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Abstract 

The Yangtze River, the longest river in China and one of 
the most important water resources in the world, has 
been facing significant challenges regarding water 
pollution in recent years. The issue of water quality safety 
is related to the national economy and people's 
livelihood. Water pollution incidents not only damage the 
local water environment, but also seriously affect the 
drinking water safety of residents. Traditional chemical 
methods and other water quality anomaly detection 
methods are often time-consuming and may cause 
secondary pollution. This paper proposed a machine 
learning method used for detecting abnormalities of 
water quality in the Yangtze River, to provide technical 
support for ensuring water quality safety. The principle is 
that using the designed support vector machine separates 
anomalies and normal values, by doing so, anomalies can 
be mined. Since there are certain differences between the 
density of normal data and that of anomalous data, 
estimating the data density of both can assist promote the 
ability of the support vector machine to mine anomalies. 
Then, the probability of water quality anomalies is 
determined by analyzing the characteristics such as the 
density of outliers in the sequence. Finally, using the 
collected the data of water quality from forty different 
regions of the Yangtze River since 2018 to 2023 as the 
experimental dataset, and experimental results show that 

the proposed method can effectively detect the anomaly 
of water quality of Yangtze River. 
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1. Introduction 

Water pollution has become a global issue affecting 
human beings, plants, and animals. The rapid 
industrialization and urbanization processes have led to 
an increased discharge of pollutants into rivers, causing 
severe damage to ecosystems and threatening public 
health. The Yangtze River, as a major water source for 
millions of people, is no exception. As the largest river in 
China, the water quality of the Yangtze River directly 
affects the daily life and production activities of coastal 
residents. With the acceleration of industrialization and 
urbanization, the problem of water pollution in the 
Yangtze River is becoming increasingly serious.  

To ensure the safety of the water supply, various methods 
are employed to detect abnormalities in the Yangtze 
River's water quality. Such as regular monitoring [Ziwen 
Yu et al. 2023], i.e., government agencies and research 
institutions conduct routine inspections and sampling 
analyses to assess the water quality. These parameters 
such as pH, dissolved oxygen, turbidity, and heavy metal 
concentrations are closely monitored to detect any 
anomalies [Manikannan Govindasamy et al. 2023]. And 
modern techniques [Saira Varghese et al. 2023; Boyu 
Zhang et al. 2023], such as remote sensing and online 
monitoring systems, are increasingly being employed to 
monitor water quality in real-time. These systems provide 
instant alerts when abnormal conditions are detected, 
allowing for swift intervention. In addition, local 
communities living along the Yangtze River also play a 
crucial role in detecting water quality abnormalities. They 
can report unusual phenomena, such as discoloration or 
unusual odors, to authorities, who can then take 
appropriate action. Therefore, conducting research on 
abnormal detection of water quality in the Yangtze River 
has important practical significance.  

1.1. Contributions 

The main contributions of this paper are summarized. 
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(1) We propose a support vector machine with the data 
density estimate, which has less dependence on data 
dimensionality. The proposed method not only suffers 
from less negative effects caused by data dimensionality, 
but also effectively detects the anomalies quality. 

(2) The execution time of the proposed method is not 
exponentially impacted by data volume or by data 
dimensionalities, therefore, we demonstrate that it can be 
suitable for anomalous detection of large volume water 
quality. 

1.2. Motivations 

To detect water quality for Yangtze River, we designed a 
new form of support vector machine model using density 
estimate and to propose a novel anomaly detection 
approach based on the proposed model. To accurately 
detect anomalous section of pollute water, we used the 
proposed model find the monitor equipment to observe 
the pollute water region. Then, using the found monitor 
equipment to detect corresponding anomalous section of 
pollute water. By doing so, the water quality for Yangtze 
River can be accurately detected. 

This paper is arranged as follows. Section 2 reviews the 
related work. Section 3 systematically describes the 
proposed method and the corresponding model. 
Experimental details and results are illustrated in Section 
4. Section 5 draws a conclusion and directs future work. 

