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ABSTRACT 

Wastewater includes sewage water, which presents serious environmental problems that 

necessitate effective treatment techniques. Membrane Bioreactors (MBRs) have emerged as 

promising solutions, albeit plagued by membrane fouling and computational loading issues. To 

resolve these issues, this research article presents an innovative control strategy combining both 

artificial bee colony optimization (ABC) and recurrent neural network (RNN) to regulate the 

performance of MBR in sewage treatment. Initially, the influent wastewater data was collected 

and pre-processed using the regression imputation approach. RNN architecture was designed and 

trained using the pre-processed data to forecast the performance of the MBN system. Further, the 

ABC algorithm was applied to optimize the function of MBR by adjusting the control variables. 

The developed model was validated with the publically available wastewater treatment plan 

dataset and the effectiveness of the developed model was validated by performing intensive 

performance and comparative assessment. The performance evaluation demonstrates that the 

proposed methodology attained greater results of 98.59% effluent quality, 98.70% of nutrient 

removal efficiency, less computational time of 2.87s, and a low membrane fouling index of 

1.23%. The comparative analysis illustrates that the presented approach achieved improved 

performances than the existing methodologies.  

Keywords: Artificial intelligence, sewage treatment, Recurrent neural network, Artificial bee 

optimization, Membrane bioreactor. 

Nomenclature 

MBR Membrane Bioreactors 

ABC artificial bee colony optimization 

RNN recurrent neural network 

AOX absorbable organic elements 

MBSP membrane-based separation  

ANN artificial neural network 

MLP multilayer perceptron 

RBF radial basis function 

FFNN feed-forward neural network 

ML machine learning 

OMER osmotic MBR 

AGS aerobic granular sludge 

LSTM long short-term memory 



 

 

COD chemical oxygen demand 

BOD biochemical oxygen demand 

TMP transmembrane pressure 

WWTP Wastewater Treatment Plant 

NMPC Model Predictive Control Design 

FLC Fuzzy logic control 

PSO Particle Swarm Optimization 

 

1. INTRODUCTION  

Owing to the increased industrial revolution, the existence of persistent and emergent pollutants 

including absorbable organic elements (AOXs) in wastewater is emerging as a global issue [1]. 

Recently, various innovative treatment approaches are designed to remove the pollutants present 

in the wastewater [2]. But the selection of an appropriate approach is significant for the proper 

treatment of wastewater. Therefore, membrane-based separation techniques (MBSPs) are utilized 

widely to treat the variety of polluted water and wastewater instigated from different municipal 

and industrial sources [3]. However, this membrane-based approach was selected based on the 

wastewater pollution load and the chosen technique must be sustainable, eco-friendly, and 

feasible [4]. In addition, achieving sustainable development is important for designing eco-

friendly, and economically feasible MBSPs for wastewater treatment [5]. Recent studies reported 

that treatment proficiency is one of the parameters, which defines the selection of an appropriate 

approach among the conventional techniques [6]. Currently, the MBSPs are assumed as the most 

effective method to handle the largely polluted water [7].  Moreover, the researches illustrate that 

the conventional techniques along with the integration of filtration of the biological treatment 

method provide highly effective isolation of the pollutants [8].  

This method integrates the benefits of physical isolation of the pollutant and their deprivation 

through micrograms [9]. This makes the researchers concentrate on the development of MBRs. 

Therefore, to support industrial applications different kinds of aerobic and anaerobic MBRs are 

designed [10]. However, they face some challenges in providing highly effective wastewater 

treatment [11]. The membrane fouling is one of the significant issues of the MBSPs, but 

managing the quality of the treated sewage is interconnected with the composition and 

performance of the microbial groups [12]. This shows that the design of integrated approaches 

like MBRs enables effective sewage treatment [13]. But the existing parameter controller tools 



 

 

including the negative feedback control models are not accurate in confirming the high-quality 

water treatment [14]. Hence, artificial intelligence (AI) approaches are deployed to control the 

entire wastewater treatment process. This approach enables the system to predict the control 

parameters, which the existing technique faces difficulty [15, 16].  

The utilization of the AI approach integrates the computer-controlled machine pertaining such as 

generalization, and learning, which makes the system learn from experiences (data) for 

predicting the control parameters [17]. In this approach, the data related to sewage treatment are 

collected and utilized to predict the outcomes and control parameters in the future [18]. 

Numerous researches described that the utilization of AI techniques increased the performance of 

various applications associated with agriculture, health, disaster management, etc., [19]. In 

addition, it is deployed to predict environmental factors and control pollution. Moreover, the 

researchers demonstrated that the application of AI techniques such as artificial neural network 

(ANN), multilayer perceptron (MLP), radial basis function (RBF), feed-forward neural network 

(FFNN), etc., enables the system to manage the water quality and provide highly cleaned water 

in the polluted regions [20]. However, the performance of these systems depends on the quality 

of the training data and it faces high computational complexity. To resolve these issues, meta-

heuristic algorithms such as genetic algorithms, particle swarm optimization, etc., are utilized. 

