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Graphical abstract 

 

Abstract 

Reducing carbon emissions is one of the important ways 
to achieve the goal of "dual carbon". Taking carbon 
emission intensity as the research object, this paper 
analyzes the spatial effects of carbon emission intensity at 
provincial level in China during 2005-2022 by kaya 
extended model, standard deviation ellipse, Theil index 
and kernel density analysis model. The results show that: 
(1) Overall, the distribution of carbon emission intensity in 
China exhibits distinct regional characteristics, with 
significant heterogeneity in emissions among regions. (2) 
With advancements in technology and economy, China's 
carbon emission intensity has shown a downward trend, 
albeit with a U-shaped fluctuation. (3) During the sample 
period, the contribution of Theil index to carbon emission 
intensity decreased first and then increased. (4) From a 
geographical perspective, carbon emissions exhibit a 
pattern characterized by "high in the east, low in the west, 
dense in the north and sparse in the south". Therefore, 
establishing a sound regional carbon reduction 
cooperation mechanism and promoting green 

development tailored to local conditions have become the 
main direction for advancement. 

Keywords: Carbon emission intensity; Extended Kaya 
model; Standard deviation ellipse model; Theil index 
model; Kernel density model 

1. Introduction 

China's rapid economic growth has been largely attributed 
to the development of traditional manufacturing 
industries. However, this growth model is characterized 
by high pollution and high resource input, representing an 
extensive approach to economic development, leading to 
ongoing issues including air pollution and environmental 
degradation. According to the IEA, China's carbon 
emissions in 2022 exceeded 11.14 million tons, indicating 
a slight 0.2% reduction from the previous year, yet the 
absolute amount still commands considerable attention. 
In order to avoid climate crisis, in 2022, the Chinese 
government formally proposed to the United Nations the 
"dual carbon" goal of "carbon peak by 2030 and carbon 
neutrality by 2060" (Yuan et al. 2023). In addition, the 
report of the 20th National Congress of the Communist 
Party of China repeatedly stressed that more measures 
should be taken to achieve the "dual carbon" goal (Chang 
2022). Therefore, to facilitate the achievement of the 
"dual carbon" targets, it has become an urgent issue to 
conduct a comprehensive investigation on the spatial 
distribution pattern of carbon emissions across provinces 
in China and clarify the dynamic evolution of provincial 
carbon emissions. 

Carbon emission has an important impact on economic 
development (Li et al. 2023; Zheng et al. 2023; Luo et al. 
2023; Liu et al. 2024; Xu et al. 2023; Xu et al. 2024). Some 
scholars analyzed the carbon emission control mechanism 
from the perspectives of green building engineering, 
energy productivity, digitalization, waterway network, 
manufacturing transformation, technological innovation 
efficiency, sewage treatment, residential land transfer, 
etc. (Zhang et al. 2019; Zhang et al. 2023; Sun et al. 2024; 
Chen et al. 2024; Zhao et al. 2024; Qiu et al. 2024; Zhao et 
al. 2024; Liu, et al. 2024; Liu, et al. 2024). These studies 
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provide significant references for the investigation of 
carbon emission issues. 

Many scholars at home and abroad have paid attention to 
the efficiency of carbon emission intensity. Common 
methods involve parametric estimation or non-parametric 
estimation (Tao et al. 2022; Mohammad et al. 2021; 
Andrea et al. 2022; Blanchard 2021; Cai 2023; Liu 2024). 
Wu et al. (2022) calculated the carbon emission efficiency 
of crops in 30 provinces in China from 2001 to 2019 based 
on an extended relaxation-based measurement method. 
Zhang and Xi (2023) constructed a three-dimensional 
evaluation index system to evaluate the ecological 
environment and agricultural development in China's 
provinces based on the stage. The efficiency SBM model 
measures the efficiency of urban carbon emissions. Li et 
al. (2023) measured the carbon emission efficiency of the 
urban agglomerations in the Yangtze River Economic Belt, 
using the super-efficiency SBM model of undesirable 
output. Dussaux et al. (2023) analyzed the impact of third-
country imports on France's domestic carbon intensity 
based on the shift-share instrumental variable method. 
Wei and Hengye (2022) utilized panel data to examine the 
impact of the first-order term of carbon emissions on 
carbon emission intensity. Zhang et al. (2022) used the 
super-efficiency three-stage data envelopment analysis 
model to measure the carbon emission intensity of 
Chinese agriculture from 2000 to 2019. Most of the 
aforementioned studies are based on the classic DEA 
model, proposing a multi-stage efficiency measurement 
method; however, these studies are primarily focused on 
the comparison of relative efficiency. Additionally, some 
scholars have used the stochastic frontier analysis models 
to measure carbon emission efficiency (Guo and Liang 
2022; Xu 2022). Furthermore, there are scholars who have 
concentrated on the impact of environmental factors on 
carbon emission intensity, mainly employing econometric 
and statistical analysis models (Andrea et al. 2021; Li et al. 
2023). 