2. Related work 

There exists a rich literature on devising anomalous 
detection approaches, given that existed literature, we 
focused on investigating existing works that are mostly 
related to ours, i.e., support vector machine architectures-
based detection approaches, which are regarded as the 
classification of normal data and anomalous data. Those 
detection approaches based on support vector machine 
(SVM) architectures are accustomed to utilize historical 
data (i.e., training data) to train the detectors and then 
verify new collections (i.e., testing data) by using the 
trained detectors [Yan Qi et al. 2021]. In fact, SVM's 
approaches are a shallow-architecture approach 
(compared to deep learning approaches), therefore, in 
anomalous detection, scholars usually tend to optimize 
them or combine them with deep learning approaches, 
thus improving the results of anomalous detection. For 
instance, Ruff et al. (2018) proposed a deep support 
vector data description (Deep SVDD) model, and the Deep 
SVDD employed by the Ying K et al. 2022, which of both 
obtain superior detection results. However, they need to 
solve a quadratic programming problem. And the sphere-
based one-class support vector machine (S-OC-SVM) 
proposed by Andrews et al. (2016). The [Z. H et al. 2018] 
proposed a one class-support vector machine (OC-SVM) 
method for anomalous detection, which is capability to 
obtain an optimal decision model for the support vector 
data description, and to avoid under-fitting and over-
fitting to a certain extent. Similarly, the [Rajasegarar et al. 
2007] designed a quarter-sphere one-class support vector 
machine (Q-S-OC-SVM) method, which converts the 
quadratic programming problem into a linear 

programming problem. Although the detected efficiency 
of Q-S-OC-SVM is significantly augmented, it has to be 
retrained once a new testing data is coming. Additionally, 
also including the OC-SVM in Waqas Rasheed and Tong 
Boon Tang (2020) and in Yonghyeok Ji and Hyeongcheol 
Lee (2022), which of them obtain advanced detection 
results. Unlike the models in Andrews J T (2016), Z. H 
(2018), Rajasegarar S et al. (2007), Waqas Rasheed 
andTong Boon Tang (2020), Yonghyeok Ji and 
Hyeongcheol Lee (2022), to solve a quadratic 
programming problem, Deng et al. (2019) employed a 
one-class support Tucker machine to mine the anomalies 
in high dimensional environments, and experimental 
results show that it has good adaptability to high 
dimensional spaces. 

The detected performance of those methods using SVM 
architectures is easily impacted by support vector 
machines. The shallow patterns possessed by support 
vector machines is likely to fail to capture those 
dependency relations between multiple variables [Bengio 
Y, Y. L. 2007]. To make up the disadvantage, Huang et al. 
(2020) proposed a Least-Squares Support Vector Machine 
(L-S-SVM) model. Through utilizing the least squares, the 
detected performance of the support vector machine is 
significant promoted. Consequently, indeed, the above 
ideas indicate that introducing new forms (such as least 
squares, or one-class) can assist support vector machines. 
In addition to support vector machine methods, 
hypersphere methods are also used for anomalous 
detection, such as the hypersphere methods implemented 
in Xu Y (2017); Mei B, Xu Y. (2019) and Qing A, Anna W. 
(2018), whose ascendency does not have to perform 
matrix inverse operations. 

3. Methodology 

This section describes the thought of the method and the 
implement of the corresponding model. Given a sample

1{ ,..., ,...,}ix x x= , 1i  , to simplify, assuming that sample x 

does not noise and irrelevant attributes, the support 
vector machine is formally described as follows  
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Where
i ,

j is Lagrange multiplier. N is the number of x. 

, {0, 1}i jy y  + , where 0 is an anomalous label, and +1 is a 

normal label. According to Eq. (1), we can obtain the 

classification decision function, as follows 
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* 0i  is a component of
i . K is a kernel function.  

