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ABSTRACT  16 

Air pollution, a harmful or excessive quantity of pollutants from natural sources and human 17 

activities, poses risks to human health, the environment, and ecosystems. AI breakthroughs 18 

have allowed for the incorporation of technologies into performance indices, resulting in the 19 

development of an AI-based air quality system that evaluates water quality in real time using 20 

WHO-defined parameters. This article describes the implementation and planning of AI-21 

based IoT for air pollution tracking and forecasting utilizing AI methodologies, as well as a 22 

dashboard on the internet for real-time tracking of air pollutants via Google Cloud servers. 23 

Air pollutants such as NO2, NOx, NH3, CO, SO2, and O3 are gathered from IoT sensor nodes 24 

in Sivakasi, Tamil Nadu, India, utilizing artificial intelligence algorithms. Individual 25 

pollutants are forecasted using time series modeling approaches such as Artificial Neural 26 

Network (ANN), Naive Bayes Model, k-nearest neighbour (k-NN), Support Vector Machine 27 

(SVM), and Seasonal Autoregressive Interated Moving Average (SARIMA). The data from 28 

the IoT sensor node is utilized to train the model, resulting in optimal parameters. The 29 

derived model parameters are validated using new, previously unknown data for time. The 30 

performances of several Time Series models are examined using performance metrics such as 31 

Mean Absolute Error (MAE), coefficient of determination (R2), and Root Mean Square Error 32 

(RMSE). An AI-based algorithm has been flashed in the Raspberry Pi 3. The present air 33 

pollution data and anticipated data are monitored throughout a 7days from 10 p.m. to 4 a.m. 34 

using a digital dashboard built in an open-source using Google cloud services. Finally 35 

comparing to all above AI based algorithms, SARIMA performed well and h+ad a 95% 36 

accuracy level.  37 
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1. Introduction 41 

The rapid expansion of technology, urbanisation, and population increase have made air 42 

pollution a global issue. It affects people's life, their employment, the growth of the economy, 43 

and it fuels climate change. According to the World Health Organisation (WHO), outdoor air 44 

pollution poses a greater threat than previously recognised. Approximately 7 million people 45 

die from air pollution each year; Particulate Matter alone was responsible for 5.2 million of 46 

these premature deaths in 2020. South and East Asia have the highest death rates. While 47 

deaths from air pollution decreased between 2000 and 2023, the mortality rate in developing 48 

countries like India increased by 14%. Numerous factors contribute to air pollution, such as 49 

vehicle emissions, industrial activities, power plants, burning biomass, construction sites, 50 

waste disposal, natural occurrences like wildfires and volcanic eruptions, chemical reactions, 51 

and indoor sources like smoking, cooking with solid fuels, and poor ventilation. The extent to 52 

which these sources contribute to air pollution varies, therefore finding comprehensive 53 

solutions combining collaboration from public and private sectors as well as communities and 54 

individuals is necessary. A multifaceted strategy that takes into account the geography, the 55 

weather, industrial activity, and population density is needed to address air pollution. 56 

Due to a number of circumstances, Sivakasi, a key centre for the Tamil Nadu matchstick and 57 

fireworks industry, is experiencing severe air pollution. Heavy metals, nitrogen oxides, 58 

sulphur dioxide, and particulate matter are among the pollutants produced by the industry. 59 

Pollution is also caused by other industries, such as printing, packing, and textile 60 

manufacture. Pollution is also caused by agricultural practices like burning crop leftovers and 61 
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using biomass fuels for cooking. Pollution is also a result of the growing number of cars on 62 

the road. Sivakasi's geographic location traps airborne contaminants, which are made worse 63 

by restricted airflow. Government agencies, business associations, and the neighbourhood 64 

must collaborate to enact more stringent laws, support greener production techniques, employ 65 

cleaner fuels, and embrace environmentally friendly waste disposal strategies in order to 66 

solve the problem. One international organisation in charge of combating air pollution is the 67 

World Health Organisation (WHO). It creates regulations and standards for air quality and 68 

offers suggestions for acceptable pollution levels to safeguard the general public's health.  69 

The World Health Organisation (WHO) also collects and performs epidemiological studies, 70 

health impact assessments, and other research on the impacts of air pollution on human 71 

health. Through influencing and public campaigns, the World Health Organisation (WHO) 72 

increases public awareness of the health effects of air pollution. The World Health 73 