At present, the spatial analysis of carbon emissions has 
become a research frontier. Existing literature mainly 
focuses on issues such as carbon emission performance 
and characteristics, with primary research methods 
including trend analysis, Gini coefficient, and standard 
deviation ellipse. (Najul et al. 2022; Liu et al. 2022; Wang 
et al. 2023). On this basis, some scholars have used global 
spatial autocorrelation coefficients to reveal the spatial 
correlation of carbon emissions (Wei and Dong 2022; 
Zhou et al. 2023). In addition, some scholars have 
employed LISA time path, kernel density estimation, 
center-standard deviation ellipse, and other methods to 
analyze the spatiotemporal evolution characteristics of 
carbon emissions (Zhao et al. 2021; Liu and Wei 2022; 
Zhang 2023). Specifically, in terms of carbon emission 
performance, existing studies have indicated that China's 
carbon emissions have shown a fluctuating upward trend 
as a whole, with performance values changing from a low-
value concentration and skewed distribution to a 
medium-value concentration and symmetric distribution 
(Cheng et al. 2023). Besides, China's carbon emissions 

demonstrate regional imbalances, with carbon emission 
performance presenting significant spatial disparities and 
pronounced spatial correlation characteristics, showing a 
distribution pattern of east > central > west (Hao et al. 
2022). The polarization effect is significant in the Beijing-
Tianjin-Hebei region and Yellow River basins. (Wang et al. 
2023). 

In summary, many scholars have conducted studies on the 
spatial distribution pattern and temporal evolution of 
carbon emissions at the regional, provincial (district and 
city), or county scale in China, yielding substantial results. 
However, the focus of these studies has been largely 
confined to specific regions, and the conclusions drawn 
from research data that is limited in scope and duration 
are inherently constrained, thereby precluding a holistic 
examination of the dynamic progression of China's carbon 
emission intensity. In view of this, the main objective of 
this paper is to analyze China's carbon emission intensity 
and its spatial characteristics. To clarify, this paper uses 
the standard deviation ellipse method to investigate the 
distribution characteristics of carbon emission spatial 
concentration in 30 provinces of China from 2005 to 2022. 
Subsequently, the Theil index is applied to characterize 
spatial differences, and ultimately, the kernel density 
model is employed to analyze the evolving trends. 

The marginal contribution of this article lies in (1) 
Regarding the sample data, this study leverages carbon 
emission data from the CEADs database for China's 30 
provincial regions to conduct a thorough examination of 
the distribution characteristics of China's carbon emission 
intensity. (2) In terms of research methods, this paper 
adopts the multi-method systematic analysis paradigm, 
using carbon emission intensity measurement, standard 
deviation ellipse, Theil index, kernel density and other 
models to systematically analyze the spatial effects of 
carbon emission intensity. (3) Concerning research value, 
the research conclusions of this article contribute to 
exploring carbon reduction pathways for Chinese 
provincial regions under diverse evolving trends, offering 
decision-making insights for the formulation of scientific 
inter-provincial carbon neutrality action plans that are 
adapted to China's new development pattern, thereby 
facilitating the achievement of China's dual carbon 
targets. 

2. Materials and methods 

2.1. Construction of Carbon Emission Intensity 
Measurement Model 

Due to the lack of publicly disclosed carbon emission data 
from China’s official sources, most scholars index carbon 
emissions based on the Kaya model, with a principal focus 
on factors including economy, demography, and 
significant fuel consumption. The Kaya model was first 
proposed by Professor Yoichi Kaya, who has provided a 
specialized introduction to the method at a meeting of the 
United Nations Climate Change Conference. The model 
offers advantages including simple calculation, and 
elimination of the interference of residual and disturbance 
terms, effectively explaining the main factors affecting 
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carbon emissions (Lv et al. 2016). The expression for 
calculating carbon emissions using the Kaya model is as 
follows (Du et al. 2022): 
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Further, according to the extended identity of the LMDIM 
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Where ΔQ represents the difference in carbon emissions, 
and Qx and Qyrepresent the carbon emissions in year x 
and year y, respectively.ΔQpe represents population size, 
ΔQee represents economic output effect, and ΔQie and 
ΔQse represent energy substitution effect and energy 
structure effect respectively. 