The classification ability of support vector machine relies 
on classification decision function f(x). For kernel K in f(x), 
here, we use density estimate to fulfil it, which is a non-
parametric method for estimating probability density 
functions. As follows 

1
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Where is a kernel. 0<B is a smoothing parameter, also 
called bandwidth. For the kernel , we chose Gaussian 
kernel, having that 
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2 is variance of x. Additionally, we need to think about 

bandwidth B in Eq. (3). The estimation results of kernel 
functions vary greatly under different bandwidths, as 
shown in Figure 1. It can be seen that when the 
bandwidth is not fixed, its variation depends on the 
estimated position (balloon estimator) or sample point 
(pointwise estimator), which can generate an adaptive 
estimation. Given that, we used a certain range to tune 
bandwidth values according to the scale of the input 
sample. 

Algorithm 1 is the corresponding algorithm of the 
proposed method. In algorithm 1, the input and output 
are dataset x, testing accuracy and predicted labels, 
respectively. Step 1 initializes model’s parameters, and 
Step 2 fulfils the division of training set and testing set. 
The model is trained in the procedure between Step 3 and 
Step 16. For each point in training set xtrain, we use 
decision function f(x) in Eq. (2) and the density estimate in 
Eq. (3) to judge them, as shown in the procedure between 
Step 4 and Step 7. If the point falls inside the hyper plane 
learned by the support vector machine (SVM), it is 
regarded as a normal point and is assigned a normal label 
+1. Overwise, the point is considered as an abnormal 

point and is assigned an abnormal label 0, illustrate in 
Step 8 to Step 11. The training is terminated until all 
points in training set xtrain are determined, and then we 
save the training accuracy and the trained model SVM-
DE(xtrain), as shown in Step 12 to Step 16. Thereafter, using 
testing set xtest  to verify the trained model SVM-DE(xtrain). 
Finally, the testing accuracy and predicted labels {+1,…, 
0,…, +1,…, 0} are outputted, illustrated in Step 17 to Step 
22.  

 

Figure 1. Density estimate with different bandwidths. We 

generated a random sample of 100 points from a standard 

normal distribution. Grey curve is true density (standard 

normal). Red curve is density estimate with bandwidth B=0.05. 

Black curve is density estimate with bandwidth B=0.337. Green 

curve is density estimate with bandwidth B=2. 

3.1. Time complexity. 

The time consumption of Algorithm 1 consists of the 
running time of SVM and the calculation time of data 
density. Assuming that the data volume and data 
dimension of input data are V and D, respectively. The 
running time ( )O SVM of SVM is equal to ( * * )O V D  , 

where item  is the number of SVM. In Algorithm 1, there 
used a single SVM, therefore, 1 = , and

( ) ( * )O SVM O V D= . the calculation time ( )O d of data 

density is ( * )O V D , i.e., ( ) ( * )O d O V D= . The running time

( )O n of Algorithm 1 is ( * ) ( * )O V D O V D+ , that is, 

( ) ( * )O n O V D= . 

Algorithm 1. SVM-DE. 

Input: dataset x. 

Output: testing accuracy, predicted labels {+1,…, 0,…, +1,…, 0}. 

1 Initialization model’s parameters; 

2 x is randomly divided into a training set xtrain and a testing set xtest ;          

3 Foreach  xi  in  xtrain :                                                                                                      /* training */                                               

4      using decision function f(x) in Eq. (2) to calculate point xi ;                            

5      * *
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  ; 

6      using Eq. (3) to estimate the data density ;  

7      
1
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N

i

i

x x
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=

−
  ; 

8          If   point xi falls inside the hyper plane of our SVM   then :  

9           xi is regarded as a normal point and is assigned a normal label +1 ; 
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10      Else:  

11               xi is considered as an abnormal point and is assigned an abnormal label 0 ; 

12              If   training set xtrain is an empty   then :                                           /* all points are determined */ 

13                 break ;  

14 End Foreach 

15 saving training accuracy; 