Organisation (WHO) works in partnership with governments, stakeholders, and other 74 

international organisations to devise and execute global air pollution mitigation initiatives. In 75 

order to combine resources and expertise in the fight against air pollution, the WHO also 76 

forms alliances with governments, non-governmental organisations, academic institutions, 77 

business, and civil society. Figure 1 shows the frames work of the present study. 78 

 79 

Air pollution from firework factories affects plant metabolism in Sivakasi. A study tracking 80 

plant metabolism through enzymatic and biochemical measures found significant impacts on 81 

Ficus bengalensis, highlighting the alarming rise in air pollution and deterioration of air 82 

quality in the region (Thambavani et al., 2009). This underscores the urgent need for 83 

pollution control measures to safeguard both the environment and human health. Further 84 

emphasizing the importance of pollution control, another study investigated public opinion 85 

and awareness of air pollution and control strategies in Sivakasi Taluk, Virudhunagar district 86 

(Manikandan et al., 2016). This research sheds light on community perspectives and attitudes 87 
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toward environmental issues, advocating for informed policy decisions to mitigate air 88 

pollution's adverse effects. These studies collectively emphasize the critical need for 89 

proactive measures to address air pollution in Sivakasi, aiming to preserve environmental 90 

quality and public health in the region. 91 

 92 

 93 

Figure 1: Framework of Air pollution 94 

By continuously monitoring carbon dioxide levels in real-time, this innovative system aims to 95 

assess pollution levels in urban and industrial settings. It utilizes data from CO2 sensors, 96 

temperature readings, and air quality metrics through IoT technology. An alert mechanism 97 

triggers when air quality thresholds are exceeded, promptly notifying traffic management and 98 

environmental authorities via GSM communication. This proactive approach enables users to 99 

make informed decisions about their travel plans (Raj et al., 2017). 100 

This study introduces an IoT-based system for monitoring and predicting air pollution in 101 

specific locations. Employing Long Short Term Memory (LSTM) machine learning, the 102 

system forecasts and analyzes air quality trends (Ayele & Mehta, 2018). IoT facilitates a 103 

network of smart devices capable of sensing and communicating with their surroundings 104 

globally. Proposing a three-phase air pollution monitoring setup utilizing gas sensors, 105 

Arduino IDE, and Wi-Fi modules, the solution addresses the global challenge of air pollution. 106 

Deployable in urban areas, the system collects real-time air quality data accessible via the 107 

IoT-Mobair Android application. It not only measures current pollution levels but also 108 

predicts future air quality indices (Dhingra et al., 2019). 109 
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An Internet of Things (IoT) based real-time air pollution monitoring and forecasting system 110 

designed to save hardware costs and enhance environmental protection. Using neural network 111 

technology, the device may be installed over wide areas and foresee changes in air pollution. 112 

It also improves the effectiveness of traditional air automated monitoring systems by 113 

permitting focused emergency disposal actions to reduce losses in real-world applications 114 

(Xiaojun et al., 2015). In addition to reviewing IoT-based air quality monitoring systems, this 115 

research suggests an intelligent platform for pollution reduction. It makes recommendations 116 

for online administration, cloud-based decision making, information tracking, and 117 

comprehensive network connectivity while contrasting RFID, M2M, and sensor networks. 118 

The study also looks at how well IoT ambient air quality control platforms function and are 119 

available in different scenarios (Zhao et al., 2020). 120 

This study introduces the Environmental Toxicology for Air Pollution Monitoring System 121 

powered by artificial intelligence and enabled by the Internet of Things (ETAPM-AIT), 122 

aimed at advancing human health. The system employs a sensor array within the Internet of 123 

Things to detect eight contaminants, with collected data transmitted to a cloud server for 124 

comprehensive analysis. 125 

For efficient categorization and prediction of air quality, the model integrates an Elman 126 

Neural Network (ENN) enhanced by Artificial Algae Algorithms (AAA). According to 127 

findings from simulation tests, these cutting-edge methodologies demonstrate robust 128 

performance under various conditions (Asha et al., 2022)  In addition, a novel approach using 129 

