
 

Global NEST Journal, Vol 26, No 6, 06081 
Copyright© 2024 Global NEST 

Printed in Greece. All rights reserved 

 

Dr.C. Saravanabhavan, Dr.P. Sherubha, R. Swathika and Dr C. N. Ravi (2024), Urban flood detection with the augmentation of gradient 

boosting and machine learning for prior warning sign over vulnerable zones, Global NEST Journal, 26(6), 06081. 

Urban flood detection with the augmentation of gradient 
boosting and machine learning for prior warning sign over 
vulnerable zones 

Dr.C. Saravanabhavan1*, Dr.P. Sherubha2, R. Swathika3 and Dr C. N. Ravi4 
1Professor, Department of computer science and Engineering, Kongunadu college of Engineering and Technology, Trichy 
2Assistant Professor, Department of Information Technology, Karpagam College of Engineering, Coimbatore 
3Department of Information Technology Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, India 
4Professor, Department of Computer Science and Engineering, CMR Engineering college, Hyderabad, Telangana 

Received: 18/04/2024, Accepted: 20/06/2024, Available online: 26/06/2024 

*to whom all correspondence should be addressed: e-mail: hodcse@kongunadu.ac.in 

https://doi.org/10.30955/gnj.006081 

Graphical abstract 

 

Abstract 

Urban flooding has severely threatened the ecosystem 
and human life in recent years. The key to managing 
stormwater is to understand what causes it. The forceful 
effects of building shape on urban floods should be 
addressed, which results in a significant underestimation 
of flood danger. Algorithms for data-driven machine 
learning shed light on how the placement of buildings 
affects urban flooding. This study aimed to identify the 
elements of flooding risk and their effects on nearby 
communities using a concatenated modelling loop that 
included the XGBoost algorithm. This work suggests an 
enhanced extreme gradient boosting (XGBoost) approach 
based on a concatenated boosting particle swarm 
optimization (CBPSO) operator to acquire the 
meteorological refractive index of 100 m over the ocean. 
The prediction results of the enhanced XGBoost algorithm 
are compared with those of the backpropagation (BP) 
network and the original XGBoost method using the 
evaluation criteria Accuracy, Precision, Recall, F1-score, 
and IoU.Moreover, the networks resolve the featured 
misaligned issue during the decoder by inserting a 
component synchronization module into the up-sampling 
procedure. The model's intersections of unions (IoU) of 
89.90% outperformed SOTA flood detection systems. 

Keywords: Flood prediction, concatenation, boosting, 
ensembling, IoU, flood-prone and multi-criteria 

1. Introduction 

Floods, as a disruptive disaster, inflict severe damage to 
infrastructure, people, and property. Identifying flood-
prone areas is essential for policy development and 
execution to mitigate risks and costs. However, examining 
natural processes, especially flooding, through 
experiments or analytical approaches is not always 
feasible. Establishing methodological techniques, models, 
and strategies for a rational, theoretical, and quantitative 
evaluation of floods becomes imperative. Flood 
vulnerability modeling and map-based methodologies 
often stem from two systems: physically-based methods 
grounded in experiential understanding and data-driven 
approaches employing techniques such as Decision Trees 
(DT), Random Forest (RF), Support Vector Machines 
(SVM), Artificial Neural Networks (ANNs), Naive Bayes 
(NB), Logistic Regression (LR), and Feature Ranking (FR) 
methods, among others. 

Many research endeavors focused on flood vulnerability 
leverage multi-criteria decision-making (MCDA). Advanced 
mathematical representations that capture observable 
behaviors serve as the foundation for physical forecasting 
systems. Conversely, data-driven frameworks rely on 
mathematical formulas constructed from concurrent input 
and output data, avoiding traditional physical methods. In 
this realm, Machine Learning (ML) models have risen to 
prominence, particularly for natural disaster forecasting, 
encompassing landslide hazards, forest fire vulnerability, 
and flood susceptibility. The Artificial Neural Network 
(ANN) framework, especially the Multi-Layer Perceptron 
Neural Network (MLP-NN), stands out as a popular ML 
model for hazard risk forecasting. Its strength lies in its 
ability to effectively approximate complex nonlinear 
input-output relationships and unveil hidden connections 
within historical data. 
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Another noteworthy addition to the ML arsenal is 
AdaBoost, an enhancing algorithm that can be harnessed 
without prior expertise in the intricacies of weak learning 
approaches. Coupled with the Expectation-Maximization 
(EM) technique, AdaBoost yields precise predictions and 
boasts resistance to overfitting, making it a promising ML 
algorithm for assessing flood risk. Decision Trees (DTs) and 
Random Forest (RF) models prove highly effective for 
accurately identifying flood-affected regions. Logistic 
Regression (LR) emerges as a capable tool for predicting 
the presence or absence of floods, with numerous studies 
employing a range of geo-hydrological variables to exploit 
its potential. Support Vector Machines (SVM), a 
probabilistic classifier classification algorithm, find 
frequent application in flood vulnerability assessments. 

