plantation that instigates from bathrooms and restaurants is also 

referred to as domestic wastewater (Fecal matter, Toilet paper, Food scraps, and Graywater 

(wastewater from showers, sinks, dishwashers, and washing machines). The wastewater flows into a 

settling tank these are large tanks that allow solids to settle out of the wastewater by gravity. The 

settled solids, called sludge, can then be removed and disposed of properly. Settling tanks are a simple 

and effective way to remove a significant amount of organic matter from wastewater.  

Table 3. Measuring Inland surface water, Total Suspended Solids, biochemical, chemical, Oxygen  

Parameter Units Relative 

Weight 

Date of Measurement Measured 

Value 

Weight Stand. Value 

(BOD, 

COD) 

mg/L 0.35, 

0.20 

05.27.2024-0.5.30.2024 0.15-0.20 3.5, 2.0 ≤30,≤250[ISW] 
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(Na), (Cl) mg/L 0.01 05.27.2024-0.5.30.2024 0.05, 0.10 0.08 ≤10,≤50[ISW] 

pH - 0.15 05.27.2024-0.5.30.2024 0.20 1.5 6.5-8.5[ISW] 

(TSS) mg/L 0.15 05.27.2024-0.5.30.2024 0.10 1.5 ≤100[ISW] 

(TN) mg/L 0.10 05.27.2024-0.5.30.2024 0.10 1.0 ≤90 [ISW] 

(TP) mg/L 0.05 05.27.2024-0.5.30.2024 0.10 0.5 ≤70 [ISW] 

Once the wastewater is settled Ultraviolet (UV) is shown in Table 3. Disinfection is a method for 

disinfecting water and surfaces using ultraviolet light, particularly a specific wavelength within the 

UV-C spectrum (around 254 nanometers). This light disrupts the DNA of microorganisms like 

bacteria, viruses, and protozoa, rendering them unable to reproduce or infect. DNA Disruption 

structure of microorganisms within the wastewater. Damaged DNA prevents them from reproducing, 

essentially rendering them inactive. The UV-treated wastewater is free of harmful pathogens and can 

be safely used for irrigation on the coffee plantation. Unlike chlorination, UV disinfection doesn't 

involve adding chemicals to the water. This eliminates the risk of harmful disinfection byproducts 

(DBPs), safe for the environment. 

3.2. Purity Level Verification in Recycled Sewage Water 

Untreated sewage water can harbor harmful pathogens like bacteria, viruses, and parasites. These can 

cause diseases in coffee plants, reducing yields and impacting bean quality. Safeguarding public  
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  Figure 1. Proposed Model for Recycling Sewage Wastewater 

health coffee beans irrigated with contaminated water can become carriers of pathogens. Consuming 

such coffee can pose health risks to humans. Many countries have regulations governing the use of 

recycled wastewater for irrigation, often specifying acceptable levels of contaminants like bacteria, 

heavy metals, and salinity indicating the purity level of water and whether water can be used for the 

coffee plantation or not. High levels of salts and sodium in inadequately treated wastewater can 

accumulate in the soil over time, negatively impacting its fertility and hindering future crop growth. 

Enhance the soil micro and macro nutrients needed. Macronutrients such as Nitrogen (N) are crucial 

for strong vegetative growth and abundant fruit sets. Deficiency leads to stunted growth and 

yellowing leaves. Phosphorus (P) promotes root development and overall plant health. Deficiency 

results in poor root growth and weak stems. Potassium (K) enhances disease resistance, water 

regulation, and fruit quality as indicated in Figure 2. As shown in Table 4 Micronutrients such as 

Magnesium (Mg) and Sulfur (S) both are essential for various plant functions and impact yield. Zinc 

(Zn) and Boron (B) are particularly important during flowering for good berry set and overall yield 

potential. Deficiency can lead to poor flower development and reduced fruiting. Always ensure a 

proper pH level in the irrigation water (between 6.0 and 7.0) for optimal nutrient availability to the 

coffee plants [21]. 
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    Figure 2. Wastewater Purification Setup 

 Table 4. Recommended Nutrient Concentration in Water for Coffee Plantation 

Nutrients Nitrogen 

(N) 