Moreover, the recent conventional approaches such as the machine learning (ML) based 

approach [21], AI-based prediction model [22], integrated ANN, and the adaptive network-based 

fuzzy system [23], etc., are prone to overfitting, interoperability, computational complexity, and 

its performance depends on the quality of the training set. Therefore, an artificial intelligence-

based control strategy was designed for bioreactors in sewage treatment. 

When every aspect is considered, the RNN is good at managing different input lengths, 

remembering information, and processing sequential data. By efficiently recording temporal 

dependencies, it can analyze time-series data and forecast future events. By simulating the 

exploitation and recruitment of food sources, ABC optimizes solutions repeatedly, taking 

inspiration from the foraging behavior of honeybee swarms. Across a wide range of optimization 

issues, this population-based approach finds applications and performs exceptionally well while 

exploring search areas. Wastewater treatment efficiency is increased by the MBR, which 

combines biological treatment and membrane filtration. MBR systems, which are essential in 



 

 

municipal and industrial wastewater treatment facilities, efficiently eliminate pollutants by using 

semi-permeable membranes. This results in effluent of a higher caliber than using traditional 

methods. 

The work combines the RNN control strategy with the ABC optimization technique to regulate 

MBR systems in sewage treatment shows its novelty. With the help of influent wastewater data, 

this novel method accurately forecasts MBR performance and adjusts operating parameters in 

real time. The suggested approach outperforms traditional control systems by integrating AI-

based prediction with optimization to provide improved effluent quality, decreased membrane 

fouling, and increased nutrient removal efficiency, therefore solving important environmental 

concerns in wastewater treatment. 

The major contributions of the presented research work are described below, 

• Collect the MBR-sewage treatment database and pre-process the raw dataset to ensure the 

quality and reliability of the dataset. 

• Design the RNN architecture and train it using the pre-processed dataset to predict the 

performance of the MBR. 

• Applying the ABC approach optimizes the operation of the MBR by adjusting the control 

variables continuously. 

• Finally, the results of the developed model were examined and evaluated with traditional 

control strategies in terms of nutrient removal efficiency, computational time, effluent 

quality, and membrane fouling index.  

The organization of the research paper is described as the 2nd section analyzes the recent research 

articles related to the proposed work, the 3rd section describes the system model and its 

problems, the 4th section details the working of the proposed methodology, the 5th section 

analyzes the outcomes of the proposed work, and the 6th section demonstrates the research 

conclusion.  

2. RELATED WORKS  

Some of the research works associated with the proposed work are reviewed as follows,  



 

 

 Muhammad Yaqub and Wontae Lee [21] designed a machine learning (ML) based 

approach for predicting nutrient removal efficiency. This method deploys the anaerobic MBR 

and extreme gradient boosting design to identify the elimination of nutrients like nitrogen, 

ammonium, etc., from the water. The simulation results describe that the developed model 

enhances the functional efficiency of the anaerobic MBR. However, this technique is prone to 

overfitting challenges.  

 In recent times, the osmotic MBR is being widely utilized for sewage treatment in 

various industrial and municipal corporations. Nguyen Duc Viet and Am Jang [22] designed an 

AI-based prediction model for forecasting the osmotic MBR outcomes. This method improves 

the system's performance by minimizing the environmental impacts of wastewater. The 

extensive evaluation shows that the designed framework is highly effective in predicting and 

optimizing the osmotic MBR. But this method cannot handle the variations in the input data.  

 Ahmad Hosseinzadeh et al [23] proposed an integrated framework to predict water flux 

in osmotic MBR (OMBR). This method hybrid the ANN and the adaptive network-based fuzzy 

system for effective and accurate forecasting of OMBR performance. The intensive simulation 

analysis demonstrated that this method earned a very low RMSE of 0.252. Furthermore, a 

sensitivity assessment was made to evaluate the efficiency of the developed model under data 

variations. However, the training and optimization of this hybrid approach are computationally 

intensive and time-consuming.  

 Jiahao Liang et al [24] presented an aerobic granular sludge (AGS) approach for the 

management of flow back water from shale gas extraction. This method controls the 

environmental factors of the natural gas industry. The evaluation results effectively remove the 

effluents like COD, NH4+-N, and TN. In addition, the 3-layered ANN is responsible for 

eliminating the dynamics of pollutants present in the water. However, this approach is prone to 

membrane fouling.  