Traditionally, flood vulnerability assessments have relied 
on one or a limited number of ML methods. However, 
employing a diverse set of ML approaches to scrutinize 
flood vulnerability and its response to varying conditions 
represents a novel contribution to the literature. This 
study aims to evaluate flood vulnerability using a 
multitude of ML algorithms alongside an extensive dataset 
comprising meteorological, hydrodynamic, and 
geographical information at a high spatial resolution (12.5 
meters). The mainstream of the proposed process is 
discussed as follows: 

• Input is the dataset collected across twenty-one 
meteorological stations in the Cuddalore district, 
Tamil Nadu, India.The dataset is categorized 
based on the vulnerable Zone and its rainfall 
occurrence. 

• When a dataset is first brought into the picture, it 
is often raw and can contain empty or irrelevant 
values. To help refine the dataset, a pre-
processing step is introduced that uses 
PrincipalComponent Analysis (PCA). A significant 
pre-processing function used to reduce the 
dimensions of the dataset is the Singular Value 
decomposition of linear algebra, for which the 
columns would be the axes with high dimensional 
space. 

• The most crucial phase involves the machine 
learning algorithm. Based on the level of 
accuracy, the RandomForest algorithm is chosen 
for computing the feature selection. This 
classifier is an ensemble learning approach of 
categorization, validation, and other algorithms 
that, as already said, functions by building an 
enormous classification tree during training & 
producing the classification that is the average 
projection of the individual plants or the median 
of this classification. 

• Using XGBoost, the rainfall prediction is 
computed, which depends on the parameter 
passed and the ranges defined. The regions are 
classified by providing different colours for 
adequate identification. Each colour represents a 
pre-defined range of data. The following 
categories are used to categorize the rainfall data 

for this study: 1) No rainfall; 2) Light rainfall; 3) 
Moderate rainfall; 4) Heavy rainfall; 5) 
Significantly heavier rainfall and 6) Extremely 
heavy rainfall. The above classification is required 
to assess the impact of rainfall in computing the 
chances of flood occurrence. 

The work is organized as follows: section 2 provides a 
detailed explanation on the diverse prevailing approaches. 
The methodology is demonstrated in section 3 with 
investigational outcome is provided in section 4. The 
summary is descriptive in section 5. 

2. Literature review 

This chapter covered significant flooding incidents 
throughout the globe and discussed pertinent research on 
ML for flood modelling. 

2.1. Flooding events around the world 

We consider floods conducted by various writers in 
various regions of the globe. We concentrate mainly on 
nations that experience large flooding disasters often and 
the models used to forecast future occurrences. Over 
time, flood vulnerability has caused significant human 
suffering, including food shortages, waterborne disease 
epidemics, and infrastructure destruction (Sudha et al. 
2015; Rehman et al. 2015) found that 15 nations (see 
Table 1) represent almost 80% of the annual flood victims. 
These emerging or developed countries are susceptible to 
natural catastrophes and climate change. Africa, Asia, and 
South America are the top 15 flood-prone nations. Several 
research studies have shown that floods pose a significant 
threat to thousands of millions of citizens in both India 
with Bangladesh being one of the countries that are most 
severely impacted by floods; during the summer 
monsoon, almost one-third of Bangladesh is submerged in 
water (Bhuiyan and Al Baky, 2014; Coca, 2020) 
Bangladesh's lowland, geographical location, and dense 
population make floods a significant danger to both 
individuals and resources according to (Preethi and 
Asokan, 2021). Flooding, the most common natural 
catastrophe in India, is triggered by sudden southwest 
monsoon rains, riverbed floodplains, and tropical storms. 
Floods impact 84% of India's projected GDP annually (Insia 
Today, 2015; Preethi and Asokan, 2020). According to 
(Sowmya et al. 2015), blocking drainage routes and 
proximity to coastline waters significantly contribute to 
floods in susceptible regions. 