Carbon emission intensity usually refers to the amount of 
carbon emissions per unit of GDP. According to the Kaya 
model and its extended-expression, energy consumption 
and its effect function can be calculated. Therefore, the 
calculation formula for provincial carbon emission 
intensity is as follows (Zhao et al. 2017): 

= it
ij
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(2-3) 

Where, PCEIij represents the carbon emission intensity of 
research object i, QprovEmissionit represents the carbon 
emission of research object i in year t, and GDPit 
represents the gross product of research object i in year t. 

2.2. Construction of SDE model considering carbon 
emission differences 

It is necessary to analyze the characteristics of carbon 
emission intensity from the perspective of space. In this 
paper, the standard deviation ellipse model (SDE) will be 
constructed. The strength of this model lies in its capacity 
to effectively distinguish the overall and discrete 
distributions of different factors in multiple directions (Xu 
et al. 2023). 

According to relevant research, the standard deviation 
ellipse model can effectively calculate parameters 
including the distribution center, long-axis standard 
deviation, short-axis standard deviation, and azimuth 
angle of carbon emission intensity can be effectively 
calculated. The calculation formula is as follows (Liu et al. 
2019): 

(1) Spatial distribution center of gravity: 
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(2) The standard deviations along the X-axis and Y-axis 
directions are, respectively: 
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(3) Azimuth angle: 
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In the above formula, xI̅, y̅j represent the relative 
coordinates of the distance distribution center of gravity 
of the spatial location (xi, yj) respectively. wi stands for 
weight. θ is the azimuth of the standard deviation ellipse 

2.3. Construction of Theil index model of carbon emission 
intensity decomposition 

This paper primarily investigates the spatial characteristics 
of carbon emission intensity at the provincial level. Since 
carbon emission intensity has eliminated the regional 
economic and demographic heterogeneities, the Theil 
index is commonly utilized to measure it. (Song and Lv 
2017).  

Theil index T is calculated using GDP proportion 
weighting. By conducting a first-order decomposition of 
the Theil index, the total national carbon emission 
difference can be decomposed into inter-regional and 
intra-regional differences across seven major regions: 
South China, Central China, Northeast China, Southwest 
China, North China, East China, and Northwest China. The 
formula for the total difference Theil index is as follows 
(Meng et al. 2018; Ren et al. 2022) 
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Where, Yij is the GDP of the j province in Regioni.Yi is the 

GDP of region i, Pij is the carbon emission intensity of the j 
province in Region i. Pi is the total carbon emission 
intensity of region i. P is the total carbon emission 
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intensity of the province. The inter-provincial differences 
that define region i are: 
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Then the total difference can be decomposed by TP into: 
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Where TWRis the difference within the region, TBR is the 
difference among regions. 

2.4. Construction of kernel density estimation model for 
analyzing spatio-temporal characteristics 

To illustrate the continuous evolving trend of carbon 
emission structure in space, kernel density analysis is 
utilized to interpret the spatiotemporal evolution of 
carbon emission within Chinese provincial regions. Kernel 
density estimation method is a method of estimating 
unknown density function in probability theory (Wang and 
Wang 2015; Wang and Huang 2023). 

 

Figure 1. Growth rate of carbon emission intensity in different 

regions 

The basic assumption of this method is that X1, X2, X3, , 
Xn follows n independent and equally distributed sample 
points, let the corresponding density function be f(x); f(x) 
is unknown and needs to be estimated by sample. The 

empirical distribution function of X1, X2, X3, , Xn is (Cui 
and Li, 2021; Lee et al. 2022; Luo et al. 2020): 
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follows: 
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Where n is the total amount of carbon emission intensity 
data at provincial level; h is the bandwidth; k () is the 
kernel function; xi is provincial carbon emission intensity, 

which belongs to independent and homogeneous 
distribution. 

2.5. Sources of research data 

The carbon emission data in this paper are mainly from 
CEAD s database (www.ceads.net), which primarily 
calculates carbon emissions based on the Kaya model and 
its improved methodologies. The study targets 30 
provinces (municipalities and autonomous regions) in 
China. Tibet, Hong Kong, Macau and Taiwan are not 
considered due to lack of statistical data. Data for other 
variables are derived from authoritative publications such 
as China Statistical Yearbook and China Environmental 
Statistical Yearbook. Some missing data were completed 
by linear interpolation. In addition, due to the lag of the 
statistical yearbook, part of the 2022 data were 
supplemented by regression analysis. 

3. Results 

3.1. Carbon emission intensity measurement results 

Based on the Kaya model and its improved model, 
statistical data were collected, and using MATLAB tools, 
the carbon emission intensity of 30 provincial regions in 
China from 2005 to 2022 can be calculated as shown in 
Table 1. 