 Typically, the MBR faces issues like fouling, which increases the cleaning and 

maintenance costs. To resolve these issues, Yasser Algoufily et al [25] developed a prediction 

and monitoring framework to detect the fouling in MBR. In this approach, the total resistance of 

the membrane was determined using the stochastic design based on the information 



 

 

interconnected to membrane fouling. Moreover, an ANN-based control system was designed to 

manage the temperature in their setpoints. But this method produces false positives and negatives 

in the fouling prediction.  

 For wastewater treatment, the anaerobic MBR is considered one of the most eco-friendly 

solutions. However, these MBRs are prone to fouling, thus it increases energy consumption and 

cost. Therefore, José M. Cámara et al [26] presented an accurate fouling prediction framework 

using the neural network. The integration of both numerical and neural networks enhances 

prediction efficiency. However, this method demands large computational memory and power.  

 Muhammad Yaqub et al [27] designed a framework to predict the effluent removal 

efficiency of an anaerobic MBR using long short-term memory (LSTM). This method considers 

the influent wastewater features such as total nitrogen, ammonium, dissolved oxygen, etc., as 

inputs and the removal efficiency as output. Furthermore, data normalization and analysis were 

utilized in the system to increase its learning speed. The prediction outcomes describe that the 

designed model attained high accuracy. However, tuning the hyperparameters are complex in 

this approach. 

 Yifeng Chen et al [28] introduced an innovative algorithm using the backpropagation 

ANN and generalized regression neural system to measure the interfacial power interconnected 

with the MBR fouling. This method was trained and validated using the five apparent databases 

and a case study was made to evaluate the feasibility and robustness of the approach. The results 

validate that the designed framework achieved huge quantification efficiency. But the integration 

of these different techniques is complex and requires more resources.  

The incorporation of a hybrid ABC-RNN control technique specifically designed for MBR 

regulation in sewage treatment makes the suggested system unique. It combines artificial bee 

colony optimization and recurrent neural networks for effective prediction and optimization of 

MBR performance, in contrast to previous approaches that were prone to overfitting or 

computing intensity. By addressing issues like fouling and energy usage, this integration 

improves the quality of effluent and the effectiveness of nutrient removal. By utilizing the hybrid 

technique, it exceeds the constraints of traditional strategies and provides greater precision and 

adaptability to dynamic wastewater treatment processes. In the end, it results in notable 



 

 

enhancements to MBR performance and treatment efficacy as a whole.it leads to significant 

improvements in MBR operation and overall treatment effectiveness. 

3. SYSTEM MODEL AND ITS PROBLEM  

An MBR is an emerging wastewater treatment approach, which integrates traditional biological 

treatment and membrane filtration into a single unit. Thus, it overcomes the typical sewage 

treatment model and provides greater effluent quality, a small footprint, etc. However, to confirm 

effective functioning and maintain optimal treatment performance, it is important to design a 

control mechanism for MBRs in sewage treatment [29]. The control approach regulates and 

monitors the various parameters such as effluent flow rate, membrane fouling rate, etc., thereby 

ensuring optimal system performance. In recent times, various control strategies such as 

predictive control, adaptive control, model-based control, etc., are employed to optimize the 

process performance. However, they face difficulty in parameter tuning, reliability, 

interoperability, and model complexity. Hence, the artificial intelligence-based control 

mechanism was employed for MBR in sewage treatment. The AI-based models utilize the real-

time data collected using the sensors and actuators and learn the interconnection between the 

input features and desired outcomes. Then, it adjusts the operational parameters based on the 

prediction to optimize the MBR performance. However, the efficiency of the model depends on 

the quality of collected data and requires a large-scale historical database for training. In 

addition, the AI-based models face difficulty in generalizing to unseen data (incoming input 

data). Hence, an optimized intelligent control mechanism was designed in this article to control 

the MBR in sewage treatment.  

4. PROPOSED METHODOLOGY  

A novel hybrid ABC-RNN control strategy was designed to regulate the MBR in sewage 

treatment. This method integrates the benefits of recurrent neural systems [30] and artificial bee 

colony optimization [31]. Initially, the influent wastewater database was collected and pre-

processed. The pre-processing involves data cleaning, data normalization, and feature 

engineering. After pre-processing, the filtered dataset was utilized to train the RNN model [32]. 

The RNN model was trained to predict the performance of the MBR system. The predicted MBR 



 

 

performances are passed to the optimization block, which modifies the control variables to 

optimize the MBR operation. The proposed framework is explained in Fig 1.  