Phosphorus 

(P) 

Potassium 

(K) 

Magnesium 

(Mg) 

Sulfur 

(S) 

Zinc 

(Zn) 

Boron 

(B) 

Level 

(mg/L) 

20-50 10-20 20-40 4-5 10-20 0.2-0.5 0.1-0.5 

 

3.3. UV Disinfection in Recycled Water 

Ultraviolet (UV) disinfection is a method that uses ultraviolet light, particularly a specific range called 

UV-C, to kill or inactivate microorganisms like bacteria, viruses, fungi, and protozoa. UV disinfection 

utilizes ultraviolet (UV) light, specifically a wavelength of around 254 nanometers (nm). UV light 

disrupts the DNA of bacteria, viruses, and other pathogens in the water, rendering them inactive and 

unable to reproduce. The water flows through a chamber equipped with UV lamps, ensuring proper 

exposure to the germicidal light. UV light disrupts the DNA or RNA of microorganisms [22], 

preventing them from reproducing and causing infection. The effectiveness of UV disinfection is 
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determined by the UV dose, which is the product of UV intensity (I) and exposure time (T) as 

illustrated in eq 1. 

 UV Dose (
uWsec

cm2 ) =  I (
uW

cm2) x T (sec)                                                                                   (1) 

Where I (uW/cm²): Effective UV lamp intensity reaching the target microorganism in the water. This 

value depends on lamp characteristics, water quality (turbidity, organic matter content), and lamp 

aging. T (sec). Exposure time is the time the water is exposed to the UV light within the disinfection 

chamber. This depends on the flow rate of the water and the design of the chamber [23]. 

3.4. Built IoT Sensor Network to Monitor Water Quality 

The sensor measures the quality of the water after passing from the UV Disinfection panel. IoT 

Sensors as shown in Table 5 fixed in the pipe while water passes through water purity can be 

measured. IoT sensors such as pH Sensor Measure the acidity or alkalinity of the water where the 

range for water is between 6.5 and 8.5. Temperature Sensor Measures the temperature of the water. 

Water temperature can impact the amount of dissolved oxygen and the growth of bacteria. Low-

Power Wide-Area Network (LPWAN) is ideal for battery-powered sensors as it consumes minimal 

power and offers long-range communication. Conductivity Sensor: Measures the electrical 

conductivity of the water, which can be an indicator of the presence of dissolved salts and minerals. 

Dissolved Oxygen (DO) Sensor Measures the amount of dissolved oxygen in the water. Oxygen is 

essential for aquatic life and can be impacted by pollution as shown in eq 2. Turbidity Sensor 

Measures the clarity of the water. Turbidity can be caused by suspended particles such as sediment, 

algae, or bacteria. Chlorine Sensor Measures the amount of chlorine in the water. Chlorine is a 

disinfectant that is used to kill bacteria.  

 𝑁𝑜𝑑𝑒𝑀𝐶𝑈𝐷𝑎𝑡𝑎𝐼𝑛
=  𝑓(𝐴𝑟𝑑𝑢𝑖𝑛𝑜𝐷𝑎𝑡𝑎𝑂𝑢𝑡

)                                                                                (2) 

 𝐶𝑙𝑜𝑢𝑑𝐷𝑎𝑡𝑎𝐼𝑛
=  𝑓(𝑁𝑜𝑑𝑒𝑀𝐶𝑈𝐷𝑎𝑡𝑎𝑂𝑢𝑡

)                                                                                     (3) 

 𝐶𝑙𝑜𝑢𝑑𝐷𝑎𝑡𝑎𝐼𝑛
=  𝑓 ( 𝑓(𝐴𝑟𝑑𝑢𝑖𝑛𝑜𝐷𝑎𝑡𝑎𝑂𝑢𝑡

))                                                                               (4) 
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Where Node MCU_Data_In represents data received by the Node MCU from the Arduino as 

indicated in eq 3, Arduino_Data_Out represents the data transmitted by the Arduino to the Node 

