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ABSTRACT 

Floods cause significant harm around the world each year. Predicting floods accurately and in 

a timely manner can greatly reduce the loss of human life and property. Thus far, a number of 

modelling approaches have been described for automatic flood detection; these approaches 

primarily capture temporal dependences while ignoring patterns related to relative humidity, 

wind speed, and rainfall intensity—all of which are critical for flood prediction. This paper 

presents a novel prediction method by combining a Light weighted Dense network and Tree 

structural simple recurrent unit (LDTSRU). First, a light-weighted dense network is used to 

convert the input meteorological variables into grayscale images and identify any remarkable 

patterns between the variables. The nonlinear relationship between the input and output data is 

then automatically learned using the Tree structural simple recurrent unit (TS-SRU). It is also 

capable of efficiently comprehending the order and flow of events that culminate in a flood. 

The public flood detection dataset is used to confirm the accuracy of the proposed model by 

comparing it with state-of-the-art methods. According to experimental findings, LDTSRU can 

perform better with less training time. LDTSRU has attained 2.53% higher average accuracy 

and better average precision and average recall compared to well-known state-of-the-art 

techniques. 

Keywords: Flood detection, meterological parameter, Tree structure, and Light weighted 

dense network, simple recurrent unit. 

1. Introduction  

One of the most common and destructive natural events that can occur anywhere in the world 

is flooding. Many people consider the possibility of flooding to be the most common kind of 

natural disaster. Saravanan et al. (2023) discussed about how the Floods occur frequently in all 

regions of the world. But they differ from place to place in terms of their traits and strength. 

Munawar et al. (2022) produce the result of approximately 84% of all-natural disaster-related 



 

 

fatalities worldwide are attributed to floods. Panahi et al. (2021) stated floods are common in 

many nations, resulting in direct economic losses of US$ 60 billion as well as hundreds of 

fatalities and injuries each year. Wang et al. (2024) explained one of the most crucial non-

engineering approaches to flood control and disaster reduction is flood forecasting. Jin et al. 

(2024) and Shivarudrappa et al. (2023) determined flood is becoming a hot topic in 

multidisciplinary study and plays important roles in disaster monitoring, risk identification, 

forecasting, and warning.  

Chen et al. (2022) and Yu et al. (2024) access the numerous elements, including precipitation, 

evaporation, solar radiation, underlying surfaces, and air circulation, frequently have an impact 

on floods. Gurbuz et al. (2024) exhibits considerable nonlinearity and high uncertainty as 

composite attributes. Aljohani et al. (2023) executes the flood forecasting has never been an 

easy process because of the intricacy of the available data. Conventionally, flood predictions 

have been made by the creation of distributed hydrologic models based on both physics and 

empirical data.  Rasheed et al. (2022) stated large computing resources and high-resolution 

geographical data with respect to catchment features and initial boundary conditions are 

specifically needed for the physics-based models. These reasons make physics-based models 

unsuitable for large-scale research and practical applications.  

Hasan et al. (2023) discussed to include machine learning models while researching and 

evaluating flood susceptibility. Costache et al. (2024), Mehravar et al. (2023), Aiyelokun et al. 

(2023), and Fang et al. (2021) discussed various Machine learning techniques have been 

broadly applied to forecast floods using variables like as temperature, water velocity, humidity, 

precipitation, and level. Machine learning methods including decision trees (DT), support 

vector machine (SVM), random forest (RF) and artificial neural network (ANN) have shown 

strong characteristics and produced positive outcomes for flood prediction in recent years. 

Using these methods, flood modelling is usually presented as a supervised learning problem, 



 

 

where rules and latent associations of data are obtained by labelling both inputs and outputs, 

which then predicts the labels of unobserved data after learning. However, traditional machine 

learning models may not perform well as dataset sizes grow and may not scale effectively with 

large datasets.  