(Kinghorn J, 2017) lists three significant causes of flooding 
in South America, including growing urbanization, climate 
change, and land use decisions. In Africa, the increasing 
amounts of the Lagdo dam have repeatedly caused 
enormous floods of significant emergency rates in recent 
generations. The 2012 & 2022 statistics were exceptional. 
In Nigeria, floods are not only a natural process; humans 
may also cause them due to inadequate or nonexistent 
drainage channels, improper waste management devices, 
unchecked development, and lax enforcement of planning 
rules. 

These results imply that flood risk variables may be 
universal across nations. However, several other variables 
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that affect flooding incidents are particular to specific 
geographic locations. This research aims to show how 
healthy ML can forecast storms in Africa by using the 
region as a research study. 

It is well known that floods have various adverse effects, 
including the destruction of homes, livelihoods, and other 
assets and extensive financial losses up to tens of millions 
of dollars. For example, in 2022, floods in Pakistan harmed 
around 33 million people, causing the deaths of more 
than 1,700 people and injuring another 13,000 
(Margesson and Kronstadt, 2022). According to the 

authorities, severe flooding reportedly costs $30 billion. 
Similar severe floods occurred in Bangladesh in 2022, 
affecting around 7.2 million people, killing roughly 12, and 
causing $722.24 million in total losses (Abdullah et al. 
2022). In the same year, nearly 2.5 million Nigerians were 
impacted by floods, with 600 dead and 2,400 wounded. 
The literature contains many references to past flooding 
incidents and estimations of their effects (Levenson, 2021; 
Taiwo et al. 2019; Ritorto, 2013; Martini, 2020). 

 

Table 1. Annual Expected Population Affected by River Flood 

Countries Population in millions 
Continent 

ASIA AFRICA SOUTH AMERICA 

India 4.85  - - 

Bangladesh 3.49  - - 

China 3.29  - - 

Vietnam 0.94  - - 

Pakistan 0.72  - - 

Indonesia 0.65  - - 

Egypt 0.47 -  - 

Myanmar 0.40  - - 

Afghanistan 0.34  - - 

Nigeria 0.30 -  - 

Brazil 0.28 - -  

Thailand 0.26  - - 

Congo D.R 0.26 -  - 

Iraq 0.20  - - 

Cambodia 0.20  - - 

 

2.2. Flood forecasting using MLs 

Recent studies on flood risk assessment & predictions use 
the prognostication abilities of numerous ML algorithms 
that discover patterns in historical data. These techniques 
included DTs, RFs, Linregs, LRs, XGBoosts, KNNs, SVMs, 
and ANNs. They have been used in flood prediction with 
trustworthy outcomes. (Mind’je et al. 2019) apply an LR 
employing RS information &GIS over flood inventories 
built from 153 historical flood sites in Rwanda with ten 
predictors. According to their findings, the two 
characteristics out of the ten—Normalized Difference 
Vegetation Index (NDVI) are shown the more influence. 
Utilizing Area Under Curve (AUC) as the assessing 
measure, they offer a 79.8% predictive performance. 

(Talukdar and Pal, 2020) use Markov Chain Cellular 
Automata (MCCA) &ANNs with optimum factors of Hiden 
layers =7, Activation function = 7, Training Method= 
Backpropagation; Activation functions = 0.2, Mobility = 
0.22) to create an efficient prediction system for how 
seasonally flooded wetlands change when the flow of the 
Punargbhaba Body of water in India and Bangladesh 
changes. Wetland predictions were performed before and 
after the 2017 monsoon precipitation to assess the 
model's accuracy. The ROC-AUC curve coefficients have 
been 84.7% and 86.9%. 

(Talukdar et al. 2020) employ an ensemble of four 
approaches to ML algorithms. Reduced Errors Prune Tree 
(REPtree), RFs, and M5Ps, using the bagging approach on 

twelve indicators and the ROC curve as the assessment 
measure. The M5P device for tagging has the best 
performance. It produces a result with an ROC value of 
0.99, a sensibility of 86.26, and an accuracy of 88.76. 
(Rehman et al. 2019) use ANN, LRs, FRs, and AHP to 
estimate Bangladesh's flooding risk using 475 datasets, 
including independent factors. 