MCU, and the f() function represents the processing or formatting that might be applied to the data 

by the Arduino before sending it to the Node MCU. Cloud_Data_In represents the data received by 

the cloud platform from the Node MCU. Node MCU_Data_Out represents the data transmitted by 

the Node MCU to the cloud platform. f() function represents any processing or formatting applied by 

the Node MCU before sending data to the cloud as indicated in eq 4. This could involve data 

encryption, adding timestamps, or converting data to a specific format required by the cloud platform 

   Table 5. IoT Sensors Utilized in Wastewater Recycling Process 

IoT 

Sensors 

pH 

Sensor 

Temperature 

Sensor 

Conductivity 

Sensor 

Dissolved 

Oxygen (DO) 

Sensor 

Turbidity 

Sensor 

Chlorine 

Sensor 

Version Hach 

HQ40d 

probe 

DS18B20 

sensor 

HI-8731 

sensor 

YSI Pro ODO 

sensor 

Hach 

2100AN 

Myron L 

Company 

Pool Lab 

1700 

 

Algorithm 1: I2C communication to read data from the sensor at the sensor address 

Function: Read Sensor Data (sensor address)  

1: Start I2C communication 

2: Send sensor address with Read bit (high) 

3: Receive data from the sensor 

4: Stop I2C communication 

5: Return received data 

Function: Send Data to Cloud(data) // Connect to the cloud platform (AWS assumed here) 

1: Establish a connection with AWS 

2: Send data packet containing sensor data; Close connection 

Function: Main Loop () // Continuously read sensor data and send to the cloud 

1: sensor data = Read Sensor Data (sensor address) 

2: Send Data to the Cloud (sensor Data) 
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3: Delay (desired interval between readings) 

Collected information is transferred using the I2C (Inter-Integrated Circuit) Protocol it is a moderate-

speed protocol for communication between limited distances and connecting multiple sensors to a 

single microcontroller. The I2C protocol is connected to the Arduino for communicating via I2C and 

then sent to the Node MCU to establish a connection to the cloud platform (e.g., Amazon Web 

Services (AWS)) and transmit the received sensor data. 

3.5. Fuzzy Embedded Recurrent Neural Network 

A Fuzzy Embedded Recurrent Neural Network (FE-RNN) combines the strengths of fuzzy logic and 

recurrent neural networks (RNNs) to offer improved interpretability and performance in embedded 

systems as indicated in Figure 3. In data preprocessing, raw sensor data from the environment 

(wastewater recycling) is collected and undergoes cleaning, normalization, and scaling to prepare it 

for the FE-RNN. Fuzzification is similar to fuzzy logic systems, the FE-RNN employs membership 

functions to convert crisp sensor data into fuzzy membership values. These membership functions 

define input values belonging to a particular fuzzy set (e.g., "high temperature," "low pressure"). The 

fuzzy Rule Layer leverages fuzzy rules established by the developer. These rules define relationships 

between fuzzy inputs and fuzzy outputs as shown in eq 5 μ_A(x): Degree of membership of x in fuzzy 

set A, a, b, c, d: Parameters defining the triangle shape.  

𝜇𝐴(𝑥) = { 𝑚𝑎𝑥 (0, 𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
, 1 −

𝑥 − 𝑐

𝑑 − 𝑐
)) , 𝑎 <= 𝑥 <=  𝑑 }                                            (5) 

An example rule is "if the temperature is HIGH and pressure is LOW THEN water quality is POOR.". 

Each rule contributes to the overall activation of a fuzzy output set (e.g., "poor water quality") as 

shown in eq 6. Fuzzy Inference Engine applies the fuzzy rules to the fuzzified sensor data. It considers 

the activation levels of each rule and combines them using fuzzy operators (e.g., AND, OR). 