Recent advances in graphic processing units (GPU) and artificial intelligence (AI) have made 

deep learning applications and creative methods based on multilayer artificial neural networks 

(ANN) possible. Deep learning models have been successfully applied to a variety of real-

world scenarios, particularly time series prediction. Luppichini et al. (2022) explained  one of 

the most well-liked, effective, and extensively utilized learning methods is the recurrent neural 

network (RNN), which is frequently used in flood prediction studies. An RNN can analyse 

sequence data because of the connections, which form a loop between its units. However, long-

term dependencies are an intrinsic problem of ordinary RNN. This has been tackled by certain 

specialized RNN types, including Long Short-Term Memory (LSTM) by Wei et al. (2020). 

However, temporal dependence of state computations affects scaling recurrent networks, like 

LSTM and gated recurrent unit (GRU). It means that the computation of every step is halted 

until the preceding phase is fully executed.  

Recurrent networks are slower than other models because of this sequential dependency, which 

also restricts their ability of parallelism by Ling et al. (2021). Simple Recurrent Units (SRU) is 

a recently proposed enhanced version of RNN, which abridge calculations and reveal more 

parallelism for reducing the training time. Khan et al. (2022), Kimura et al. (2019), and Chen 

et al. (2021) researchers have attempted to forecast the flood using the automatic feature 

extraction capability of CNN. But they are unable to comprehend the relationship between 

sequence information and process sequence data. These points motivate us to integrate CNN 

with SRU model for flood detection. They are unable to comprehend the relationship between 

sequence information and process sequence data. These arguments encourage us to combine 



 

 

the SRU model and CNN for flood detection. The main contributions of this research work are 

listed as follows:  

• To predict floods based on different meteorological variables including temperature, 

rainfall, Relative Humidity, Wind Speed, Cloud Coverage, Bright Sunshine, and so on.  

• To improve the flood detecting accuracy by integrating Light weighted Dense network 

and SRU. 

• To capture the patterns related to different meteorological variables and increases the 

features of the input data using Light weighted Dense network. 

• To introduce a tree structured SRU based network to capture non-linear relationships 

between features and the target variable. By using non-linear activation functions, 

parallel processing capabilities, and a hierarchical structure, the Tree Structured SRU 

architecture is able to capture non-linear correlations between meteorological factors 

and flood occurrence. When it comes to managing temporal and spatial dependencies, 

increasing resilience and generalisation, increasing efficiency and parallelism, and 

managing modelling complexity, SRUs are much superior to linear or shallow models. 

Their unique characteristics render them especially appropriate for the intricate and 

ever-changing task of forecasting floods. 

• To verify the effectiveness of the proposed LDTSRU by comparing it with state-of-the-

art methods on publicly available dataset. 

The rest of the paper is structured as follows: Section 2 reviews the most recent papers of flood 

detection. Section 3 explains the proposed detection framework in details. Section 4 validates 

the efficacy of proposed model through simulation. Section 5 stated the conclusion.  

2.  Literature survey 

One of the deadliest natural disasters in India's coastal regions is flooding. Sawaf et al. (2021) 

utilized data-driven framework to identify the latent correlations between several hydrological 



 

 

variables during floods. Also, they sought to determine whether data-driven algorithms could 

extract disastrous flood records outside of the training area by analyzing the internal properties 

of training inputs. They created a two-layered RNN model to capture the hidden correlations 

between the inputs in order to accomplish these goals, and they used quantitative and 

qualitative analysis to look into the model's prediction power. 

Balamurugan et al. (2022) applied machine learning (ML) techniques to create an efficient 

flood prediction system that would assist to minimize the loss of life and property. The ML 

models have been created using decision trees (DTs), random forests (RFs), support vector 

machines (SVMs), and k-nearest neighbors (KNNs). A stacking classifier were employed to 

address the oversampling and low accurateness issues. Kaur et a. (2022) presented an energy 

efficient cloud-aided flood prediction framework. The system makes use of a Bayesian belief 

network (BBN) for the identification of flood events. For flood monitoring and forecasting, the 

cloud layer leveraged the optimization-based adaptive neuro fuzzy inference system (ANFIS) 

as a vulnerability analysis component.  