16 saving the trained model SVM-DE(xtrain); 

17        Foreach  xj  in  xtrain :      /* testing */     

18        using SVM-DE(xtrain) to judge point xj ; 

19        predicting the label of point xj  ; 

20 End Foreach 

21 saving the testing accuracy ; 

22 saving predicted labels {+1,…, 0,…, +1,…, 0} ; 

 

4. Experiments and results analysis 

4.1. Experimental settings 

We used the monitoring equipment to collect water 
quality data on forty different regions of the Yangtze River 
from 2018 to 2023 as the experimental dataset, illustrated 
in Table 1, with 70% used for model training and the 
remaining 30% used for model validation. Additionally, 
Accuracy and F1-score which are regarded as the 
evaluated metrics in anomalous detection are used to 
assess detected results. As follows 

TP+TN
Accuracy

TP+FP+TN+FN
=

 

(5) 

2TP
F1-score

2TP FP FN
=

+ +  

(6) 

Where TP is that the model correctly predicts the number 
of in anomalous data. TN is that the model correctly 

predicts the number of normal data. FP shows that the 
model predicts normal data as the number of anomalous 
data. FN shows that the model predicts anomalous data 
as the number of normal data.  

Apart from our model, we also chose the four detection 
models based on SVM architectures as competitors, i.e., 
Deep SVDD [Ruff L et al. 2018], S-OC-SVM [Andrews et al. 

2016], OC-SVM [Z. H et al. 2018] and L-S-SVM [Huang et 

al. 2020]. To obtain a fair comparison, the comparative 
objects are selected based on the same design structures. 
We implemented corresponding algorithms of the five 
models (our model and the four competitive models) 
using Python on Tensorflow framework in Linux Operation 
System. To test the statistical significance of the 
difference between them, the Wilcoxon-test was adopted. 
Additionally, average ranks of the five algorithms are 

calculated by
1

( ) /
N j

ii
r N

= , where j

ir is the ranking of j-th 

algorithm on i-th dataset. 

Table 1. Details of the six datasets. 

# Year 
Number of monitoring indicators 

(data dimension) 
Collect data volume 

Number of monitoring 
equipment 

Number of monitoring 
regions 

W1 2018 310 6900000 690 40 

W2 2019 560 6100000 620 40 

W3 2020 280 5600000 590 40 

W4 2021 200 7300000 730 40 

W5 2022 170 4500000 470 40 

W6 2023 260 5400000 510 40 

 

4.2. Result analysis 

4.2.1. Comparisons of detection performance 

Detected results of on the six datasets are given in Table 
2, showing that SVM-DE wins over the four competitors 
on most datasets. In terms of the metric Accuracy, our 
SVM-DE obtains the best performance on the four 
datasets W1-W2 and W4-W5. While for the metric F1-
score, our SVM-DE also defeats the four competitive 

models on the five datasets W1-W5. Figure 2 displays the 
detected results of our method on the forty regions. 

Average ranks of each algorithm are given in the first row 
in Table 2. Though observing and analyzing, we find that 
SVM-DE obtaining the best average ranks is statistically 
better than the four comparison algorithms at the 95% 
confidence level. Moreover, there are no differences 
between the five algorithms for these detection results.   
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Figure 3 unveils the relations among the detection ability 
of our SVM-DE, data volume and data dimensionality. 
Through comparing Figure 3 (a) with Figure 3 (b), in terms 
of SVM-DE, it can be seen that the correlation between 
the detection capabilities and data dimensionality are 
weaker than that between the detection capabilities and 

data volume, where the former is 0.3324 and the latter is 
0.6226 (weak correlation). This also further indicates that 
SVM-DE has less dependence on data dimensionality in 
the process of anomalous detection. In summary, that is 
why our model defeats the four competitive models. 

 

 

Figure 2. Detected results of our method on forty different regions. 

 

Figure 3. Correlations among detection ability, data volume and data dimensionality. (a) displays the correlations of detection ability 

and data dimensionality. (b) displays the correlations among detection ability and data volume. 