Internet of Things (IoT) technology for air quality monitoring incorporates edge computing 130 

capabilities. This system gathers real-time data through sensors that promptly transmit 131 

information to nearby computing nodes for immediate processing and analysis.   By 132 

employing a strategy that balances local data processing with battery-powered sensing nodes, 133 

the model effectively reduces computational burdens. Moreover, algorithms are employed to 134 

address cross-sensitivity issues and minimize potential inaccuracies, resulting in a data 135 
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accuracy rate between seventy-five to eighty percent.  Furthermore, through automated 136 

sensor calibration, the system achieves enhanced efficiency while reducing power 137 

consumption by up to 23%. Experimental evaluations validate the operational effectiveness 138 

of this approach (Idrees et al., 2018). 139 

In this case the effects of air pollution on the environment and human health are covered in 140 

this overview, with an emphasis on machine learning and artificial intelligence techniques. It 141 

focuses on hybrid models for predicting climate change, chronic respiratory conditions, and 142 

significant pollutants. Using performance evaluation error measures such as R2, RMSE, 143 

MAE, and MAPE, the study emphasises the higher performance of hybrid models over single 144 

AI models (Subramaniam et al., 2022). In Consequence, Several machine learning methods 145 

have been proposed by researchers to forecast PM2.5 levels in contaminated urban areas. In 146 

Python 3.7.3, the experiment was conducted using Jupyter Notebook. The findings indicated 147 

that the models XGBoost, AdaBoost, random forest, and KNN were more accurate in 148 

forecasting PM2.5 and air quality levels. With lower error rates, the suggested models 149 

performed better than the current ones (Kothandaraman et al., 2022). 150 

The Air Quality Index (AQI), which measures the cleanliness or contamination of the air, is a 151 

tool used by the Environmental Protection Agency (EPA) to monitor pollutants such as 152 

ozone, sulphur dioxide, particulates matter, carbon monoxide, and nitrogen dioxide (Cordova 153 

et al., 2021). The populace becomes more vulnerable as the AQI rises. At more than 4000 154 

locations, the US Environmental Protection Agency keeps an eye on six pollutants: lead, O3, 155 

PM10, PM2.5, NO2, and SO2. These pollutants correlate to various air quality criteria 156 

(Schürholz et al., 2020). 157 

This study explores the application of SARIMA models specifically in forecasting air 158 

pollution levels. It discusses how seasonal ARIMA models can be used to analyze historical 159 

air quality data and predict future trends, taking into account the seasonality and other 160 
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temporal patterns of air pollutants. The paper likely provides insights into methodology, data 161 

preprocessing, model selection, and validation techniques relevant to using SARIMA for air 162 

quality prediction (Gupta et al 2020). 163 

The primary causes of air pollution, which are combustion processes, traffic, industry, and 164 

agriculture, are threats to ecosystems and biodiversity. Using low-emission fuels, green 165 

technology, and legal restrictions have the potential to cut air pollutants by at least 40% since 166 

1990 (Abd Rahman et al., 2013).  The three air pollutants that have the biggest effects on 167 

human health in Germany are ground-level ozone (O3), nitrogen dioxide (NO2), and 168 

particulate matter (PM). These are the pollutants that the European Environmental Agency 169 

concentrates on (Asghari et al., 2016).  Reducing air pollution through appropriate measures 170 

is the goal of environmental agencies and municipal authorities. It is difficult to predict and 171 

simulate air pollution concentrations because of the intricate interactions that exist between 172 

contaminants and outside variables like weather, transportation, and land use (Yarragunta et 173 

al., 2021). Providing dependable data on air pollution variability to local decision-makers in 174 

transportation, urban, and environmental planning is essential (Ren et al., 2022).  175 

Moreover, a mobile pollution sensor platform for enhanced data accuracy, visualisation tools 176 

for personalised health, travel, and pollution alerts, a clinical experiment to ascertain the 177 

causal relationships between personal pollutants and health perception, and an AI and big 178 

data framework for high-resolution, real-time air quality estimation (Geetha Mani et al., 179 

2021). The method is cross-disciplinary and readily adaptable to different fields and nations 180 

(Li et al. , 2021). In order to address public health problems, this book examines Internet of 181 

Things options for indoor air quality monitoring. It offers case studies and innovative 182 

techniques, such as reasonably priced sensors. In this multidisciplinary field, the writers talk 183 

about cutting edge technology, applications, algorithms, systems, and future prospects (Saini 184 
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et al., 2022). With case studies and review questions, it is intended for advanced 185 

undergraduate and graduate courses. The book covers issues including emissions, climate 186 

change, and ozone profiles and is easily readable by both novice and expert readers (Tiwari, 187 

2018). Finally, With an emphasis on solid waste management, transportation, and healthcare 188 

systems, the guide covers the usage of IoT devices in pollution control and health 189 

applications. In addition to providing strategies for controlling and reducing pollution 190 

sources, it addresses the role of IoT in monitoring industrial pollution, solid waste, and 191 

healthcare (Roy et al., 2023). 192 

2. Proposed Research Methodology 193 

2.1 Data collection  194 

 195 
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Figure 2 Scatter plot for the relation among attributes 196 