Singh et al. (2023) examined the effects of dangerous precipitation and geometric parameters 

on the hydrologic reactions and river flooding sensitivity of the Brahmani River. The digital 

elevation model was used to compute geometric variables and detect variation in the radical 

precipitation files using precipitation data from 1991 to 2021. Moreover, the wet cycle 

frequency on varying period of 1, 3, 12, and 24 months and their relationship to river floods 

were determined using the Standardized Precipitation Index (SPI). Du et al. (2021) utilized soil 

brightness temperatures to asses the flood across southeast Africa at the time of cyclone. The 

forecasting system has been developed by selecting categorization and regression tree 

framework with Landsat data. Gharakhanlou et al. (2023) considered different climatological, 

hydraulic and geospatial parameters for assessing the flood susceptibility. The strength of 

correlations between the variables was asses using multicollinearity analysis. The Quantile 



 

 

categorization approach was used to reclassify flood training features, and the Frequency Ratio 

(FR) method was used to assess the relative relevance of each class within a given flood training 

feature. Also, Spearman correlation analysis was used to examine the spatial link among the 

flood training features and the flood susceptibility map.  

Letessier et al. (2023) presented a new ML technique called the Adaptive Structure of the 

Group Method of Data Handling, which combines air temperature and precipitation data with 

watershed characteristics to predict daily river flow rates. High accuracy was attained by the 

most basic model, which only has three parameters: maximum temperature, precipitation, and 

historical daily river flow discharge. John et al. (2023) predicted the flood using an enhanced 

PCA and a one-dimensional CNN. This framework was trained utilizing the day-to-day and 

monthly rainfall intensity of a state. At first, a linear unsupervised statistical transformation 

and an enhanced PCA were employed as feature selection techniques for handling high 

dimensionality data. A 1D-CNN framework predicted the flood according to the selected 

features.  

This review explains that knowledge and ability to forecast flood events are mostly dependent 

on meteorological factors. Precise monitoring and modelling of these variables allow improved 

forecasts, prompt warnings, and efficient flood management.  This analysis also shows that 

both RNNs and CNNs have their unique advantages and disadvantages when it comes to flood 

detection. CNNs are excellent at efficiently extracting features, whereas RNNs are good at 

capturing temporal dependencies. However, RNNs are hard to parallelize, which restricts their 

flexibility and lengthens the training period. On the other hand, SRUs can process and train 

data more quickly because of their design, which makes it easier to parallelize. Thus, the 

proposed model integrating the lightweight dense network with SRUs and introducing tree 

structure to better capture long-term dependencies by aggregating data in a hierarchical fashion 

3. The Proposed Method 



 

 

 

Flood forecasting has never been an easy process because of the intricacy of the available data. 

Floods can be predicted with great accuracy using ML approaches based on characteristics 

including temperature, humidity, rainfall, wind speed, and cloud cover. This study proposes a 

novel Light Weighted Dense and Tree Structural Simple Recurrent Unit (LDTSRU) for flood 

forecasting. Figure 1 summarizes the proposed flood detection model, which includes the pre-

processing step, feature map creation, and classification model. First, flood prediction datasets 

provide the source data.  After that, the input data such as minimum temperature, maximum 

temperature, rainfall, Relative Humidity, Wind Speed, Cloud Coverage, Bright Sunshine, 

period and Altitude is pre-processed through the replacement of the missing values with any 

arbitrary value from the same column. Next, they will be converted into a 2-dimensional format 

in order to prepare each sample for classifier. Then, this image is given as input to our proposed 

LDTSRU to predict the flood. Light weighted dense network is used in the proposed LDTSRU 

to create feature maps from grayscale images. The class will then be predicted using a Tree 

structural simple recurrent unit (TS-SRU). LDTSRU, with its hierarchical and dense network 

capabilities, is well-suited to offer comprehensive insights into the dynamics behind flood 

predictions. One can increase prediction accuracy and preparation and obtain a deeper 

understanding of the mechanisms causing floods by evaluating the learnt patterns and features 

using a variety of ways. 
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Figure 1. Overall structure of the proposed flood detection model 

Figure 2 depicts the training procedure of the proposed TS-SRU.  During the training process, 

the input dataset is split to get 𝑛 distinct datasets for each classifier in the tree structure. These 

training sets are then utilized for training the classifiers in the respective nodes in the TS-SRU 

model. During the testing phase, the testing set is pre-processed before giving as input to trained 