Under the ROC Curve, the area shows that regression 
analysis has the best likelihood of success (86%) & 
forecast rate (81.7%). (Preethi et al. 2021) predict the 
spring flooding in New Brunswick, Canada, using a 
regression model with four attributes: Minimum Warm, 
Yesterday's Heat, Moisture, and Snow in winter. The 
analysis has 63.7% R2, and all features are statistically 
meaningful. 

Flood modelling & based on typical data is generally 
limited by available information, size and quality, goals, 
and research scope. Our research investigates numerous 
learning models to assess their applicability and 
effectiveness. We provide an exploratory method for 
choosing the best suitable probability distribution 
function to represent the meteorological data. Our 
findings show the best model's prediction classification 
performance and effectiveness variances across 
techniques. 

Research gaps Identified 

While considerable research has been conducted on flood 
vulnerability assessments using various Machine Learning 
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(ML) models, there exists a notable research gap that this 
study aims to address: 

• Existing studies predominantly focus on 
individual or a limited number of ML algorithms 
for flood vulnerability assessments. There is a 
lack of comprehensive research that 
systematically evaluates and compares the 
performance of a diverse set of ML models. 

• Previous research often lacks an integrative 
approach, either focusing solely on 
meteorological factors or neglecting the crucial 
interplay between meteorological, 
hydrodynamic, and geographical information. 

• While ML models are increasingly being used for 
flood vulnerability assessments, there is limited 
research on the practical challenges related to 
user adoption of these models in real-world 
scenarios. 

By addressing these gaps, the proposed study endeavors 
to advance the current state of knowledge in flood 
vulnerability assessments using ML models, offering 
insights that can contribute to improved risk mitigation 
strategies and more effective decision-making in the 
context of flood management and resilience (Table 2). 

 

Table 2. Summary of the related works 

Study ML Algorithms Used Key Findings Drawbacks 

[16] DTs, RFs, Linregs, LRs, 

XGBoosts, KNNs, 

SVMs, ANNs 

Used LR with RS data & GIS over 153 historical 

flood sites in Rwanda. NDVI was a significant 

predictor. Achieved a 79.8% predictive 

performance (AUC). 

Limited to specific geographic area 

(Rwanda) and may not generalize well to 

other regions. The use of ten predictors 

might add complexity and require extensive 

data. 

[17] MCCA, ANNs Created a prediction system for seasonally flooded 

wetlands based on Punargbhaba River flow 

changes in India and Bangladesh. ROC-AUC curve 

coefficients were 84.7% and 86.9%. 

May rely heavily on data availability and 

quality related to river flow changes. 

Results might not be directly applicable to 

different wetland ecosystems. 

[18] REPtree, RFs, M5Ps Employed an ensemble of ML algorithms on twelve 

indicators to predict flooding. M5P tagging had the 

best performance with ROC value of 0.99, 

sensitivity of 86.26, and accuracy of 88.76. 

The ensemble approach can be 

computationally intensive, especially with 

multiple algorithms. Limited discussion on 

potential overfitting concerns. 

[19] ANN, LRs, FRs, AHP Estimated flooding risk in Bangladesh using 475 

datasets. Regression analysis had the best 

performance with an ROC likelihood of success 

(86%) and forecast rate (81.7%). 

May rely on the availability and quality of 

the extensive dataset, which can limit 

generalizability to other regions. Complexity 

of using multiple algorithms. 

[20] Regression Model Predicted spring flooding in New Brunswick, 

Canada using four attributes. Achieved a 63.7% R2 

with statistically meaningful features. 

Limited to a specific geographic area (New 

Brunswick) and may not be directly 

applicable to other regions or global 

contexts. Limited to spring flooding 

prediction. 

 

3. Proposed model building for flood prediction 

Learning methods frequently utilized in prediction models 
build an entire knowledge analysis tool by modelling 
biological neurons' composition, operation, and 
behaviour. The following are the procedures followed in 
predicting rainfall and, as a result, detecting the possibility 
of flooding in the Cuddalore region. 