 197 

Data is acquired from the UCI AI repository using PM2.5 concentrations. The data set was 198 

collected between April 21, 2024 and April 27, 2024 from 10PM to 4AM in Sivakasi, 199 

TamilNadu, India as well as from https://www.windy.com/-Menu/menu?21.997,79.001,5. 200 

The data set's major characteristics are time, date, hour, NO2, NOx, NH3, CO, SO2, 201 

O3,  pressure, temperature, combined wind direction, and cumulative wind speed. Each 202 

recorded sample has a length of one hour (Figure 2). By identifying and removing redundant 203 

values throughout preparation stages, the performance of proposed models is assessed using 204 

the UCI AI repository data set. 205 

2.2Data measurement 206 

An Internet of Things-based Air Quality Index (AQI) system monitors and measures air 207 

quality in real time. The following steps describe the data measurement of IoT-based AQI, 208 

which is examined in this study. 209 

1. At first, Sensors are deployed across different locations to measure pollutants and 210 

environmental parameters.  211 

2. Data is collected and transmitted to a central server or cloud platform via wireless 212 

communication protocols such as wifi, Bluetooth and so on.  213 

3. Real-time data processing and analysis using algorithms, often with artificial 214 

intelligence and machine learning techniques, detect patterns, trends, and anomalies.  215 

4. An AQI value is calculated using standardized formulas or algorithms, providing a 216 

numerical or color-coded scale indicating the overall air quality level. The calculated 217 
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AQI values are presented to users through user-friendly interfaces, such as mobile 218 

apps, websites, or dashboards. In case of poor air quality conditions or when AQI 219 

thresholds are exceeded, alerts are sent to relevant stakeholders.  220 

5. Data collected from IoT devices can be shared with other systems for decision-221 

making and policy formulation. This system enables proactive measures to mitigate 222 

air pollution and protect public health, empowering individuals, communities, and 223 

authorities to make informed decisions regarding outdoor activities, transportation, 224 

and environmental policies. 225 

These data measures, obtained from monitoring stations strategically located across Sivakasi, 226 

can give useful insights into air quality trends, pollutant sources, and possible health hazards 227 

connected with air pollution in the area. Continuous surveillance and evaluation of these 228 

indicators are required for successful air quality management and the deployment of 229 

mitigation strategies. Figure 3 demosntrates the present archtectures of the research. 230 
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 231 

Figure 3. Proposed Model 232 

2.3 IoT node architecture 233 

As shown in figure 4, the IoT Node was set up using three sensors that were linked to an 234 

Arduino and calibrated using the Arduino. The data was wirelessly transferred to a Raspberry 235 

Pi 3, which works as both a local server and an edge computing device for data storage. On 236 

the Raspberry Pi, techniques for artificial intelligence and data preprocessing were 237 

implemented using Python code. To create an air pollution monitoring system using a 238 

Raspberry Pi 3 Model B, Arduino Uno board, and gas sensor modules, it needs the following 239 

hardware components: a Raspberry Pi 3 Model B board, microSD card, power supply, 240 
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 241 

Figure 4. Iot node architecture 242 

HDMI cable, monitor, Arduino Uno board, USB cable, and gas sensor modules. Wiring and 243 

connectors include jumper wires, board or perfboard, stable power supply, waterproof 244 

enclosure, communication interface, computer with development environment, optional 245 

components like LCD display, LEDs, resistors, and capacitors. Mounting hardware ensures 246 

secure placement of sensors and boards. Follow safety precautions and calibration routines 247 

for accurate data collection (Figure 5). 248 

 249 

Figure 5. Hardware set up 250 
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2.4 Seasonal Autoregressive Integrated Moving Average (SARIMA) 251 

Using time-series data, the Seasonal Autoregressive Integrated Moving-Average (SARIMA) 252 

model is a technique for identifying air pollution. It entails gathering, preparing, and 253 

examining data to look for patterns and seasonal variances. Plots of the autocorrelation 254 

function and partial autocorrelation function are used to identify the model, and methods such 255 

as maximum likelihood estimation are used to estimate it. Metrics including accuracy, 256 

coefficient, mean absolute error, and root mean square error are used to assess its predictions. 257 