TS-SRU model. Here, a Light Weighted Dense Network is added before the repeated SRU 

model to boost the characteristics of the input data. 
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Figure 2.  Training process of LDTSRU  

3.1 Pre-processing  

In this work, the neural network is trained using the data from the flood prediction dataset by 

Gauhar et al. (2021). The dataset includes data for 32 Bangladeshi districts. The dataset has 

several significant attributes, such as wind speed, minimum temperature, rainfall, cloud cover, 

and relative humidity. There may be anomalies (i.e. inaccurate or missing data) in the metrics 

acquired from different stations. This could be the result of problems with the sensors or even 

incorrect data storage. The suggested model pre-processes the data by substituting any random 

value from the same column for the missing values. After pre-processing the data, the input 

meteorological variable is arbitrarily divided into a training set and a testing set. Following 

that, a two-dimensional grayscale images can be obtained from the pre-processed data. In 

comparison to conventional methods, greyscale image representation of meteorological data 



 

 

offers a richer, more useful data representation by utilising the capabilities of deep learning and 

image processing to capture intricate spatial and inter-variable interactions. The reason behind 

this is that input data for the neural network model must have constant length. Different 

meteorological variables can be encoded into separate channels of an image. For instance, a 3-

channel image could represent temperature, humidity, and wind speed. Analyzing these 

channels together allows models to capture how these variables interact spatially and 

temporally. After the conversion of meteorological variable into grayscale images, it can relate 

to image classification problem. Additional information about the pre-processing process is 

displayed in Algorithm 1. 

Algorithm 1: Pre-processing 

Input: Input meteorological variables; Classes 𝑀 

Output: Pre-processed dataset 

1: for every 𝑗 in (1, 𝑀) do 

2:       Divide data in each class 𝑀𝑗into 𝑀𝑗1, 𝑀𝑗2,… 𝑀𝑗𝑖 

3: end for 

4: Divide 𝑀into training and testing set  

5: for every 𝑗 in (1, 𝑀) do 

6:    for every 𝑖 do 

7:         obtain grayscale image from data 

8:     end for 

9: end for 

10: Return Pre-processed dataset 𝐷 

 

3.2.   Light weighted Dense and Tree structural simple recurrent unit (LDTSRU) 



 

 

The grayscale image obtained using the pre-processed meteorological data is assumed to have 

dimensions of [ℜ, ∁], where ℜ rows and ∁ columns make up the image. The time input is 

represented by the row and the number of features is represented by the column.  Before the 

repeating SRU module, a light-weighted dense network is added to boost the input features. 

The output of the recurrent SRU module is sent to the output layer, where the anticipated 

outcomes are produced and the number of neurons equals the number of traffic classes.  

3.2.1.   Light weighted Dense network (LWDN) 

In this work, the LWDN is introduced due to its simplicity since the prior features are only 

delivered to a subsequent layer through mathematical addition. It maintains a constant size 

between the input and the output while attenuating non-significant information and enhancing 

representative traits. The input and output feature maps are indicated as 𝑆0 and 𝑆6respectively 

in Figure 3. The feature maps {𝑆𝑗}
𝑗=1

5
are attained using a sequence of convolution, back 

normalization, and ReLU operations. 

Convolution Back 

normalization
RELU Output

 

Figure 3.  Light weighted Dense network (LWDN) 

The following expressions are used to compute feature maps:  

                                                       𝑆1 = 𝑠𝑒𝑞1
2𝐷(𝑆0)                                                    (1) 

                                                    𝑆2 = 𝑠𝑒𝑞2
2𝐷(𝑆0 + 𝑆1)                                               (2) 

                                                  𝑆3 = 𝑠𝑒𝑞3
2𝐷(𝑆0 + 𝑆1 + 𝑆3)                                         (3) 

                                                       𝑆4 = 𝑠𝑒𝑞4
2𝐷(𝑆2 + 𝑆3)                                            (4) 



 

 

                                                      𝑆5 = 𝑠𝑒𝑞5
2𝐷(𝑆3 + 𝑆4)                                             (5) 

                                                         𝑆6 = 𝑆0 + 𝑆4 + 𝑆5                                               (6) 

where  {𝑠𝑒𝑞𝑗
2𝐷(. )|𝑗 = 1,2, … ,5} represent the sequence of operations of convolution, back 

normalization and ReLU in every stage. The feature transfer to deep layers is significantly 

encouraged by such a structure of connectedness.  