From the results, The intensity of carbon emissions shows 
a trend of first increasing and then decreasing. Although 
from 2005 to 2006, the intensity of carbon emissions 
remained relatively stable at 14.5 billion tons per billion 
tons, China's carbon emissions intensity has been steadily 
declining since a significant decrease in 2007, indicating 
that China's carbon emissions intensity indicator has been 
declining year by year due to technological progress and 
economic growth. 2020 and 2022 saw rebound in carbon 
emission intensity, which could be primarily attributed to 
two factors: the relaxation of environmental policies by 
the Chinese government in response to the COVID-19 
from 2019, and the consequent surge in coal power 
generation due to electricity shortages.  

As shown in Figure 1, from the regional perspective, since 
2005, the carbon emission intensity in eastern region has 
decreased first, reaching a low point in 2019, with an 
emission volume of 1.18 billion tons/100 million yuan, 
accounting for about 19% of the country's total, but 
rebounding to 1.41 billion tons/100 million yuan in 2021. 
During the sample investigation period, the carbon 
intensity in the central and western regions both showed 
significant decreases, from 3.16 billion tons/100 million 
yuan to 1.12 billion tons/100 million yuan and from 6.72 
billion tons/100 million yuan to 3.08 billion tons/100 
million yuan accounting for 18% and 50% of the country's 
total emissions, respectively, rebounding to 1.35 billion 
tons/100 million yuan and 3.36 billion tons/100 million 
yuan in 2021. The change was most significant in 
Northeast China, where carbon emissions dropped from 
1.82 billion tons per billion yuan in 2015 to 810 million 
tons per billion yuan in 2019, and finally rebounded to 990 
million tons per billion yuan in 2022. Some regions 
experienced fluctuations in 2022, with the eastern and 
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central regions dropping to 1.27 billion tons per billion 
yuan and 1.21 billion tons per billion yuan respectively. 

3.2. Results of carbon emission intensity based on the 
standard deviation ellipse model 

By ARCGIS calculation, typical time points are selected for 
analysis. According to Figure 2, the range of change in the 

distribution of the centroid of the ellipse is [110° 0110° 

43] E, [ 35° 5237°23] N. Compared with the geometric 
center of China (103°E, 36°N), this time the centroid is 
shifting to the southeast. By examining the specific 
trajectory and direction of the change in the centroid of 
the standard deviation ellipse, within the scope of this 
investigation, the central point of China's carbon emission 
distribution moved from Xiangning County towards the 
northwest to Yonghe County, and then gradually shifted 
to the northeast. Consequently, the central point of 
carbon emissions is shifting to the northwest. 

 

Figure 2. Results of centroid-standard deviation ellipse of carbon 

emission intensity 

3.3. Decomposition results of carbon emission intensity 
based on Theil index 

The previous analysis shows significant differences in 
carbon emissions among regions, with the distribution of 
carbon emission intensity demonstrating pronounced 
regional attributes. This warrants an in-depth examination 
of the factors contributing to the observed inter-regional 
emission differences. This article introduces the Theil 
index to measure the regional differences in carbon 
emission intensity. Compared to other methods, the Theil 
index makes it possible to observe the change between 
entities and their overall impact more clearly. 

Through the first-order decomposition of Theil index, 
seven regional differences and inter-provincial differences 
in China's carbon emissions were analyzed. According to 
Table 2 and Figure 3, it can be seen that during the sample 
investigation period, China's carbon emission intensity 
differences showed an upward trend, from 0.1393 in 2010 
to 0.2475 in 2019. The intra-provincial variation fluctuates 
around 0.15, which is the most important source of 
overall variation. The contribution rate of intra-group 
differences to the overall trend is increasing. According to 
the data from 2009 to 2022, the value of TBR is greater 
than that of TBP, and the value of TWP is negative. For 
example, the TBR value, TBP value and TWP value in 2022 
are 0.2323, 0.1651 and -0.0553 respectively, and the Theil 
index value is 0.3421. Changes of Theil index in Figure 2 
displays that the Theil index curve keeps increasing from 
2009 to 2020, and slightly decreases from 2021 to 2022. 

This shows that the overall difference in carbon emission 
intensity has generally maintained an increasing trend. 

 

Figure 3. Decomposition value of the Theil index for carbon 

emissions across provincial regions in China – Line Chart 

3.4. Spatial and temporal evolution results of carbon 
emission intensity based on kernel density estimation 
model 

The evolution of carbon emission intensity is essentially a 
dynamic process of aggregation and diffusion among 
crucial regions. However, it is difficult for the above 
research to visually express the carbon emission change 
path in different provinces. Therefore, kernel density 
model is introduced for analysis. 

 

Figure 4. Spatial distribution pattern of carbon emission intensity 

across provincial regions in China in 2005, 2010, 2015, and 2022. 