𝐼𝑓(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐻𝑖𝑔ℎ)𝐴𝑁𝐷(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑠 𝑀𝑒𝑑𝑖𝑢𝑚)𝑇ℎ𝑒𝑛(𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 𝑖𝑠 𝐿𝑜𝑤)        (6) 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝑢𝑧𝑧𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑆𝑈𝑀(𝜇𝑖(𝑥))𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑟𝑢𝑙𝑒𝑠 𝑖                           (7) 

𝐶𝑟𝑖𝑠𝑝 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑈𝑀 (
𝑥 ∗  𝜇(𝑥)

𝑆𝑈𝑀(𝜇(𝑥))
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑥 𝑣𝑎𝑙𝑢𝑒𝑠                                       (8) 
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Where Multiple activated fuzzy rules contribute to the final fuzzy output, aggregation operators (e.g., 

SUM, MAX) combine these fuzzy outputs. De-fuzzification is the fuzzy output that needs to be 

converted back into a crisp value for decision-making. De-fuzzification techniques like the centroid  

 

Figure 3. Proposed Algorithm Working Model 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝑢𝑧𝑧𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑆𝑈𝑀(𝜇𝑖(𝑥))𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑟𝑢𝑙𝑒𝑠 𝑖                           (7) 

𝐶𝑟𝑖𝑠𝑝 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑈𝑀 (
𝑥 ∗  𝜇(𝑥)

𝑆𝑈𝑀(𝜇(𝑥))
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑥 𝑣𝑎𝑙𝑢𝑒𝑠                                       (8) 

or center-of-gravity methods are used to translate the fuzzy output set into a single numerical value 

as shown in eq 7&8. 

Algorithm 2: Map input values to membership degrees for each fuzzy set 

def fuzzify_inputs(inputs, fuzzy_sets) 

    fuzzy_inputs = []; for input_value in inputs: 

    fuzzy_input = [];   for fuzzy_set in fuzzy_sets: 

    membership_degree = fuzzy_set.membership(input_value) 

    fuzzy_input.append(membership_degree) 

    fuzzy_inputs.append(fuzzy_input) 

return fuzzy_inputs 
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def create_rnn_model(input_shape, hidden_units, output_shape):  

   model = tf. keras.Sequential([ 

   tf.keras.layers.FuzzyRNN(hidden_units, activation='fuzzy_activation'), 

    tf.keras.layers.Dense(output_shape)]) 

return model 

def train_model(model, fuzzy_inputs, targets, epochs):  #appropriate optimizer and loss function 

model.compile(optimizer='adam', loss='mean_squared_error')  # Adjust as needed 

model.fit(fuzzy_inputs, targets, epochs=epochs) # Train the model on fuzzified inputs and targets 

4. Implementation and Results  

In a real-world application, the AI system was deployed by placing Internet-of-Things (IoT) sensors 

in selected sewage wastewater used for irrigating agricultural fields. These sensors continuously 

gather real-time water quality data, including moisture content, temperature, pH, levels of various 

nutrients, and electrical conductivity. A pre-trained FE-RNN model was utilized to forecast specific 

water properties, such as nutrient content and pH, based on the sensor readings. The gathered data 

was then fed into the system to identify recurring patterns and trends in water quality, specifically to 

aid in managing coffee plantations as indicated in Figure 4. 

4.1. Evaluation Setup 

IoT Sensors such as pH Sensor - Hach HQ40d probe, Temperature Sensor - DS18B20 sensor, 

Conductivity Sensor - HI-8731 sensor, Dissolved Oxygen (DO) Sensor- YSI Pro ODO sensor, 

Turbidity Sensor- Hach 2100AN, Chlorine Sensor- Myron L Company Pool Lab 1700. Personal 

Computer (PC) with the following specifications Processor: operating system Windows 11, Intel Core 

i5-8600, Graphics Card: Nvidia GeForce 1050Ti 4GB, RAM: 16 GB, Storage: 250 GB SSD (fast 

boot and program loading) + 1 TB HDD (large data storage). Python 3.6, cloud platform AWS, Data 

Visualization Tools Matplotlib, DC Power Supply, Irrigation system actuator. Wi-Fi communication 

module - Enables connection to a local Wi-Fi network for internet access. The suggested model is 
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evaluated using False Negative, True Positive, True Negative, and False Positive metrics using the 

Fuzzy Embedded Recurrent Neural Network. 

 

Figure 4. Real-Time Working Model Field Setup for Wastewater Recycling 

 

4.2. Performance Evaluation Compared with FE-RNN 

Accuracy reflects the overall effectiveness of the model in correctly classifying samples eq 9. It 

considers both true positives (correctly identified positive cases) and true negatives (correctly 

identified negative cases). High accuracy is desirable for wastewater recycling as shown in Table 6.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                                                           (9)  

Precision metric focuses on the proportion of positive predictions that were correct (true positives). 