3.1. Pre-processing of data 

Unbalanced characteristics exist in the information 
gathering. Consider the percentage of 74:26, which should 
be about equal between the current day's rainfall and the 
anticipated precipitation for the following day, as shown 
in Figure 1. It demonstrates that the information is 
unbalanced—quality inputs balance information. The 
following resampling in Figure 2 displays the value 
systems. Furthermore, an oversampling of the data is seen 
in the given dataset. The resampled information is 
produced when matching the large dataset, as shown in 
Figure 3. The detected characteristics include wind speed, 

humidity, lowest temperature, and precipitation, and the 
fraction of missing information is nearly less than 50%. 
From the research, attributes with oversampled 
information are crucial to modelling and forecasting; thus, 
the imputation of the dataset made a positive impact. 

3.2. Imputation of data using multiple imputation by 
chainedequations approach and outlier detection and 
featureselection 

After calculating the mode to impute the categorical 
variables, the label encoding technique transforms the 
structured variables into numbers. The lacking values are 
determined using Multiple Imputation by Chained 
Equations (MICE). The MICE method finds outliers using 
the median value and removes them to produce the 
datasets required to create the model. The variables' 
relationship is then calculated, and the highest-correlating 
pair of different factors is found. One of the strongly 
associated variables will then be removed. Date, position, 
and wind patterns are the dataset's category values. By 
using a label encoding method, these traits are 
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transformed continuously. The quantity values are used to 
calculate the outliers, which are then taken from the data. 
Figure. 4 depicts the flow of the proposed model. Table 3 
displays outliers considered in the research. 

 

Figure 1. Imbalanced Data 

 

Figure 2. Balanced Data 

 

Figure 3. Oversampled Features 

 

Figure 4. Taxonomy of the proposed model 

The original data has been scaled down to 21736 records 
and fourteen attributes. There are around 40,000 entries 
removed, and the information is clear of anomalies. The 
association between the traits is to be discovered as a 
subsequent step. Figure 5 depicts an overall flow of the 
proposed method; this phenomenon is called multi-
collinearity. The characteristics are all considered while 
developing the model since the weather map 

demonstrates their independence and lack of meaningful 
association. A machine learning model's data selection is 
vital. The suggested technique uses the random forest to 
ascertain a feature's significance. Chi-Square filters 
normalized information, and MinMaxScalar reduces 
negative numbers. The characteristics seen as being of 
high value in predicting rainfall from the built-in model are 
as follows. The feature is chosen in opposition to the next-
day rainfall feature. It was found that the lowest warmth, 
highest temperature, absorption, wind direction, and 
humidity all significantly affected the likelihood of 
precipitation. 

Table 3. Outlier Detection 

Attributes Values 

Date 1978 

Position 1.01 

Low temperature 5.51 

High Temperature 6.01 

Rainfall 0.0 

Evaporation 2.11 

WindGustDir 8.01 

WindGustSpeed 2.21 

Wind Direction 8.01 

Wind Speed 3.64 

Humidity 25.01 

Temp 6.01 

Rain Current Day 0.0 

Rain Next Day 1.01 

 

Figure 5. Features Multi-collinearity 

XG boost is the efficient gradient-boosting decision tree 
approach known as extreme gradient boosting, which can 
be used to calculate index weights (XGBoost). One can 
predict the score based on the features of the sample. 
When training is done, there are no trees. When a tree 
falls, its leaf node, which represents a score, will be 
reached. The matching scores out of each tree are then 
summed to get the sample's anticipated value. There are 
significant relationships between subsequent decision 
trees in the XGBoost algorithm. The forecast accuracy is 
substantially increased because each round forecast is 
built based on the forecast mistake from the previous 
round. In contrast to conventional predictive methods, it 
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can choose a default branch direction for missing data, 
minimizing the associated error. Moreover, it can handle 
category and numerical data, increasing the model's 
predictability. 

3.3. Improved XGBoost algorithm USINGCBPSO 
operatorxgboost algorithm 

An integrated model using a decision tree is called 
XGBoost.  For every specific n-sample training data set, 

( ) ( ) ( )= 1 1 2 2, , , , , ,n nD x y x y x y
 

(1) 

( )=  , ,m
i iD n x R y R

 
(2) 

For predicting the output, the framework for integrating 
the tree uses operations built from K-stacked decision 
trees. The equation reads as follows: 

( )
=

= 
`

1

, ,
K

k i k
k

y f x f F
 

(3) 

Where the instance region of every classification tree is 
represented by F. 