 

Fig. 1 ABC-RNN framework 

4.1 Data accumulation 

Data accumulation involves the collection of influent wastewater data from the MBR-assisted 

sewage treatment process. The influent wastewater data includes the collection of information 

regarding the flow rate, pH, temperature, nutrient concentrations, chemical oxygen demand 

(COD), biochemical oxygen demand (BOD), etc. Flow rate determines the volume of wastewater 

arriving through the MBR system per unit of time. This enables us to understand the hydraulic 

loading on the MBR.  The temperature data defines the thermal criteria of the influent 

wastewater. It determines the rate of biological processes occurring in the MBR. The pH data 



 

 

defines the alkalinity and acidity of the influent wastewater and ranges from 0 to 14. COD 

information indicates the volume of oxygen required to oxidize organic elements chemically in 

the wastewater. This measures the organic pollutant load in the wastewater. BOD data denotes 

the quantity of oxygen necessary for the biological degradation of organic elements in 

wastewater. It measures the biodegradable organic content of the influent. Nutrient 

concentrations data involves the collection of nutrients present in the influent including nitrogen 

(ammonia, nitrite, and nitrate), phosphorus, and other components. This data helps to understand 

the wastewater composition and characteristics of the wastewater arriving in the MBR system. 

However, this collected data contains errors, outliers, missing values, etc., therefore, before the 

training process the collected data must be pre-processed.  

4.2 Data Preprocessing  

The process of eliminating the errors, missing values, outliers, etc., from the collected database, 

is termed as data pre-processing. The data pre-processing involves three major steps namely, 

cleaning, normalization, and feature extraction. Data cleaning is the process of managing the 

missing values, outliers, and any inconsistencies present in the database. Here, the regression 

imputation approach was utilized to detect and resolve these issues in the dataset. This helps to 

confirm data quality and reliability. The regression imputation is an algorithm, which is mainly 

utilized to fill the missing values by detecting their values based on other attributes present in the 

database. This technique is based on the assumption that the missing values are interrelated to the 

values available in the dataset. Initially, this method detects the feature with missing values. 

Then the dataset is split into two parts: one part contains complete data (variables without 

missing values) and the other part with missing values (target attributes). A linear regression 

model was designed to detect the target attribute using the other variables available in the 

database. Further, the developed regression unit was applied to the part containing the missing 

values and the regression model considers the values present in the other part as inputs to predict 

the missing values for the target variable. Finally, replace the missing values with the predicted 

values in the dataset. Thus, the technique to replace missing values in the dataset by estimating 

their values based on other variables existing in the database is called regression imputation, and 

it is applied in the suggested study. 



 

 

The first step is to locate the missing values in the dataset. Next, using the portion of the dataset 

that contains all of the data, a linear regression model is built. Using predictor variables found in 

the dataset, the regression model attempts to forecast the missing values.The mathematical 

formulation of the regression model is expressed in Eqn. (1). 

                              tvnnvvvv EPRPRPRPRRM ++++++= .....3322110                                        (2) 

Where vM defines the missing values, nRRRRR ,....,,, 3210 refers to the regression coefficients, 

vnvvv PPPP ,.....,,, 321 represents the predictor variables, and tE denotes the error term. The 

regression coefficients are determined using the part with complete data. After replacing the 

missing values, the database was normalized using the min-max scaling approach. This enables 

to avoid the biases due to differences in scales among the input attributes. Finally, feature 

extraction was performed, which involves capturing and extracting the most relevant features 

from the normalized database. In this process, the system extracts meaningful information and 

eliminates the meaningless data present in the dataset, thereby enhancing the learning process. 

This data standardization process converts the raw dataset into a suitable format for effective 

model training [33].  

4.3 RNN model training  

In the developed control strategy, the RNN was utilized to predict the performance of the MBR 

based on the historical influent wastewater data. The RNN is a kind of artificial neural network, 

which has the unique feature to maintain an internal state commonly known as a hidden state. 

The proposed work is utilized to learn and predict the interconnections and relationships between 

the input features and the outcomes.  Here, pre-processed data was fed into the model training 

block to train the RNN design. The RNN learns the interconnection between the influent data, 

MBR performance, and operational parameters. The typical RNN model contains three main 

layers namely, the input layer, the recurrent layers, and the output layer. It is important to note 

that the RNN model contains one or more recurrent layers and each layer comprises a sequence 

of recurrent units, which maintains a hidden state indicating the memory of the network. The 

input layer accepts the pre-processed database as inputs, the recurrent layers process the input 

sequences and learns the interconnections between the input sets and the desired results and the 

output layer detects the target values based on the processed input sequence. Before the training 



 

 

process, the pre-processed dataset must be split into input sets and corresponding target sets. 