 258 

Figure 6 SARIMA Model 259 

The trained model is used to forecast future air pollution levels, considering both short-term 260 

and long-term trends. An alerting system is set up to notify stakeholders when pollution 261 

levels exceed certain thresholds or when the forecast indicates deteriorating air quality. The 262 

model is regularly updated to improve accuracy and adapt to changing patterns. It is 263 
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integrated with IoT-based air quality monitoring systems to automate data collection and 264 

analysis. This approach allows for the development of robust tools for detecting air pollution 265 

trends, making informed decisions, and implementing effective pollution control measures. 266 

Table 1 contains a record of the model parameters. Figure 6 shows the block diagram for the 267 

time-series Analysis-ARIMA model. 268 

 269 

 270 

Table 1 SARIMA model coefficient 271 

Model 

coefficients 

Auto 

regressive 

model(p) 

Differencing 

model(d) 

Moving 

average 

(q) 

Values 6 4 2 

 272 

2.5 PM2.5 level prediction of pollutants (NO2, NOx, NH3, CO, SO2, O3) using AI based 273 

algorithms 274 

Predicting PM2.5 levels based on other pollutant concentrations (NO2, NOx, NH3, CO, SO2, 275 

O3) using various AI models such as Naive Bayes, Artificial Neural Network, Support Vector 276 

Machine, k-Nearest Neighbors can be applied to this task:  277 

3. Model Training and Evaluation: 278 

 3.1 Naive Bayes:  279 

The process of predicting PM2.5 levels using Naive Bayes involves several steps. First, 280 

historical data on PM2.5 levels and pollutants is collected from various sources. Data is 281 



 

17 

 

preprocessed to clean, handle missing values, and transform into a suitable format for 282 

analysis. Relevant features are selected, such as pollutant concentrations (NO2, NOx, NH3, 283 

CO, SO2, O3), to predict PM2.5 levels. The Naive Bayes classifier is trained on the training 284 

data once the dataset is split into training and testing sets. The model is used to forecast new 285 

pollutant concentrations and its performance is assessed using testing data and metrics such 286 

as MAE and MSE. 287 

3.2 Artificial Neural Network (ANN):  288 

There is a step-by-step method for utilising an Artificial Neural Network (ANN) to estimate 289 

PM2.5 levels depending on pollutant concentrations. The first step in the process is gathering 290 

data, which includes past information on PM2.5 concentrations and other pollutants. The next 291 

step is data preparation, which cleans and formats the data so that it can be analysed. After 292 

that, features are chosen with the concentrations of contaminants serving as the primary 293 

features. The architecture of the ANN, comprising of the number of neurons, layers, 294 

activation functions, and other hyperparameters, is designed. The model is trained using the 295 

training data once the dataset has been split into two sets: testing and training. The testing 296 

data is used to evaluate the model's performance and can be applied to forecast new data. 297 

3.3 Support Vector Machine 298 

Support Vector Machine (SVM) is a popular supervised learning technique for forecasting 299 

PM2.5 levels using on pollutant concentration. To use SVM, gather historical data on PM2.5 300 

levels and pollutants, prepare it by cleaning, handling missing values, and transforming it into 301 

a suitable format for analysis. Select relevant features from the dataset, such as pollutant 302 

concentrations, to predict PM2.5 levels. A dataset that has been split into training and testing 303 

sets is used to train the SVM model, and metrics like MSE, R-squared, and MAE are used to 304 

assess the model's performance. With fresh data, the model can forecast contaminants; its 305 
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kernel and hyperparameters are tuned according to the features and performance demands of 306 

the dataset. 307 

3.4 k-Nearest Neighbors 308 

The k-Nearest Neighbors (k-NN) approach is a classification algorithm that detects air 309 

pollution. It entails gathering historical information on pollutant concentrations and 310 

accompanying pollution levels. The data is preprocessed to remove errors, manage missing 311 

numbers, and convert it to an appropriate format for analysis.  312 

The training data is used to train the k-NN classifier, which is then assessed using the testing 313 

data. Accuracy, precision, recall, and F1-score are some of the most used assessment 314 

measures for classification tasks. Once trained and assessed, the model may be used to 315 

forecast new data using pollutant concentrations as input. This approach provides a step-by-316 

step guidance to applying k-NN in air pollution detection. By following these steps and 317 

considerations, you can develop predictive models to estimate PM2.5 levels based on other 318 

pollutant concentrations using Naive Bayes, Artificial Neural Network, Support Vector 319 