3.2.2 Tree structured simple recurrent unit (TS-SRU) 

Features extracted by the LWDN from an input image with 𝐾 = ℜ × ∁ number of neurons are 

then input to the binomial tree layer. Here, the classification is improved through the usage of 

binomial tree structure, which refines the classification step by step. It makes use of the 

hierarchical structure of data for improving the performance and learning. Here, the node in 

the tree structure represents recurrent SRU as in Figure 4. The feature map is first obtained by 

the root node with recurrent SRU from the LWDN's final convolution layer. After that the 

number of nodes with recurrent SRU units increases one by one as the tree deepens. Here, the 

outcome of root node is divided into two vectors, each of which is sent to a different node for 

recurrent SRU in the following level. The output layer receives the output of the repeating SRU 

at the last level of the tree, where the number of neurons equals the number of flood classes 

and the anticipated outcomes are produced.  
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Figure 4.  Tree structural simple recurrent unit 

RNN is made up of loops where data is passed from one loop to the next. The chain-like 

characteristic suggests that RNN is suitable for sequences and lists due to its inherent structure. 

Let [𝑆6
(1)

, 𝑆6
(2)

, … , 𝑆6
(𝐾)

] be the input sequence for RNN and its hidden state generates 

[ℎ1, ℎ2, … ℎ𝐾]. The activation function 𝑔of the present input 𝑆6
(𝑛)

and prior hidden state ℎ𝑛−1is 

used to compute the hidden state at time-period 𝑛: 

                                                ℎ1 = 𝑔(𝑆6
(𝑛)

, ℎ𝑛−1)                                                     (7) 

But the conventional RNN can’t evade the issue of long-term dependences, which infers RNN 

would lose its ability to connect information as the distance between loops rises. As a result, 

unique varieties of RNN are suggested, including Gated Recurrent Units and Long Short-Term 

Memory. However, the calculation of each step depends on the previous one being finished. 

Therefore, parallelization is less appropriate for recurrent computations. An SRU has been 

designed to prevent this. In SRU, the gate calculation only dependent on the present input of 

recurrence. Thus, the only part that depends on earlier steps is the point-wise multiplication. 

As a result, parallelizing the matrix multiplications in the feed-forward network is simple.  

 



 

 

 

 

Sequential dependency, memory limits, and backpropagation across time are the main 

obstacles to parallelising classical RNNs, which restricts their applicability to real-time flood 

prediction applications. Higher latency, less scalability, and greater resource requirements are 

the outcomes of these constraints. SRUs and CNNs, on the other hand, provide more parallel-

friendly designs that make it possible to analyse big, complicated datasets more quickly and 

effectively. They are better suited for real-time flood prediction, when precise and timely 

forecasts are essential, due to their capacity to process geographical and temporal data 

simultaneously. The structure of SRU is shown in Figure 5. 
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Figure 5.  Simple recurrent unit  

The SRU consist of a single forget gate. The linear alteration 𝑆̃6
(𝑛)

and the forget gate 𝑔𝑛can be 

calculated using the input 𝑆6
(𝑛)

at time 𝑛as follows:  

                                                𝑆̃6
(𝑛)

= 𝜔𝑆6
(𝑛)

                                                                        (8) 

                                          𝑔𝑛 = 𝜎(𝜔𝑔𝑆6
(𝑛)

+ 𝛽𝑔)                                                                (9) 

The only need for this computation is 𝑆̃6
(𝑛)

, which enables parallel processing over all time 

steps. The internal stateℎ𝑛is modulated by the forget gate:  



 

 

                                                             ℎ𝑛 = 𝑔𝑛 × ℎ𝑛−1 + (1 − 𝑔𝑛) × 𝑆̃6
(𝑛)

                           (10) 

The reset gate is used for computing the output state ℎ̂𝑛 by combining ℎ𝑛 and 𝑆6
(𝑛)

as given 

below: 

                                                                     𝑟𝑛 = 𝜎(𝜔𝑟𝑆6
(𝑛)

+ 𝛽𝑛)                                          (11) 

                                                  ℎ̂𝑛 = 𝑟𝑛 × tanh(ℎ𝑛) + (1 − 𝑟𝑛) × 𝑆6
(𝑛)

                               (12) 

Algorithm 2 gives the training process of LDTSRU.   