Each input set comprises a sequence of time steps, while the target set consists of the desired 

outcomes for each time step [34]. In the initial phase of training, the weights and biases of the 

RNN design were initialized with small random values. An accurate initialization of weights and 

biases enables the system to achieve better convergence during the training process. After 

initialization, the forward propagation step was performed. In this step, the input sets are fed into 

the RNN model to determine the predicted result.  At each time step, the recurrent layer 

progresses the input sets and updates the hidden state. After updating, the recurrent layer passes 

the hidden state to the next time step and this process continues until updating the final hidden 

state. The final hidden state is utilized to predict the output. The hidden state updation and output 

calculation are expressed in Eqn. (2), and (3). 

( )vTimThmfT BIWHWAH ++= −1  (2) 

( )oTomoT BHWAO +=  (3) 

Here TH defines the hidden state at a time stepT , fA  refers to the activation function of the 

recurrent layer, hmW denotes the weight matrix of the hidden state, imW indicates the weight 

matrix for the input set, TI denotes the input sequence at a time stepT , vB defines the bias vector 

of the recurrent layer, TO  represents the predicted output at a time stepT , oA  indicates the output 

layer activation function, omW  refers to the weight matrix of the output layer, and oB  defines the 

bias vectors of the output layer. Further, during the training process, the weight and biases of the 

RNN model are updated to reduce the errors in the prediction process. Typically, the gradient 

descent optimization approach has utilized the gradients of the loss function. The mathematical 

derivation for the updation of weight and bias is expressed in Eqn. (4) and (5). 

                                                   aToTn GWW −=                                                                    (4) 

                                                     asosn GBB −=                                                                   (5) 

Where TnW defines the updated weight, ToW represents the old weight,  indicates the learning 

rate, aG  refers to the gradient, which indicates the loss function relative to the weight and bias,



 

 

snB  defines the updated bias vector, and soB  refers to the old bias vector. Finally, the 

backpropagation was utilized to measure the loss function of the gradient. The backpropagation 

technique propagates the error back through the recurrent layers, thus it minimizes the overall 

loss. The loss function measures the deviation between the actual and predicted outcomes at each 

time step. The loss function is formulated in Eqn. (6). 
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Where fnL defines the loss function, mS represents the training samples, oP denotes the predicted 

output, and vA refers to the actual value. The process is repeated iteratively until the prediction 

error achieves its minimum level. The predicted performances of the MBR such as effluent 

quality, membrane fouling, energy consumption, etc., are fed as inputs to the optimization block.  

4.4 Optimization   

The Artificial Bee Colony (ABC) algorithm rapidly searches for ideal solutions to control 

parameters, minimizing membrane fouling, and improving nutrient removal efficiency, all of 

which maximize the performance of MBR systems. By investigating and taking advantage of 

possible solutions, it imitates the foraging activity of bees to enhance effluent quality and reduce 

energy usage. In the optimization block, the ABC approach uses the predicted MBR performance 

data to optimize the MBR operation. The ABC algorithm adjusts the control variables such as 

aeration rate, sludge wasting rate, membrane flux, etc., to optimize the MBR operation. This 

approach is developed to solve the optimization problems especially the issues in the control 

mechanism. As a result the wastewater treatment process is extremely effective and efficient. 

[35]. In the ABC approach, initially, the population of employed bees is initialized with random 

control variable values indicating different sequences of control parameters for the MBR system. 

Further, evaluate the fitness of each employed bee's solution by passing the control variables into 

the MBR system and estimate the performance of the MBR corresponding to its control 

variables. The objective of the fitness function is to maximize the MBR operation by minimizing 

the energy consumption and membrane-fouling index and maximizing the effluent quality. The 

fitness solution of the ABC optimization is expressed in Eqn. (7). 



 

 

                                                  
( ) ( ) ( ) ( )qficC EfMfEfFv

v 321 ++=                                            (7) 

Where ( )cvFv defines the fitness value relative to the control parameters, 1f 2f and 3f indicates the 

fitness parameters, which optimizes the MBR performances, cE f iM qE and denotes the MBR 

performance metrics indicating energy consumption, membrane-fouling index, and effluent 

quality. After defining the fitness function, the employee bee phase begins. In the employee bee 

phase, each employed bee performs a local search operation by adjusting the control variables 

around its current solution. Further, generate a new solution by perturbing the current solution 

using a random displacement vector.  It is expressed mathematically in Eqn. (8). 

                                                 

( ) ( ) ( ) fvvv ExRxCxC +=+1                                                     (8) 

Here ( )1+xCv defines the new solution defining the adjusted control variables, ( )xCv denotes the 

current position representing the control variables, ( )xRv refers to the random displacement 

vector for the employee bee x , and fE denotes the exploration factor. After adjusting the control 

variables, evaluate the fitness function for the new solution in the MBR system. If the fitness 

value for the new solution is greater than the current solution, update the employed bee solution. 

It is expressed in Eqn. (9). 