Machine, and k-Nearest Neighbors algorithms. 320 

3.5 Performance Indices  321 

Each created model's performance measure is evaluated using the statistical criteria 322 

of  RMSE, coefficient of determination (R2), and MAE.  323 

3.5.1 MAE  324 

MAE is the average of expected and actual errors, determined via an equation. 325 

𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑙=1

|𝑥𝑖 − 𝑥̂𝑙| 326 
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 327 

 328 

3.5.2 Root Mean Squared Error (RMSE). 329 

 The Root Mean Square Error (RMSE) is a statistical measure that compares predicted values 330 

to actual values, with a smaller number indicating better performance, and is calculated using 331 

Equation . 332 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  

𝑁

𝑙=1

 (𝑋1 − 𝑋2̂)
2
 333 

3.5.3 Coefficient of determination (R2) 334 

The coefficient of determination (R) is a statistical metric used to evaluate a regression 335 

model's fit, reflecting the proportion of variation in the dependent variable that can be 336 

predicted from the independent variables. It is especially important in air pollution prediction, 337 

as R2 reflects the model's ability to forecast PM2.5 levels based on pollutant concentrations. 338 

R2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 339 

4. Results and Discussion  340 

The study uses Raspberry Pi for data collection and forecasting using Python programs and 341 

time series models. Artificial Neural Network (ANN), Naive Bayes Model, Support Vector 342 

Machine (SVM), k-nearest neighbor (k-NN), and Seasonal Autoregressive Interacted Moving 343 

Average (SARIMA) calculations are trained using training data. Results are anticipated for 344 

one hour every seven days. To ensure model correctness, anticipated information is compared 345 

to test data. Performance indices are used to validate the outcomes. The results reveal that the 346 
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SARIMA algorithm is more accurate at estimating CO levels. Table 2 and Figures 7 (a) and 347 

(b) show the model performance  metrics  for test data, together with the 95% confidence 348 

intervals. 349 

a 
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Figure 7 Prediction of CO  (a) Training Data (b) Test Data 350 

Table 2. Performance metrics of CO 351 

Performance Indices MAE RMSE Coefficient 

of 

determination 

(R2) 

Artificial Neural Network (ANN) 0.3343 0.4677 0.6565 

Naive Bayes Model 0.3569 0.3344 0.6232 

k‐nearest neighbour (kNN) 0.3679 0.3659 0.6785 

Support Vector Machine (SVM) 0.3869 0.3783 0.5673 

Seasonal Autoregressive interated moving average 

(SARIMA) 

0.3876 0.3862 0.5452 

 352 

The study compares the performance of various AI based algorithms and time series 353 

forecasting models for predicting ammonia (NH3) levels in the air which is displayed in 354 

figure 8 (a) and (b). Data collection involves gathering historical data, preprocessing it, and 355 

feature engineering. A larger portion of the dataset is used for training, and the dataset is split 356 

into testing and training phases. Model selection and training include k-NN, SVM, SARIMA, 357 

Naive Bayes, and neural network model design and training. For NH3 levels, the optimal 358 

model is chosen through performance evaluation. 359 
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b 

 

 360 

Figure 8. Prediction of NH3  (a) Training Data (b) Test Data 361 
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Table 3 shows that the SARIMA method has greater accuracy in forecasting NH3, with 362 

minimum MAE, R2, and RMSE, as well as a 95% confidence range for test data. 363 

Table 3. Performance metrics of NH3 364 

Algorithm  MAE RMSE Coefficient of 

determination (R2) 

Artificial Neural Network (ANN) 3.4539 3.6465 3.4567 

Naive Bayes Model 1.4545 1.8342 1.8642 

k‐nearest neighbour (kNN) 1.4631 1.9753 1.7867 

Support Vector Machine (SVM) 1.3426 1.3446 1.8986 

Seasonal Autoregressive interated moving 

average (SARIMA) 

1.3467 1.7865 1.4758 

 365 

Figures 9 (a) and (b) illustrates a comparison of the performance of O3 forecasting throughout 366 

the training and testing periods. The study collects data on Raspberry Pi and forecasts it using 367 

Python scripts and time series models. Three different detector data is separated into training 368 

and test data. AI-based algorithms and Seasonal Autoregressive Interacted Moving Average 369 

(SARIMA) computations are trained using training data. The results are anticipated for one 370 

hour every seven days from 21-04-2024 to 27-04-2024. The predicted data is compared to 371 

test data to ensure model correctness. Performance indicators are computed to validate the 372 

findings. The results reveal that the SARIMA algorithm is more accurate for O3 forecasting.  373 