Standard Map of China - Drawing Review No. GS (2020) 4619 

As shown in Figure 4, according to the analysis of the 
evolution, the multi-scale bandwidth can reflect the 
spatiotemporal evolution of carbon emission intensity. On 
the whole, the Kernel density on the map is higher in the 
east than in the west, dense in the north and sparse in the 
south. In addition, there are also significant differences 
within the region, and the results are consistent with the 
previous findings. 
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Table 1. Carbon emission intensity of China's provinces (2005-2022) 

Province 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Beijing 1.68  1.47  1.26  1.13  1.06  0.93  0.75  0.69  0.57  0.54  0.49  0.42  0.38  0.35  0.32  0.32  0.33  0.35  

Tianjin 3.93  3.74  3.39  2.71  2.64  2.70  2.49  2.25  2.12  1.92  1.85  1.66  1.52  1.47  1.41  2.10  2.26  1.51  

Hebei 6.57  6.18  5.58  4.97  4.92  4.50  4.28  4.02  3.84  3.51  3.51  3.26  3.01  2.91  2.71  3.23  3.64  2.75  

Shanxi Province 13.89  13.36  11.05  8.73  8.74  7.53  6.78  6.60  6.60  6.70  7.85  7.70  6.69  6.50  6.44  8.07  8.65  7.07  

Inner Mongolia 8.85  12.11  8.20  8.07  7.72  7.38  7.98  7.49  6.73  6.46  6.01  5.71  5.56  5.89  6.13  8.43  7.52  7.62  

Liaoning 6.73  6.29  5.52  4.89  4.79  4.84  4.40  4.17  3.74  3.59  3.44  3.45  3.34  3.28  3.38  3.82  4.42  4.65  

Jilin 6.28  5.71  4.77  4.55  4.14  3.92  3.71  3.27  2.90  2.72  2.31  2.19  2.07  2.08  2.06  2.01  2.12  2.32  

Heilongjiang 5.24  4.98  4.66  4.24  4.38  4.13  3.70  3.50  3.08  3.04  2.90  2.87  2.78  2.72  2.70  2.73  2.77  2.88  

Shanghai 2.50  2.16  1.82  1.70  1.57  1.51  1.39  1.28  1.25  1.05  0.99  0.88  0.82  0.74  0.72  0.76  0.79  0.81  

Jiangsu 2.65  2.47  2.18  1.86  1.75  1.62  1.59  1.47  1.37  1.25  1.17  1.12  1.00  0.92  0.88  0.89  0.91  0.93  

Zhejiang 2.30  2.21  2.02  1.81  1.75  1.57  1.43  1.28  1.22  1.12  1.05  0.96  0.90  0.80  0.76  0.77  0.78  0.79  

Anhui Province 3.46  3.24  2.96  2.83  2.73  2.37  2.07  1.92  1.86  1.75  1.66  1.50  1.38  1.25  1.16  1.18  1.20  1.22  

Fujian 2.05  1.96  1.77  1.58  1.64  1.51  1.45  1.27  1.12  1.15  1.03  0.88  0.81  0.78  0.76  0.77  0.79  0.81  

Jiangxi 2.97  2.72  2.42  2.05  1.95  1.84  1.65  1.50  1.45  1.34  1.31  1.21  1.12  1.04  0.98  0.99  1.01  1.03  

Shandong Province 4.47  4.31  3.91  3.48  3.33  3.20  2.93  2.80  2.48  2.47  2.50  2.47  2.37  2.22  2.15  2.16  2.19  2.23  

Henan Province 4.15  4.02  3.60  3.10  2.93  2.68  2.55  2.17  1.97  1.82  1.60  1.45  1.28  1.15  0.99  0.93  0.97  1.00  

Hubei Province 3.74  3.60  3.18  2.57  2.41  2.24  2.07  1.83  1.41  1.28  1.13  1.03  0.94  0.87  0.85  0.83  0.87  0.91  

Hunan Province 3.39  3.09  2.86  2.32  2.16  1.88  1.73  1.52  1.33  1.18  1.06  1.00  0.93  0.88  0.80  0.76  0.82  0.86  

Guangdong 

Province 
1.75  1.65  1.46  1.31  1.32  1.27  1.18  1.08  1.01  0.93  0.86  0.80  0.75  0.71  0.66  0.63  0.64  0.66  

Guangxi 2.64  2.44  2.29  1.97  1.99  2.01  2.05  2.05  1.88  1.71  1.47  1.40  1.35  1.28  1.25  1.27  1.30  1.32  

Hainan 1.84  2.38  3.64  3.16  3.06  2.68  2.59  2.39  1.98  1.98  2.01  1.78  1.57  1.52  1.44  1.59  1.75  1.86  

Chongqing 3.10  2.98  2.65  2.25  2.14  1.95  1.76  1.53  1.18  1.12  0.90  0.82  0.76  0.71  0.66  0.65  0.68  0.71  