Algorithm 2: Training algorithm for Tree structural simple recurrent unit (TS-SRU) 

 

Input: Training set of pre-processed datasets  𝐷1
𝑡, 𝐷2

𝑡, 𝐷3
𝑡, 𝐷4

𝑡, 𝐷5
𝑡; Maximum number of 

iteration 𝑀𝑖𝑡𝑒𝑟; Batch size 𝛽 

Output: Files of model data 𝑀𝑑𝑙1, 𝑀𝑑𝑙2, 𝑀𝑑𝑙3 

1: for every 𝑗 in (1,2,…5) do 

2:       for every iteration in (1, 𝑀𝑖𝑡𝑒𝑟) do 

3:             for every 𝛽 samples in 𝐷𝑗
𝑡 do 

4:                    Get feature map using LWDN 

5:                     calculate loss function 

6:                      Use Adam optimization algorithm 

7:                       Update the weights and biases 

8:              end for  

9:         end for 

10: Generate files of model data 𝑀𝑑𝑙𝑖 

11: end for 

 

4. Results and discussion 



 

 

In this section, the performance of the proposed model has been validated through simulation. 

The Python programming language is used to simulate the suggested flood detection approach. 

An open-source deep learning framework, TensorFlow served as the foundation for the design 

of the suggested LDTSRU model. It had Intel (R) Core (TM) i5-9300h CPU (main frequency 

= 2.4 GHz), a Win10 64-bit operating system, and an NVIDIA GTX1660ti video card. The 

host was configured with CUDA 10.0 and cudnn7.3 in order to speed up the card's functioning. 

The Adam optimization approach with a mini-batch size of 50 was utilized to train the proposed 

model across 200 epochs. The first momentum decay rate was 0.90, and the second was 0.99. 

The initial learning rate was 0.001. 

The performance of the suggested model is verified using 65 years of weather data from 

Bangladesh and is available in https://www.kaggle.com/datasets/emonreza/65-years-of-

weather-data-bangladesh-preprocessed. The Bangladesh Meteorological Department (BMD) 

provided the data. The data on the frequency of flooding for a given month and year was 

gathered from multiple sources, such as yearly flood reports, newspapers, research papers, etc., 

and combined with BMD's weather data to produce an updated dataset with 20544 occurrences 

that can be found in Chithra et al. (2022). The dataset includes data for 32 Bangladeshi districts. 

The dataset has several significant attributes, such as wind speed, minimum temperature, 

rainfall, cloud cover, and relative humidity. The dissimilar features could negatively impact the 

model and produce undesirable outcomes; thus, they should not be selected. This section first 

examines the correlation between each meteorological variable employed for flood detection 

as in Figure 6. The statistical relationship between any two variables is called correlation. This 

analysis shows that the correlation between the selected features in the dataset is good. Hence, 

they can provide good performance for flood forecasting.  

https://www.kaggle.com/datasets/emonreza/65-years-of-weather-data-bangladesh-preprocessed
https://www.kaggle.com/datasets/emonreza/65-years-of-weather-data-bangladesh-preprocessed


 

 

 

Figure 6.  Correlation analysis between each meteorological variable 

4.1.  Performance metrics 

Three assessment metrics are used to evaluate the prediction performance of the suggested 

model. The accuracy of flood detection is measured by the Accuracy (A) metric. 

                                                            𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                  (13) 

The fraction of false negatives that are found is known as specificity (S). The following formula 

determines specificity: 

                                                                    𝑆 =
𝑇𝑃

𝑇𝑁+𝐹𝑃
                                                     (14) 



 

 

  One metric for assessing how many of the features of the solution that are accurate 

based on data is precision (P):  

                                                                𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (15) 

The number of data features that the suggested method precisely recovers is determined by 

recall (R). 