It helps identify how good the model is at avoiding false positives, which can be crucial in both 

applications. For instance, a false positive in plant health monitoring might indicate a healthy plant 

needs treatment when it doesn't, leading to unnecessary resource use eq 10. Similarly, a false positive 

in wastewater recycling might suggest cleaner water than it is, posing potential risks.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                              (10) 

The recall metric emphasizes the model's ability to identify all actual positive cases (true positives). 

It helps assess how well the model avoids false negatives, which can also be significant eq 11. A false 
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negative in wastewater recycling, a false negative might overlook inadequately treated water, 

compromising its safe reuse.  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                                                (11) 

The F1 Score metric eq 12 combines precision and recall into a single value, providing a more 

balanced view of the model's performance. A high F1 score indicates a good balance between 

identifying true positives and avoiding false positives/negatives.  

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                            (12) 

Specificity metric specifically looks at the proportion of negative predictions that were truly negative 

(true negatives). It's relevant when negative cases are equally important to identify correctly. In 

wastewater recycling, a high specificity ensures the model can accurately classify safe wastewater for 

reuse eq 13. 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                                 (13) 

   Table 6. Performance Analysis for the Proposed Model 

Recycled water is crucial for plant growth, and its quality is shown in Figure 5. Plants can't develop 

without nutrients like nitrogen and phosphorus. Still, there are hazards linked with waste from heavy 

metals like mercury, so it's important to handle or dispose of it properly. The level of dissolved salts 

Performance Precision Recall F1 Score Specificity Accuracy 

Support vector machine 79.66 78.23 78.77 80.41 80.72 

Random Forest 79.79 80.24 81.60 82.16 81.44 

GAN 82.50 82.61 82.80 84.13 82.02 

K-means clustering 85.98 86.23 87.12 87.89 86.12 

Feedforward Neural Network 84.97 83.23 85.91 86.12 87.73 

Logistic Regression 88.23 89.21 90.24 89.77 89.74 

Proposed Model FE-RNN 92.40 92.45 93.22 94.78 96.21 
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in the effluent is known as salinity (Table 7). The waste's acidity or alkalinity is indicated by its pH. 

Extremely acidic or basic pH levels harm the environment because they are corrosive. 

 

 
Figure 5. A. Nutrients Level, B. Contamination, C. Salinity, D. pH Value, E. Organic Matter, F. 

Pollutants Level Monitoring based on Recycling Process over Time 

Keeping an eye on the waste's pH level allows for better management and treatment decisions leading 

up to disposal. Keeping an eye on the amount of organic matter in trash can tell you a lot about how 

biodegradable it is and how much methane gas it could produce in landfills. It is possible to gauge 

the possible effects of certain contaminants on human and environmental health by keeping tabs on 

them. Some examples are substances that disturb the endocrine system, herbicides, and medications. 
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The proposed method achieved 96.21% accuracy, while Support vector machine, Random Forest, 

GAN, K-means clustering, Feedforward Neural Network, and Logistic Regression obtained 80.72, 

81.44, 82.02, 86.12, 87.73, 89.74. Existing approaches take longer to calculate all datasets. The 

suggested technique detects events better than current methods. 

Table 7.  Wastewater Quality Observation and Quality Maintained  

Parameters Measured Method Value Range Units 

Nutrient 

Level 

Sensors and chemical analysis Nitrogen (N): 10-50 

Phosphorus (P): 2-10 

mg/L 

(milligrams per liter) 

Contaminant Mass spectrometry Lead (Pb): < 0.5  mg/L 

(milligrams per liter) 

Salinity Conductivity Meter Saline water: > 3  dS/m (deciSiemens 

per meter) 

pH Value pH meter 6.5 - 8.5 pH units 

Organic 

Matter 

Chemical Oxygen Demand 

(COD) test, Biological 

Oxygen Demand (BOD) test, 

Total Organic Carbon (TOC) 

analyzer. 