Sichuan 3.19  2.98  2.69  2.34  2.36  2.01  1.66  1.52  1.41  1.34  1.09  0.98  0.84  0.73  0.72  0.75  0.79  0.85  

Guizhou 8.53  8.39  7.21  6.00  5.97  5.14  4.57  4.17  3.66  3.07  2.67  2.50  2.18  1.78  1.67  1.76  1.87  1.96  

Yunnan Province 5.05  4.75  4.00  3.47  3.45  3.10  2.60  2.31  1.98  1.63  1.38  1.25  1.18  1.16  1.09  1.04  1.09  1.13  

Shaanxi 4.70  4.78  4.22  3.71  3.62  3.48  3.11  3.08  2.91  2.80  2.69  2.58  2.36  2.07  2.08  2.20  2.27  2.32  

Gansu Province 6.94  6.27  5.75  5.10  4.73  4.36  4.13  3.80  3.52  3.27  3.15  2.87  2.73  2.59  2.43  2.43  2.47  2.51  

Qinghai Province 5.39  5.40  5.16  4.53  4.40  3.61  3.56  3.81  3.74  3.24  2.74  2.85  2.50  2.19  2.02  2.05  2.13  2.21  

Ningxia 12.71  11.81  10.21  8.78  8.68  8.28  8.97  8.73  8.51  8.15  8.11  7.49  8.00  8.13  8.28  8.45  8.58  8.70  

Xinjiang 6.09  5.93  5.45  5.10  5.82  5.15  5.00  5.09  5.15  5.19  5.33  5.38  4.94  4.48  4.49  4.76  4.96  5.08  
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Figure 5. Distribution of carbon emission intensity across 

provincial regions in China 

 

Figure 6. Spatial distribution of carbon emission intensity across 

different provinces 

Further, the variations of regional Kernel density curves in 
2005, 2010, 2015 and 2022 were plotted respectively, as 
shown in Figure 5. Taking the central region as an 
example, the Kernel density curve in 2022 first increased 
and then decreased, and subsequently increased again 
before decreasing, showing the characteristics of "U-
shaped" and "inverted U-shaped" changes, with 
consistent patterns observed in the year 2005, 2010, and 
2015. The national trend, along with those of the eastern, 
western, and northeastern regions, has exhibited similar 
patterns of change. Consequently, an examination of 
evolution trend of carbon emission intensity across China 
and its four regions, with focus on the curve's positioning, 
span, and peak value, indicates pronounced spatial and 
temporal heterogeneity in carbon emission intensity. 

4. Discussion 

4.1. Further discussion on changes in carbon emission 
intensity 

The results of carbon emission intensity were calculated 
based on the Kaya model and its improved model. To 
compare the trends in different time series from 2005 to 
2022 in China, the map in Figure 6 was drawn using ArcGIS 
software. 

Referring to relevant studies (Kamani et al. 2023), as 
shown in Figure 6, in terms of the growth rate of carbon 
intensity, the trend in the growth rate of carbon emissions 
across China's provincial regions has been on a downward 
trajectory from 2006 to 2019. Furthermore, aside from 
the western region experiencing a positive growth rate in 
2006, all other regions have shown a negative growth in 
carbon intensity in all subsequent years. From 2020 to 
2022, the growth rate of carbon emissions saw a 
resurgence. Regarding the growth rate of carbon 
intensity, except for a fluctuating rebound in the central 
region in 2015, all other areas showed a downward trend. 
Based on the results, it can be seen that the intensity of 
carbon emissions is significantly affected by economic 
growth and policy measures. In 2020, when the Chinese 
government proposed the strategic goal of "carbon peak 
by 2030", the intensity of carbon emissions rebounded, 
illustrating that 2020 was a significant turning point. 

Table 2. Decomposition value of the Theil index for carbon emissions across provincial regions in China 

Years TBR TBP TWP Theil index 

2009 0.1147 0.0772 -0.0428 0.1490 

2010 0.1133 0.0757 -0.0411 0.1479 

2011 0.1251 0.0886 -0.0435 0.1702 

2012 0.1396 0.0916 -0.0473 0.1839 

2013 0.1615 0.0956 -0.0555 0.2015 

2014 0.1700 0.1017 -0.0570 0.2147 

2015 0.1952 0.1207 -0.0646 0.2513 

2016 0.2025 0.1257 -0.0638 0.2644 

2017 0.2114 0.1326 -0.0641 0.2798 

2018 0.2220 0.1445 -0.0627 0.3038 

2019 0.2344 0.1549 -0.0631 0.3262 

2020 0.2732 0.1705 -0.0685 0.3751 

2021 0.2631 0.1627 -0.0634 0.3624 

2022 0.2323 0.1651 -0.0553 0.3421 
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Table 3. Theil contribution values of carbon emissions by region from 2009 to 2022 