                                    

( ) ( )( ) ( )( )( ) ( ) ( )

( ) ( )



=

+=
=

+

xCxCelse

xCxCFvFvif
xE

vv

vvxCxC

up

vv

;

1;1
                         (9) 

Where upE defines the function for updating the employee bee solution, ( )( )1+xCv
Fv refers to the 

fitness value for the new solution, and ( )( )xCv
Fv  defines the fitness value for the current solution. 

This process is iteratively repeated until the desired level of optimization is achieved. Thus, the 

proposed model continuously adjusts the control variables and optimizes the MBR performances.   



 

 

 

Fig. 2 ABC-RNN workflow 

The workflow of the designed model is illustrated in Fig 2. The optimization of MBR operation 

increases its performances such as effluent quality, and nutrient removal efficiency, and 

minimizes the energy consumption, and membrane-fouling index. This is achieved by 

continuously adjusting the control variables of the MBR such as aeration rate, hydraulic retention 

time, mixed liquor concentration, sludge waster flux, etc., to its optimal range.  

5. RESULTS AND DISCUSSION  

An optimized intelligent framework was developed to optimize the performance of the MBR 

system in sewage treatment. This method integrates the benefits of the ABC and RNN 

algorithms to regulate the operation of the MBR system. The RNN model was trained to forecast 

the performance of the MBR system and the predicted performances are fed into the optimization 

block. In the optimization block, the ABC approach was applied to optimize the performance by 

adjusting the control variables effectively. The designed framework was modeled and 

implemented in the MATLAB tool, version R2020a. Finally, the performances of the developed 

scheme were estimated and validated with some existing controller models.  



 

 

5.1 Dataset description 

The presented work was trained and tested with the publically available MBR plant dataset 

named "Wuhan MBR Dataset." The data was gathered since 2006 from a large-scale (industriak, 

municipal) MBR plant with a minimum design capacity of 10,000 m3/day in Wuhan,China. This 

database includes information related to the operational parameters such as influent flow rate, 

transmembrane pressure (TMP), mixer liquor suspended solids concentration, and water quality 

factors like nutrient concentrations including nitrogen, ammonia, phosphorus, COD, BOD, etc. 

In this dataset, the information is collected on an hourly basis. 

5.1.1. Origin of data 

Important participants in this development include the Wuhan Sanjintan WWTP and the Fuzhou 

Yangli Wastewater Treatment Plant (WWTP) Phase IV, among others. In 2014, accomplished 

projects such as the Macau WWTP and the Chengdu Qingbaijiang WWTP (Upgrade) are notable 

for their significant capacity for the treatment and repurposing of industrial and municipal 

wastewater. The data includes significant contributions from companies such as Beijing Origin 

Water Technology Co., Ltd., which has emerged as a key player in the development of 

wastewater treatment infrastructure in China. This database was widely utilized by researchers 

and educational institutions for MBR performance prediction analysis.  

5.2 Training and testing performance  

Initially, the input database was split into two parts, 80% for training and the remaining 20% for 

testing purposes. During the training and testing phase, the model's performances are evaluated 

in terms of accuracy and loss. In the training phase, the accuracy defines the rate at which the 

proposed model predicts the MBR system performance. In addition, it indicates how well the 

developed approach is performing on the training database and it represents how fast the 

developed model learns the interconnections between the input data and the desired outcomes. 

The training accuracy is estimated by increasing the number of iterations from (0 to 500). The 

increasing curve of training accuracy demonstrates that the proposed model is more accurate in 

predicting the performance of the training data. During the initial training phase, the developed 

model attained 0.8, and it increases on increasing the number of epochs. In model training, the 

developed model achieved an appropriate accuracy of 0.99.  



 

 

 

Fig. 3 Training and testing accuracy evaluation  

Similarly, the testing accuracy determines the rate at which the proposed model performs over 

the unseen test data. Typically, the RNN model learns the patterns and relationship between the 

input data and the desired outcomes in the training phase. In the testing phase, based on the 

trained information it predicts the performance of the MBR system for the incoming new dataset. 

The testing accuracy also offers an evaluation of how well the developed model generalizes and 

accurately predicts the performance of new data. The testing accuracy increases over the epochs, 

representing that the designed model generalizes well to the new data. The presented framework 

attains an appropriate testing accuracy of 0.98, which illustrates that it performs well on the test 

data. The training and testing accuracy of the developed model is evaluated in Fig 3.  

 



 

 

 

Fig. 4 Training and testing loss evaluation  

Similarly, the training and testing losses were evaluated in Fig 4. The training loss indicates the 

error occurred during the model training. It measures the variation between the actual and 

predicted performance of the MBR system in the training set. The loss function present in the 

RNN model evaluates the training loss and it estimates how efficiently the developed model is 

learning from the training samples. From the performance evaluation, it is observed that the 

training loss decreases over several iterations. This demonstrates that the developed model 

accurately predicts the performance of the MBR system with a minimum loss percentage of 0.03. 