                                                          𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               (16) 

The mean values of recall and precision are used to compute the F-measure(F), which can be 

formally defined as follows:  

                                                                  𝐹 = 2 ×
𝑃×𝑅

𝑃+𝑅
                                                      (17) 

4.2.  Evaluation of the proposed model 

Initially, the perfromance of the proposed model is validated by comparing it with some of the 

base line models including CNN, RNN, LSTM, GRU, and SRU. The performance of the 

suggested model is compared in Table 1 with respect to F-measure, Accuracy, Specificity, 

Precision, and Recall. While CNNs are very good at capturing spatial patterns, they are not 

very good at modeling temporal dependencies, which are important when trying to understand 

how meteorological factors change over time in order to forecast floods. Because of its 

hierarchical structure, parallel processing capabilities, and effectiveness in managing lengthy 

sequences, the TS-SRU provides a number of advantages when it comes to managing temporal 

dependencies and event flow. These qualities make it an attractive option for applications such 

as the analysis of meteorological data, where the ability to capture intricate, multi-scale 

connections is essential. Hierarchical structures are used in many real-world tasks, including 

several forms of meteorological data analysis. Since TS-SRU can naturally describe the data 

hierarchy, it is a good fit for these kinds of activities. 

 



 

 

 

 

 

 

 Furthermore, typical RNNs are not very good at remembering information from far back in 

the sequence. But flood prediction frequently necessitates long-term dependencies. LSTMs and 

GRUs are effective tools to performing complex sequence modeling problems, but they have 

significant drawbacks as compared to Simple Recurrent Units (SRUs). In some circumstances, 

LSTMs and GRUs are less efficient because of their higher computational complexity, longer 

training periods, increased model complexity, larger memory requirements, and slower 

inference rates. Nonetheless, the suggested LDTSRU improves the efficacy and precision of 

flood detection models by utilizing the advantages of SRU and CNN architectures. 

Additionally, the SRU tree-structured model makes it possible to comprehend the order and 

flow of events that culminate in a flood effectively. Thus, the proposed model performance is 

much higher than the existing single model.  

Table 1.  Comparison with baseline models 

Model 𝑨 𝑺 𝑷 𝑹 𝑭 

CNN 80.37 81.34 79.16 81.72 82.35 

RNN 83.16 84.34 83.94 82.67 84.38 

LSTM 87.88 86.23 85.74 83.82 85.63 

SRU 88.01 86.43 86.17 84.24 85.97 

LDTSRU 98.68 97.13 97.67 97.79 96.34 

 

Figure 7 displays the differences in accuracy between the models on the training set during the 

training procedure. It shows that after 200 iterations, LDTSRU has an accuracy of more than 

90%. Additionally, the area under the ROC curve (AUC) was computed in order to compare 

the results with other baseline models developed by Periasamy et al (2024), Santhanaraj et al. 

(2023), Surendran et al. (2023) and Surendran et al. (2021). The model's capacity to 



 

 

discriminate between flood and non-flood occurrences is evaluated with the aid of ROC 

analysis. The AUCs of the LDTSRU are higher than those of the other models, as seen in Figure 

7 (b) and a value closer to 1 denotes a better-performing model. 

  

  

                             Figure 7.  Performance analysis (a) Accuracy plot (b) ROC plot  

The number of hidden units and step size were changed in order to verify the model 

performance and training speed of LDTSRU. The resulting data are shown in Figure 8. The 

training time of the model is significantly impacted by increases in the number of hidden layer 

units and training step size. The training time of every model has been raised as the step size 

grew. The LSTM model required more time to train. The GRU and SRU models had the longest 

and shortest training times, respectively. Furthermore, when the number of hidden units, the 

alteration in training time became more noticeable. The training time of LSTM and GRU have 

been increased while increasing the number of hidden units because LSTM and GRU has serial 

input structures. Also, Additionally, the curve's slope and amplitude were both quite big. But 

the curve amplitude and slope were quite minimal for SRU due to its distinct parallel structure. 