 374 
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 375 

Figure 9 Prediction of O3  (a) Training Data (b) Test Data 376 
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The collected data show that the SARIMA algorithm is more accurate in forecasting O3. 377 

Table 4 displays the various models' performance metrics for the O3 test data. The confidence 378 

interval is 95%. 379 

Table 4  Performance metrics of O3 380 

Performance Indices MAE RMSE Coefficient of 

determination (R2) 

ANN 1.5783 1.9759 2.3521 

Naive Bayes Model 1.5045 1.8454 2.2758 

kNN 1.4755 1.8075 2.2276 

SVM 1.4755 1.7565 2.1875 

Seasonal Autoregressive interated moving 

average (SARIMA) 

1.3854 1.7784 2.1758 

 381 

4.1 NO2 382 

The study compares the performance of AI-based algorithms in predicting NO2 levels in air 383 

pollution during training and testing phases. These algorithms use machine learning and 384 

statistical techniques to gather historical data and analyze it to predict future ozone 385 

concentrations. The data is then analyzed to understand its distribution and relationships 386 

between variables. The most effective SARIMA model is selected for real-time NO2 forecasts 387 

and integrated into an operational system for ongoing monitoring and decision-making, 388 

providing timely and accurate information for air quality management. The prediction of 389 

training data of NO2 was shown in figure 10. 390 
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 391 

Figure 10 Prediction of training data of NO2   392 

The SARIMA algorithm is found to have superior accuracy in forecasting NO2, with a 393 

confidence interval of 86%, as indicated by the performance indices in Table 5. 394 

Table 5 Performance metrics of NO2 395 

Performance Indices MAE RMSE Coefficient of 

determination (R2) 

Artificial Neural Network (ANN) 2.6546 1.9356 3.2654 

Naive Bayes Model 2.2184 1.8645 3.0645 

k‐nearest neighbour (kNN) 2.1545 1.7466 2.9892 

Support Vector Machine (SVM) 2.0548 1.6659 2.8464 

Seasonal Autoregressive interated moving 

average (SARIMA) 

2.0259 1.5268 2.5165 

 396 
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4.2 NOx,  397 

Figures 11 demonstrate the performance analysis of NOX forecasting during training phases. 398 

Nitrogen oxides (NOx) are reactive gases from combustion processes in vehicles, industrial 399 

facilities, and power plants, detected using SSRIMA and AI algorithms. Controlling NOx 400 

emissions is crucial for improving air quality. 401 

 402 

Figure 11 Prediction of NOX Test Data 403 

The SARIMA algorithm is found to have superior accuracy in forecasting NOX, with a 404 

confidence interval of 87%, as indicated by the performance indices in Table 6. 405 

 406 

 407 
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Table 6 Performance metrics of NOX 408 

 409 

Performance Indices MAE RMSE Coefficient of 

determination (R2) 

Artificial Neural Network (ANN) 3.9496 3.0651 3.0549 

Naive Bayes Model 3.5164 2.8161 2.9169 

k‐nearest neighbour (k‐NN) 2.6292 2.6469 2.6695 

Support Vector Machine (SVM) 2.15489 2.4265 2.1989 

Seasonal Autoregressive interated moving 

average (SARIMA) 

1.9469 1.9466 1.9466 

 410 

4.3 SO2 411 

SO2 data metrics are essential for assessing air quality, identifying pollution sources, and 412 

evaluating regulatory compliance. Key metrics include concentration (ppb or µg/m³), 413 

temporal trends (changes over time), spatial distribution (locations within a region), and 414 

pollution episodes (short-term spikes above regulatory standards). These metrics help identify 415 

hotspots, pollution sources, and areas with elevated levels, guiding mitigation efforts and 416 

regulatory enforcement. Monitoring these metrics helps assess the severity of air pollution 417 

events and issue public health advisories or alerts. The training phase of SO2 prediction was 418 

shown in figure 12. 419 
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 420 

Figure 12  Prediction of SO2  Test Data 421 

The SARIMA algorithm is found to have superior accuracy in forecasting SO2, as indicated 422 

by the performance indices in Table 7 with a confidence interval of 80%. 423 

Table 7 Performance metrics of SO2 424 

Performance Indices MAE RMSE Coefficient of 

determination (R2) 