To discover the optimum model y and consider 
overfitting's effect on prediction performance, the 
following optimization techniques are developed and 
reduced: 

( )( ) ( ) ( )




=

= +

= +

 
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  , Ω ,Ω

*
  *

2

ˆ
n K
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i k

l y y f f
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(4) 

where i is a specified interpreted in many ways to 
compute the discrepancy between the predicted value yi 
and what occurs, N be the No. Of networks in the 

classification trees, w = (w1, w2,,wn) is the mass of every 
node, and (f) is the penalty component that penalizes the 
number of hidden layers, including the quantity of 
intermediate node and their weights. 

The equation (4) represents an optimization problem 
designed to discover the optimum model (y) while taking 
into account the impact of overfitting on prediction 
performance. The optimization involves minimizing a 
composite objective function, ξ, which is the sum of two 
components: 

The first component ( )( ) , ˆl y y

n

i i

i

represents the loss 

function, where "l" is a function that measures the 
discrepancy between the predicted value (ŷ_i) and the 
actual value (y_i) for each data point i. This sum is taken 
over all data points in the dataset (from i=1 to n). 

The second component ( ) ( )

1

 
 
 
 
 
 =

Ω ,Ω  f f

K

k

k

is a regularization 

term that penalizes the complexity of the model to 
prevent overfitting. Here, Ω(f) is a regularization function 
applied to each tree (f_k) in the model. The regularization 
function Ω(f) consists of two terms: 

The first term (α*N) penalizes the number of networks (N) 
in the classification trees, where α is a regularization 
parameter. 

The second term (β*∥w∥/2) penalizes the complexity of 
each tree's structure, where ∥w∥ is the norm of the 
weights associated with the nodes, and β is another 
regularization parameter. 

In summary, the optimization problem aims to find the 
optimal model by balancing the trade-off between 
minimizing the prediction error (captured by the loss 
function) and preventing overfitting (controlled by the 
regularization terms). The regularization terms penalize 
the complexity of the model by considering the number of 
networks, as well as the weights and structure of each 
tree in the ensemble. The values of the regularization 
parameters (α and β) play a crucial role in determining the 
strength of the regularization applied to the model. 

 

Figure 6. CBPSO working flow 

The integrative trees paradigm represented by equations 
(6) can be computed using traditional objective functions 
in Euclidean distance. Thus, we use iterative 
approximating and designate the first used created by t 
repetitions with yi((t)).  

( ) ( )( ) ( )( ) ( )+

+ += + +
n

t 1 t

i i t 1 i t 1
i

ξ l y ,y 2 f x Ω f .  
(5) 

Figure 6 shows the flow of the anticipated model where 
the number of populations and the learning objects are 
provided. The particle updation is discussed with the 
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integration of XGBoost. In this workflow, XGBoost 
hyperparameters are initially optimized to identify the 
best-performing configuration randomly. Subsequently, a 
Particle Swarm Optimization algorithm (CBPSO) is 
employed with a population size of 20. For each particle in 
the population, its speed and position are updated 
iteratively to explore the search space. The improvement 
in performance is measured by replacing 160 randomly 
selected XGBoost configurations with the enhanced 
XGBoost model. The median R-squared value is computed 
from these 100 profile events, serving as the particle's 
efficiency. Both the global and local optimum values are 
updated during this process. This workflow combines 
random hyperparameter selection and PSO optimization 
to find the most effective XGBoost configuration and 
further fine-tune it using CBPSO to achieve optimal 
predictive performance. The model's forecasts are 
incrementally enhanced via iterations by maximizing the 
equation above. By performing a Taylor series expansion 

at the point ( ) ( ) ( )
1 2

, , ,
t t t

ny y y
  

   
  

 of equation (6), the best 

solution to the problem above may be found. This 
expression is as follows: 
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factoring in eq (7), we may deduce, for every DT function 
ft+1(x), the continuing to follow: where Ii = {i|q(xi) = j} 
provides all input multiple for the source vertex in the set 
of training data while q denotes the regression analysis 
formulation for the clustered method parameter f (t+1) 

(x).In the t+1-th iteration, t+1 may be utilized to compute 
the significant decision tree.Figure 7 shows the hidden 
layers of the network model where single input and single 
output is extracted. The weights of the hidden layers are 
measured with wn where n = 1,2, … 

 

Figure 7. The layout of the two concealed units with NNs 

In a neural network with two concealed units, typically 
referring to a network with two hidden layers, the first 
hidden layer contains two neurons or nodes, and the 
second hidden layer also comprises two neurons. These 

concealed units perform computations on the input data 
and pass their results to subsequent layers. The choice of 
having two hidden layers and two units in each layer is a 
design decision that impacts the network's capacity to 
learn and represent complex patterns in the data, and it's 
often determined through experimentation to optimize 
performance on a specific task. 