On the other hand, the testing loss determines the deviation between the predicted and actual 

outcomes for the testing set. It is also known as evaluation loss or validation loss. It measures 

how well the system generalizes to unseen data. Similar to the training loss, it is evaluated using 

the loss function in the RNN model. The presented approach attained a very low loss rate of 0.04 

for the testing samples, and it decreases with increasing the number of epochs.  

5.3 Comparative analysis 

In this section, the performances such as effluent quality, energy consumption, computational 

time, membrane fouling index, nutrient removal efficiency, and sludge production rate are 

examined and validated with the conventional control strategies. The existing control methods 

utilized for performance validation include Nonlinear Model Predictive Control Design (NMPC) 



 

 

[36], Fuzzy logic control (FLC) [37], Particle Swarm Optimization (PSO) [38], ANN [25], and 

MLP [21].  

5.3.1 Effluent Quality 

Effluent quality represents the number of removed pollutants or the amount of treated water 

discharged from the MBR system. It defines the effluent pollutant concentration which is the 

concentration of contaminants present in the treated water. In addition, it indicates the pollutant 

removal efficiency, which is determined by comparing the influent and effluent pollutant 

concentration and it is formulated in Eqn. (10). 
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Where qEf indicates the effluent quality rate, ipC  refers to the concentration of influent pollutant, 

and epC  represents the concentration of effluent pollutant. The greater rate of effluent quality 

defines that the concentration of pollutants in the treated water is very low.  

 

Fig. 5 Validation of effluent quality 

The objective of the proposed work is to optimize the MBR system performances such as 

effluent quality, membrane fouling index, etc. The integration of the proposed control strategy in 



 

 

the MBR system enables it to achieve a greater effluent quality rate of 98.56%. Further, to 

validate that the attained effluent quality rate is higher than existing models, it is compared with 

conventional methods like NMPC, FLC, PSO, ANN, and MLP. The incorporation of these 

control methodologies in the MBR system earned effluent quality of 85.17%, 92.86%, 84.10%, 

91.28%, and 87.12%, respectively. This comparative performance evaluation determines that the 

optimization of MBR operation using the proposed model enhances the effluent quality. The 

comparative performance of effluent quality is shown in Fig 5.  

5.3.2 Membrane fouling index 

The membrane-fouling index is an important performance metric, which illustrates the working 

efficiency of the MBR system. It measures the fouling of the membranes in an MBR system 

during wastewater treatment. Moreover, it estimates the extent of fouling on the membrane 

surface, which affects the functional efficiency of the MBR system. The mathematical formula 

for the calculation of it is expressed in Eqn. (11). 
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Where mdiT denotes the transmembrane index (TMP), tTmd  defines the transmembrane pressure 

at the current time step t , 1−tTmd  represents the transmembrane pressure at the previous time step

1−t ,  T  refers to the time interval between the measurements, and rA  denotes the area of the 

membrane surface. The greater TMP index represents a rapid increase in pressure and a higher 

rate of fouling.  



 

 

 

Fig. 6 Comparative performance of membrane fouling index 

The membrane fouling index performance of the MBR was examined to evaluate the 

effectiveness of the developed control mechanism in optimizing the TMP index. The 

comparative performance of the membrane fouling index is displayed in Fig 6. The integration of 

the proposed control design in the MBR system enables it to attain a lower fouling index of 

1.24%. On the other hand, the existing techniques such as NMPC, FLC, PSO, ANN, and MLP 

obtained 5.87%, 4.90%, 6.23%, 4.61%, and 5.43%, of the TMP index, respectively. From the 

comparative analysis, it is clear that the developed control design effectiveness minimizes the 

fouling index.  

5.3.3 Nutrient Removal Efficiency 

The nutrient removal efficiency quantifies how effectively the MBR system removes the nutrient 

components such as ammonia, nitrogen, phosphorus, etc., from the wastewater during the 

treatment process. It measures the rate at which the MBR system reduces the nutrient content 

from the wastewater. The formula for the estimation of nutrient removal efficiency is expressed 

in Eqn. (12). 
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Where RfN is the nutrient removal efficiency, ncI refers to the concentration of nutrients in the 

wastewater, and ncE  defines the effluent nutrient concentration.  