Artificial Neural Network (ANN) 1.5654 1.9416 2.9652 

Naive Bayes Model 1.4265 1.5164 2.5165 

k‐nearest neighbour (k‐NN) 1.2194 1.0265 2.4649 

Support Vector Machine (SVM) 1.0564 0.9846 2.0659 

Seasonal Autoregressive interated moving 

average (SARIMA) 

0.9126 0.9466 1.8465 

 425 

 426 
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4.4 Air pollutants monitoring in online 427 

Online monitoring of air pollutants involves real-time measurement and analysis of air 428 

quality parameters using a network of stations equipped with sophisticated sensors and 429 

instruments. These stations are strategically located in urban, industrial, and residential areas, 430 

and each station is equipped with sensors for specific pollutants. Data collected is transmitted 431 

to a central database or monitoring center, allowing immediate access to information and 432 

timely response to pollution events. Regular calibration and maintenance of monitoring 433 

equipment ensure data accuracy and reliability, displayed on the website for online 434 

monitoring of air pollutants such as NO2, PM2.5, aerosol, ozone layer, SO2, CO and dust 435 

mass  from anywhere in the world and it is clearly illustrated in figure 13. 436 

 437 
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Figure 13. Website that monitors air quality 438 

Data analysis and visualization tools are used to present the data in an easily understandable 439 

format. Online monitoring systems can be integrated with alert systems to notify authorities 440 

and the public about air quality issues. Figure 14 described about the air pollution level in 441 

Sivakasi district, TamilNadu, India. 442 

 443 

Figure 14. View of location selection 444 

5. Conclusion 445 

An IoT based AI technique was developed to provide realistic real-time air quality tracking 446 

and monitoring from any location. An IoT-based hardware prototype was created to test the 447 

functioning of the suggested approach. The acquired data is evaluated and measured using the 448 

built AI based and time series models. The numerous time-series models are developed and 449 
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used to forecast particular air pollutants such as NO2, NOx, NH3, CO, SO2, and O3. it was 450 

collected in Sivakasi, Tamilnadu India.  First, the models are trained using training data and 451 

then tested using previously unknown test data. The values for the next four hours were 452 

predicted with an 87% confidence interval by all of the AI methods that were used, including 453 

Artificial Neural Network (ANN), Naive Bayes Model, k-nearest neighbour (k-NN), and 454 

Support Vector Machine (SVM). Using test data, it was found that the performance indices of 455 

the selected models were sufficient. The findings show that, with a 95% accuracy level, 456 

SARIMA is more accurate than the other three techniques in all case studies and has the 457 

lowest MAE, coefficient of determination, and RMSE values.  As a result, the SARIMA 458 

model was identified as a more appropriate forecasting approach for predicting future air 459 

pollution values. 460 

Evaluating the Air Pollution Index (API) with the aid of technology represents a significant 461 

advancement in understanding and managing environmental health. Utilizing sophisticated 462 

technologies such as Internet of Things (IoT) sensor arrays and artificial intelligence (AI), 463 

modern systems can monitor a wide range of pollutants in real-time. These sensors collect 464 

continuous data on air quality parameters, which are then transmitted to centralized servers 465 

for comprehensive analysis. AI algorithms, such as neural networks and machine learning 466 

models, process this data to generate accurate and timely assessments of the API. By 467 

leveraging technology, API evaluations become more precise and responsive to dynamic 468 

environmental conditions. This capability enables authorities and communities to make 469 

informed decisions regarding public health interventions, urban planning, and pollution 470 

control measures. Moreover, the integration of IoT and AI reduces reliance on traditional 471 

monitoring methods that may be slower or less adaptable to rapid changes in air quality. As a 472 

result, technology-driven API evaluations not only enhance our understanding of air pollution 473 
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but also empower proactive strategies to mitigate its adverse effects on human health and the 474 

environment. 475 

 476 

Abbreviations and Nomenclature 

ANN - Artificial Neural Network R2 - Coefficient Of Determination 

k-NN - k-nearest neighbour O3 - Ozone 

SVM - Support Vector Machine NO2 - Nitrogen Dioxide 

SARIMA - Seasonal Autoregressive 

Interated Moving Average 

CO - Carbon Monoxide 

MAE - Mean Absolute Error NH3 - Ammonia 

RMSE - Root Mean Square Error NOx - Nitrogen Oxide 

WHO - World Health Organisation SO2 - Sulphur dioxide 

LSTM - Long Short Term Memory    

IOT - Internet of Things    

ENN - Elman Neural Network    

AAA - Artificial Algae Algorithms    

PM - Particulate Matter    

AQI - Air Quality Index    
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