XGBoost adds a regular component to the goal functions 
that comprise the number of the source nodes and the 
square summation of the components of weights for 
every tree-like structure to reduce training error. W. With 
XGBoost, column controlled digitally speeds up 
computation and avoids generalizations. With each 
repetition, XGBoost raises the leaf vertex strength by a 
parameter to reduce the influence of each tree, providing 
further learning space in the final phases One of the most 
extended processes in learning the prediction model is 
sorting the feature values, and the XGBoost program 
allows multitasking. However, before realizing it, XGBoost 
organizes the information and stores it in a block structure 
to simplify computation. The blocking approach allows 
concurrent analysis of feature gains while separating 
nodes. The element with the most significant 
improvement is ultimately chosen for split. 

3.4. Choosing superparameters 

The impact of the method's findings is strongly tied to the 
choice of XGBoost's superparameters. The grid search 
strategy is the conventional approach for altering 
characteristics, and XGBoost requires a change of nine 
superparameters. The variable selection approach divides 
superparameters into squares in a specified space and 
searches all panel positions for the best values. This 
strategy may find the worldwide optimal solution when 
the optimal intervals are large, and the step length is 
short. Nevertheless, since the classification results among 
most super parameter sets in the grid are relatively poor, 
as well as the decision tree classifiers only in a minimal 
interval are rather good, all parametric groups in the 
traverse squares are readily susceptible to slipping into 
global optimum, resulting in an enormous wasted 
effort.To resolve the issue that the traditional gradient 
boosting strategy has the propensity to settle into the 
localized optimization technique readily and to enhance 
computing efficiency, we applied the CBPSO method to 
improve the selection of super parameters. 

3.5. CBPSO operator 

The CBPSOs may be stated as a D-dimension minimal 
optimizer method: 

( )  =  1 2 D min max*F x ,2x x ,x , ,x ,x x ,x .m
 

(7) 

Concatenated boosting CBPSO, an enhanced variant of the 
classifier PSO technique, is referred to as this. It improves 
particle-to-particle interaction and quickens population 
confluence. It corrects the original PSO algorithm's flaw: it 
was prone to falling into the local optimal solution. 
Formulas to modify the classic PSO individual's velocity & 
location are: 
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( ) ( )

( ) ( )

= + −

+ −

= +

d d d d
i i 1 i i

d d
2 i

d d d
i i i

V V c *r & 0,1 *  pbest  X

  c *r & 0,1 * g best  X ,

X X V .  

(8) 

where p besti= {p best1,, p bestd} denotes the historical 
optimized value of the ith particle and g best = (g 

best1,,g bestB} is the global optimized value of every 
particle. Eq 8 & 9 indicate that every PSO improves itself 
from historic and globally desired conditions in each 
learning phase to improve efficiency. 

The CBPSO method alters the PSO speed formula (11), so 
the training item may learn from nanoparticles in 
numerous levels and periods. The revised equation is as 
follows: 

( ) ( )( )= + −d d d d
i t ifi d

V V c*rand 0,1 *  pest  X .
 

(9) 

where fi = {fi(1), fi(2), …, fi(D)} represent the fact of 
particles i need to gain understanding from the historically 
ideal value of particles fi(d) in dimensions D. 

3.6. XGBoost technique optimization vsCBPSO operator 

A three-step method is involved in optimizing CBPSO: 

• The first step is Setting the CBPSO algorithm and 
starting the particle swarm. 

• In the second approach, after starting, reboot the 
momentum and location of every nanoparticle, 
use the ongoing coordinates as the XGBoost 
superparameters, run the experimentation, use 
the experiences a sensation as the particle's 
optimal solution, and modify its spatial and 
global optimal values depending on its fitness 
value. 