Year Northeast East China Central China North China South China Northwest Southwest 

2009 0.0018 0.0398 0.0081 0.1892 0.0571 0.0488 0.0887 

2010 0.0042 0.0410 0.0104 0.1799 0.0433 0.0568 0.0839 

2011 0.0034 0.0373 0.0125 0.2035 0.0469 0.0805 0.0903 

2012 0.0055 0.0439 0.0103 0.2109 0.0486 0.0766 0.0948 

2013 0.0061 0.0384 0.0157 0.2179 0.0395 0.0808 0.1029 

2014 0.0066 0.0476 0.0189 0.2323 0.0452 0.0881 0.0826 

2015 0.0128 0.0583 0.0170 0.2597 0.0550 0.1039 0.0960 

2016 0.0167 0.0721 0.0154 0.2778 0.0480 0.0964 0.1025 

2017 0.0183 0.0778 0.0117 0.2736 0.0423 0.1263 0.0951 

2018 0.0167 0.0810 0.0091 0.2837 0.0445 0.1542 0.0753 

2019 0.0199 0.0819 0.0042 0.2996 0.0484 0.1693 0.0722 

2020 0.0340 0.0789 0.0036 0.3090 0.0634 0.1688 0.0799 

2021 0.0474 0.0778 0.0024 0.2864 0.0730 0.1659 0.0824 

2022 0.0443 0.0767 0.0018 0.3256 0.0776 0.1633 0.0815 

 

4.2. Discussion on the decomposition of carbon emission 
intensity based on Theil index 

Theil index is instrumental in assessing assess regional 
differences in carbon emissions. Beyond analyzing the 
differences in carbon emission intensity at the provincial 
level, it is also necessary to adopt a regional clustering 
method to compare the spatial differences in China's 
carbon emissions (Kamani 2023). According to the 
clustering results, the sample data is reclassified to obtain 
the carbon emission intensity of different regions.  

As shown in Table 3, during the study period, the overall 
difference in carbon emission intensity among the seven 
regions has increased, while the contribution rate of the 
Theil index from 2010 to 2017 to the overall Theil index 
has been decreasing year by year. Between 2018 and 
2019, the contribution rate of inter-regional carbon 
emissions has surpassed that within regions. According to 
the actual mean value of the Theil index contribution 
regarding the inter-provincial carbon emission differences 
from 2010 to 2022, it can be deduced that: North 
China>Northwest>Southwest>EastChina>SouthChina>Nor
theast>Central China. 

 

 

Figure 7. Theil contribution values for carbon emissions across 

regions in China–Bar Chart 

As shown in Figure 7, the mean value of Thiel contribution 
is 0.170 in Northeast China, 0.609 in East China, 0.1011 in 
Central China, 0.2535 in North China, 0.0523 in South 

China, 0.1128 in Northwest China, and 0.0877 in 
Southwest China. North China tops the values, with 
Central China at the bottom. This indicates significant 
disparities in carbon emissions among regions, with 
pronounced differences within provinces. In addition, 
according to the contribution rate index, East China is the 
highest, all above 70%; South China is the lowest, less 
than 10%. 

Figure 8 further demonstrates the distribution of Theil 
contribution values of different provinces, plotting the 
distributions in 2012, 2014, 2016, 2018, 2020 and 2022. 
From the results, the Thiel index shows certain changes in 
different years, especially the farther away from the year, 
the more significant the change. This test further verifies 
the typical characteristics of spatial heterogeneity of 
China's carbon emissions. 

 

Figure 8. Map of Theil contribution value of carbon emissions in 

different provinces (2012-2022) 

4.3. Discussion of carbon emission intensity results based 
on kernel density estimation model 

The distribution curve of kernel density estimation is 
plotted as shown in Figure 8 to further compare the 
carbon emission characteristics of different regions. 

As shown in Figure 8, considering the position of the 
curves, the centers of the kernel density functions for the 
three regions excluding the Northeast, as well as the 
national trend, have shown a tendency to move to the left 
and then to the right between 2005 and 2021. In the 
Northeast region, the peak shifted from a bimodal to a 
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unimodal pattern between 2005 and 2010, indicating a 
reduction in polarization. Among them, the changes in the 
western region were more pronounced. In contrast, the 
changes in the whole country and the eastern region were 
relatively small, indicating that the magnitude of changes 
in carbon emission intensity across various regions was 
inconsistent. Furthermore, the kernel density tends to 
move towards lower values. 