 

Fig. 7 Evaluation of nutrient removal efficiency 

The nutrient removal efficiency is one of the important performance metrics of the MBR system, 

which defines the quality of treated water. Achieving greater nutrient removal efficiency is 

significant for regulatory compliance and environmental protection. The nutrient removal 

efficiency of the developed model is compared with existing methods like NMPC, FLC, PSO, 

ANN, and MLP. These traditional control designs attained 85.98%, 92.46%, 81.23%, 90.37%, 

and 85.89%, of nutrient removal efficiency, respectively. The nutrient removal efficiency 

attained by the proposed model is 98.70%, which is high compared to the nutrient removal 

efficiency achieved by the conventional models. This comparative assessment validates that the 

optimization of the MBR function and control variables using the developed control model 

increases nutrient removal efficiency. The evaluation of nutrient removal efficiency is visualized 

in Fig 7. 

5.3.4 Computational time 

The computation complexity defines the time consumed by the proposed model for performing 

data pre-processing, model training, optimization process, and other computational tasks. The 

computational time attained by the developed model is tabulated in Table 1. The total 



 

 

computational time achieved by the presented model is 2.87s, in which the system consumed 

0.42s for pre-processing the dataset, 1.20s for RNN model training, 0.65s for the optimization 

process, and 0.60s for other computational tasks.  

Table 1 Computational Time Analysis   

Tasks Time (s) 

Data-processing  0.42 

RNN model training 1.20 

Optimization process 0.65 

Other computational tasks 0.60 

Total computational time 2.87 

 

 

Fig. 8 Computational time validation 

The computational time validation is important to manifest the effectiveness of the designed 

framework. The comparative analysis of computational time is displayed in Fig 8. The designed 

framework consumed very less time 2.87s, whereas, the traditional control designs like NMPC, 

FLC, PSO, ANN, and MLP consumed 7.09s, 5.98s, 8.11s, 6.32s, and 7.52s, respectively. The 

comparison of computational time manifests that the designed model quickly learns the 

interconnection between the input features and desired performances and effectively optimizes it 

with minimum time consumption.  



 

 

5.3.5 Energy Consumption  

Energy consumption (W) refers to the quantity of electrical power used when the Membrane 

Bioreactor (MBR) operates in sewage treatment. Sustainable wastewater treatment depends on 

the efficient use of energy resources, which is indicated by a lower value in this parameter. The 

suggested approach shows its efficacy in optimizing energy usage and encouraging energy-

efficient MBR operations by attaining a noticeably lower energy consumption of 27.9 watts in 

comparison to alternative control strategies. 

Table 2 Numerical analysis of comparative performance validation 

 

Approach  

Effluent 

quality (%) 

Energy 

consumption 

(W) 

Nutrient 

removal 

efficiency 

(%) 

Computational 

time (s) 

Membrane 

fouling index 

(%) 

NMPC 85.17  85.98 7.09 5.87 

FLC 92.86  92.46 5.98 4.90 

PSO 84.10  81.23 8.11 6.23 

ANN 91.28  90.37 6.32 4.61 

MLP 87.12  85.89 7.52 5.43 

Proposed  98.56 27.9 98.70 2.87 1.24 

 

The overall numerical analysis of the comparative performance is tabulated in Table 2. It lists the 

performances such as effluent quality, membrane-fouling index, nutrient removal efficiency, 

energy consumption, and computational time attained by the traditional approaches and the 

developed framework. This comprehensive performance comparison demonstrates that the 

integration of the proposed method in the MBR system optimizes its operations and improves 

performance. Furthermore, it is observed that the utilization of neural network-based control 

strategies in the MBR system provides better performances than the typical controller designs 

such as PSO and NMPC.  

6. CONCLUSION  



 

 

The presented research work develops an innovative approach ABC-RNN approach to optimize 

the performance of the MBR in sewage treatment. This hybrid approach provides a 

comprehensive solution to improve MBR performance by leveraging the benefits of optimization 

and intelligent models. In the proposed framework, the RNN design examines and learns the 

patterns and relationships between the input and output parameters to predict the dynamic 

performance of the MBR system. The ABC block utilizes these predicted outcomes and 

intelligently searches for the best control variables to optimize the MBR performances. Thus, the 

developed hybrid model controls the varying influent parameters and system dynamics 

effectively. The developed model was modeled in MATLAB and evaluated with the publically 

available Wuhan MBR database. Finally, a comprehensive comparative assessment was carried 

out with the existing NMPC, ANN, FLC, PSO, and MLP models to validate the performances of 

the proposed model. The comparative analysis illustrates that the performances such as effluent 

quality and nutrient removal efficiency are improved by 14.46% and 17.47%, and the membrane-

fouling index and computational time are 3.37%, and 3.11s, respectively. Hence, it is proved that 

the optimization of MBR in sewage treatment using the proposed ABC-RNN model enhanced 

the effluent quality, minimized the membrane fouling index, improved the nutrient removal 

efficiency, and decreased the time consumption.  
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