COD: 200 – 500, 

BOD: 100 - 300 

mg/L (milligrams per 

liter) 

Pollutant 

Levels 

High-performance liquid 

chromatography (HPLC) 

ng/L  μg/L (nanograms per 

liter) 

 

Algorithm 3: Choose a defuzzification method (centroid, Bisector, MOM, etc.) 

def defuzzify_output(fuzzy_output 

crisp_output = fuzzy_logic_library.fuzzily(fuzzy_output) 

return crisp_output  

4.3. Optimization of Model 
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Water quality is important for agriculture in coffee plantations any changes in soil, or water fertilizer 

will affect the growth and flavor of the coffee beans. The conversion of sewage water into agricultural 

land might cause disease spread to the plants.  With the proper monitoring and treatment water can 

be reused for coffee plantations.  

 

 

    Figure 6. Overall Performance Evaluation 

The dataset is collected using sensors. Training and evaluation are divided into training, validation, 

and testing sets in the ratio 60:20:20 using the FRNN, the validation set to monitor training progress 

and prevent overfitting, and the testing set for final performance evaluation. Hyperparameter: learning 

rate is 0.01, number of hidden layers is 3. Loss Function Selection Choose a loss function appropriate 

for your task (e.g., mean squared error for regression problems). The loss function quantifies the 

difference between the FRNN's predictions and the desired outputs achieved 96.21% as shown in 

Figure 7. As shown in Figure 6 Water Purification Stages has each square depicts a different treatment 

process, such as Filtration: Removing physical impurities like particles or suspended solids, Chemical 

Treatment: Using chemicals to neutralize contaminants or adjust water chemistry, Biological 

Treatment: Employing microbes to break down organic matter, and Disinfection: Eliminating harmful 

bacteria or pathogens. Color-coded squares of each square might indicate the level of water purity 
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achieved at that particular treatment stage. Dark green is very impure wastewater, Light shade green 

is partially treated wastewater, dark blue is moderately treated wastewater, light blue is nearly purified 

wastewater, and white is fully purified wastewater. Training accuracy metric reflects the percentage 

of training samples the FE-RNN correctly classified during training. 

  

Figure 7. Purity Level Indicator 

 

High training accuracy suggests the model is learning the patterns in the training data. The validation 

accuracy metric reflects the percentage of validation samples the FE-RNN correctly classified on 

unseen data. It provides a better estimate of how well the model will generalize to new data as shown 

in figure 8.  
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Figure 8. Training and Validation Accuracy, Training and Validation Loss, confusion Matrix of 

Fuzzy Embedded Recurrent Neural Network  

 

Training Loss metric measures the difference between the FE-RNN's predictions and the actual 

targets in the training data. A decreasing training loss indicates the model is improving its ability to 

fit the training data. Validation Loss Similar to training loss, validation loss measures the difference 

between predictions and targets on unseen validation data. A stable or decreasing validation loss 

suggests the model is learning without overfitting the training data. 

5. Conclusion and Future Direction 

The world faces a serious challenge in water scarcity. With a growing population and uneven water 

distribution, millions struggle to access this vital resource. Sewage wastewater, once treated, can 

become a valuable resource and offers several environmental and economic benefits. Sewage 

wastewater undergoes various treatment stages before reuse. These may include physical removal of 

solids, biological treatment to break down organic matter, and disinfection to kill harmful bacteria. 

IoT sensors can continuously measure parameters like pH, conductivity, and nutrient levels. This data 

is vital for controlling the treatment process and ensuring that recycled water meets quality standards. 

Collected information is trained and validated using the FE-RNN model. Compared with other 

existing models the proposed model achieved 96.21% of accuracy, Precision 92.40%, Recall 92.45%, 

F1 Score 93.22%, specificity 94.78%. Future scope to develop early industrial waste leak detection 

using sensors can detect leaks in pipes or treatment systems, allowing for prompt repair and 

minimizing water loss integration with smart irrigation systems. 

Data Availability 

 

     The dataset utilized and analyzed in our research is publicly accessible to the Wastewater 

Recycling and Quality Monitoring for use in coffee plantation Zenodo communities raveena, R. 

(2024). Wastewater Quality Monitoring. Zenodo. https://doi.org/10.5281/zenodo.12591349 The 

coding system along with additional data are accessible upon adequate request from the initial and 

coauthor authors. 
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