From the peak change of the curve, the peak density of all 
regions showed a decline from 2005 to 2015. The shape of 
the density function curve in the eastern, western and 
central regions and the whole country shifted from a 
sharp peak to a broader peak, while the Northeast region 
exhibited a trend of narrowing from a broad to a sharp 
peak. This indicates that the carbon emission intensity in 
different regions presents U-shaped and inverted U-
shaped changes. Finally, upon examining the results from 
2016 to 2022, the variations in the curves across different 
regions have narrowed, showing dynamic convergence. 
Possible reasons: With the concept of green development, 
the Chinese government has introduced a series of 
policies to reduce carbon emissions, effectively 
suppressing the growth of carbon emission intensity. 

 

Figure 8. Distribution Curves of Carbon Emission Kernel Density 

Estimation in Different Regions 

5. Conclusion 

Based on the typical fact that "reducing carbon emissions" 
can promote the low-carbon circular development of the 
economy and society, this article uses panel data from 
2005 to 2022 to analyze the impact of carbon emission 
reduction on China's economic growth, industrial 
structure, and energy consumption. This article 
systematically analyzes the carbon emission intensity of 
provinces in China, thoroughly examining the intensity 
characteristics, regional spatial disparities, and the trends 
of spatiotemporal evolution. The principal research 
findings are as follows: 

First, from a holistic perspective, the distribution of 
carbon emission intensity in China is characterized by 

significant regional heterogeneity, with significant 
differences in emissions among regions. The distribution 
of the centroid of the geometric ellipse of China varies 

from [110°0′～110°43′] E, [ 35°52′～37°23′] N, indicating 
that the carbon emission intensity in eastern and 
southern China is higher than that in western and 
northern China. 

Secondly, resulting from technological progress and 
economic growth during the sample period, the overall 
difference in China's carbon emission intensity decreased 
yearly but showed a "U" shaped fluctuation trend. In 
terms of carbon emission intensity, the carbon intensity of 
the eastern region rebounded to 1.41 billion tons per 
billion yuan in 2021 and dropped back to 1.27 billion tons 
per billion yuan in 2022. In 2019, the figure for central 
region dropped to 1.12 billion tons/billion yuan, 
rebounded to 1.35 billion tons/billion yuan in 2021, and 
dropped back to 1.21 billion yuan in 2022. In 2019, the 
carbon intensity of the western region fell to 3.08 billion 
tons/billion yuan, and rebounded to 3.36 billion 
tons/billion yuan in 2021. The carbon intensity of the 
Northeast region in 2019 was 810 million tons/billion 
yuan, and it rebounded to 990 million tons/billion yuan in 
2022, making the Northeast region the area with the 
lowest carbon intensity. 

Thirdly, according to the test results, regional differences 
have a significant impact on carbon emissions. The Theil 
index decomposition results reveal that inter-regional 
carbon emission disparities were less pronounced than 
intra-regional differences from 2010 to 2017, yet 
exceeded them from 2018 to 2022. This trend highlights 
the necessity for provinces to harness the carbon trading 
market's potential in reducing carbon emissions. 

Fourthly, from the perspective of the national spatial 
pattern of provincial carbon emissions, the spatial 
distribution of provincial carbon emissions in China shows 
a trend of "high in the east and low in the west, dense in 
the north and sparse in the south". From 2005 to 2015, 
the kernel density curve showed a downward trend in 
general, with the centers of carbon emission kernel 
density functions in various regions showing distinct 
patterns of convergence. The spatial evolution of carbon 
emission intensity in different regions during 2016-2022 
showed a decreasing trend, indicative of dynamic 
convergence. At the same time, according to the two-
dimensional and three-dimensional curves of the kernel 
function, it is found that the carbon emission distribution 
in different regions generally presents a trend from 
agglomeration to dispersion. However, in 2022, the 
national and western regions experienced a weakening in 
their concentration trends; the spatial disparity in carbon 
intensity within the central region gradually diminished; 
and the Northeast region saw a transition from a bimodal 
to a unimodal peak in its curve, indicating a decline in 
polarization. 

The above conclusions hold important theoretical and 
practical value. At the existing policy level, it is necessary 
to combine the carbon emission differences and economic 
development status of different regions, give priority to 
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the implementation of carbon trading system for eastern 
provinces and cities with large carbon emissions and 
economically developed enterprises, and promote the 
green economic transformation. Moreover, it is crucial for 
the national government to set reasonable emission 
reduction targets for all provinces and cities, and allocate 
carbon emission quotas for different regions according to 
the development status of different provinces and cities. 
To establish a complete unified carbon trading market, it 
is also necessary to consider the carbon intensity of 
neighboring provinces, establish a sound regional carbon 
emission reduction cooperation mechanism, and advance 
the green development of provinces in accordance with 
local conditions. 
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