There was no discernible difference between the SRU and LSTM prediction effects when the 

identical input dataset was used. But the proposed LDTSRU model integrates SRU with Light 

weighted Dense network to improve the performance compared to SRU. But the training time 



 

 

of the proposed model is slightly higher than the SRU model.  It can be negotiated because, the 

accuracy of LDTSRU is much better than the SRU model.  

 

 

                                 Figure 8.  Analysis by adjusting (a) step size (b) Hidden units 

The performance of the suggested draught prediction is compared with state-of-the-art methods 

including LSTM, Explainable Artificial Intelligence (EAI) and IPCA-CNN in Table 2. Here, 

the KNN used the same weather data of Bangladesh for 65 years. However, the remaining 

models were built using a dataset that included daily and monthly rainfall data for Kerala state, 

acquired between 1901 and 2021. Based on 70% training and 30% test datasets, all of these 

approaches display the relative performance of the flood forecasting outputs. This investigation 

demonstrates that the existing LSTM has the lowest performance when compared to the current 

IPCA-CNN, EAI, and the recommended model. But the proposed LDTSRU classifier obtains 

98.68% accuracy, whereas the existent IPCA-CNN attains 96.24% accuracy, EAI achieved 

92.90% accuracy and LSTM had 88.79%. This is due to the integration of depth network, SRU 

and tree structure in the proposed model. The lightweight depth network efficiently increases 

the features of the input data. The binomial tree structured SRU is used to improve the 

classification by successively refining the classification. 

Table 2.  Comparison with other reported works 



 

 

Model 𝑨  𝑺 𝑷 𝑹 𝑭 

KNN 94.91  - 92.50 91.00 92.00 

LSTM 88.79  85.34 84.83 84.74 84.74 

EAI  92.90  89.31 86.47 86.19 86.19 

IPCA-CNN 96.24  93.48 94.23 93.29 93.29 

LDTSRU 98.68  97.13 97.67 97.79 96.34 

 

Adapting LDTSRU with real-time data sources, optimising for scalability and efficiency, and 

putting in place reliable monitoring and maintenance routines are all necessary for adapting it 

for real-time flood monitoring and early warning systems. Assuring data quality, cutting down 

on latency, preserving model robustness, and overseeing operational integration are important 

difficulties. Transforming a research prototype into a workable, scalable solution requires 

careful planning, testing, and continual development to address these issues. A comprehensive 

approach is needed to ensure the robustness and reliability of LDTSRU predictions in a range 

of environmental and climatic conditions. This approach should include diverse training data, 

resilient data processing pipelines, adaptive learning mechanisms, robust model architectures, 

and rigorous evaluation. All of these steps work together to improve the model's high prediction 

accuracy and generalisation across various situations, which makes it a workable option for 

early warning systems and real-time flood monitoring.  By addressing long-range 

dependencies, pooling predictions from several models to improve robustness and reduce 

mistakes, and improving emphasis on relevant characteristics, the integration of attention 

mechanisms and ensemble learning approaches into LDTSRU can greatly improve its 

predictive powers. While ensemble learning increases overall performance and adaptation to 

changing data circumstances, attention processes provide interpretability and contextual 

awareness. Effective implementation in operational flood monitoring and early warning 



 

 

systems requires striking a balance between these improvements and computational efficiency 

as well as real-time constraints. 

 

 

5.  Conclusion 

The proposed LDTSRU offers excellent prospects for accurate and timely decision-making for 

disaster management systems. It mainly aims to forecast floods by combining meteorological 

data's spatial and temporal properties. To capture intricate, non-linear interactions between 

features and the target variable, this model uses a specific type of binary tree. The classifier 

learns the time-related properties of the data using the SRU model. The LDTSRU model trained 

more quickly than previous models while maintaining prediction accuracy. It has greatly 

improved the operating efficiency and reduced the training time abruptly. According to 

experimental data, the LDTSRU approach has some gains in flood prediction accuracy 

(98.68%) over previous methods, which offers the metrological department a smart and 

affordable idea. In the future, the proposed model could be improved by including optimization 

method to help it learn more quickly and analyse data more efficiently without reducing the 

number of attributes in real-time.  

Data Availability Statement: 

The source of data sets are download from the following link  

 “Flood-prediction” github.com. https://github.com/ngauhar/Flood-prediction  
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