4.2.2. Comparisons of efficiency 

This section main discusses the running efficiency of our 
algorithm and the four comparison algorithms. Here, we 
first analyzed the effects of data volume and data 
dimensionality on the running efficiency of our algorithm. 
We find that data volume has more effects on the 
execution time than data dimensionality does, of which 
the correlation for the former is 0.7076 (i.e., strong 
correlation) and that for the latter is 0.0804 (weak 
correlation). Table 3 gives the execution time of the five 
algorithms, showing that our algorithm wins the four 

competitive algorithms on part datasets. The execution 
time of our algorithm is not exponentially increased as 
data volume augments. These mean that detection 
efficiency of our algorithm is not exponentially impacted 
by data volume or data dimensionality. For our algorithm, 
the density estimate of the data needs to spend time cost, 
especially on large-scale datasets, hence, this is main 
consumption of our algorithm. As for the four competitive 
algorithms, the execution time is related to the 
complexity of their architectures. 
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Table 2. Average values of 10 cross-validation on the six datasets. Best results are highlighted in bold font. Average ranks are given in 

the first row. p-value is given in the last row, and the sign ‘*’ shows significant at p=0.05 level.  

Method SVM-DE 
Deep SVDD [Ruff 

L et al. 2018] 

L-S-SVM [Huang 

et al. 2020] 

S-OC-SVM 

[Andrews J. T. et 

al. 2016] 

OC-SVM [Z. H et al. 2018] 

metrics   Accuracy,  {F1-score} 

Average ranks 1.333 1.833 1.500 1.667 1.833 

W1 0.958, [0.979] 0.899, [0.912] 0.902, [0.901] 0.900, [0.921] 0.878, [0.918] 

W2 0.955, [0.977] 0.942, [0.953] 0.909, [0.945] 0.932, [0.927] 0.911, [0.877] 

W3 0.854, [0.921} 0.901, [0.906] 0.887, [0.913] 0.827, [0.823] 0.901, [0.905] 

W4 0.957, [0.978] 0.912, [0.907] 0.888, [0.955] 0.933, [0.919] 0.900, [0.802] 

W5 0.800, [0.889] 0.771, [0.806] 0.797, [0.883] 0.727, [0.803] 0.701, [0.855] 

W6 0.565, [0.722] 0.777, [0.799] 0.807, [0.779] 0.801, [0.863] 0.711, [0.835] 

p=0.05 * * * * * 

Table 3. Average time (second) of 10 cross-validation on the six datasets. Best efficiency is highlighted in bold font.  

 # SVM-DE Deep SVDD [6] OC-SVM [9] L-S-SVM [15] S-OC-SVM [8] 

W1 1.539 5.119 7.721 4.369 9.420 

W2 473.547 81.662 80.889 82.889 117.818 

W3 2.084 3.658 1.658 3.074 5.772 

W4 0.125 1.505 0.788 1.103 1.552 

W5 74.471 155.341 88.116 72.438 122.549 

W6 2.160 7.166 11.558 25.769 14.286 

5. Conclusion 

To detect the water quality of Yangtze River, this paper 
proposes a novel support vector machine method with 
data density estimate. The critical thought is that we 
constructed a support vector machine to separate 
anomalous data and normal data, thus fulfilling 
anomalous detection. To accurately detect anomalous 
data, through estimating the data density, the support 
vector machine obtains the advanced detection results. 
Since the density between normal data and anomalous 
data shows certain differences, estimating data density is 
effectively in anomalous detection. Experimental results 
show that the proposed method defeats the competitors 
in detection accuracy of water quality. Results also 
indicate that the detection efficiency of the proposed 
method is not exponentially impacted by data volume or 
data dimensionality, which means that it is suitable for 
anomalous detection of large volume water quality. In 
future work, we will explore more intelligent detect 
methods used for anomalous detection to water quality. 
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