• Repeat the second step N times in step third. 

XGBoost's nine superparameters are the number of 
estimations: n, training error, shallow distance, sampling 
ratios, the summation of sampling intensities of minimum 
tree structure (min child weight), the decreasing amount 
of loss function, and L1 upsampling. Lastly, we use CBPSO 
and three cross-verifications to get the optimum 
superparameters. 

Table 4. XGBoost Algorithm's last superparameter 

Factors Limits 

Rate of Learning 0.113 

Maximum Depths 12 

Subsampling 0.73 

Child Weights are minimum 0.56 

Gamma 0.218 

Alpha Registry 0.146 

lambda Registry 0.6 

BytreeColsample 0.85 

4. Results and discussions 

Indicators of model correctness include Acc, Precision, 
Recall, F1-Score & IoU, without IoU providing as the 
primary statistic. The following defines these statistics: 

+
=

+ + +

TPs TNs
Accuracy

TPs TNs FPs FNs  

(10) 

Equation 10: Accuracy measures the overall correctness of 
a classification model. It calculates the ratio of correctly 
predicted instances (both true positives and true 
negatives) to the total number of instances in the dataset. 

True Positives (TPs) are the instances correctly predicted 
as positive. 

True Negatives (TNs) are the instances correctly predicted 
as negative. 

False Positives (FPs) are the instances incorrectly 
predicted as positive. 

False Negatives (FNs) are the instances incorrectly 
predicted as negative. 

Accuracy tells us how well the model predicts both 
positive and negative classes. 

=
+

TPs
percision

TPs FPs  

(11) 

Equation 11: Precision is a measure of the model's ability 
to correctly predict positive instances without falsely 
classifying negative instances as positive. 

It calculates the ratio of true positives to the total 
predicted positive instances (true positives + false 
positives). 

Precision is useful when the cost of false positives is high. 

=
+

TPs
Recall

TPs FNs  

(12) 

Equation 12: Recall, also known as Sensitivity or True 
Positive Rate, measures the model's ability to identify all 
positive instances correctly. 

It calculates the ratio of true positives to the total actual 
positive instances (true positives + false negatives). 

Recall is important when missing positive instances is 
costly or unacceptable. 

− =
+

2* *
1

Percision Recall
F Score

Percision Recall  

(13) 

Equation 13: The F1-Score is the harmonic mean of 
precision and recall. It provides a balance between these 
two metrics. 

It's particularly useful when there is an imbalance 
between the two classes (e.g., one class has many more 
instances than the other). 

A higher F1-Score indicates a better balance between 
precision and recall. 


=



GroundTruth Predicted
IoU

GroundTruth Predicted  

(14) 

Equation 14: IoU is commonly used in object detection 
and segmentation tasks to evaluate the overlap between 
predicted and ground truth regions. 
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It calculates the ratio of the intersection of the predicted 
region and the ground truth region to the union of these 
regions. 

IoU ranges from 0 to 1, with higher values indicating 
better overlap between the prediction and ground truth. 

Accuracy is depicted as the ratio of TP and TN to TP, TN, 
FP and FN. The precision is the ratio of true positive to 
true positive and false positive. The recall is depicted as 
the ratio of true positive to the true positive and false 
negative. The F1-score is depicted as the ratio of precision 
and recall to the sum of precision and recall. Finally, IoU is 
depicted as the ratio of concatenated ground true and 
predicted value to the union of ground truth and 
prediction value. 

4.1. Implementation details 

All tests were done with PyTorch, Python 3.7, and MM 
Segmentation. Four NVIDIA Tesla P100 integrated 
graphics were used for the feature learning. Similar 
equipment was utilized for the analysis. CentOS-7.9 was 
used as the OS. Networks were validated for 30 periods, 
with periods 20 & 25 seeing several iterations enhanced 
by 0.1 and period 30 being kept for assessment. The 
sample size was 96 for the single-stream algorithms, and 
the beginning training data was set at 0.001. The dual-
stream approaches' sampling size was 16, and the starting 
training error was 0.0002. Dice losses and cross-entropy 
were used, and the combination of the two was 
considered the losses. The proposed model performs 5-
fold cross validation where the validation accuracy is 98% 
and validation loss is 2%. The samples are partitioned in 
70:20:10 ratio where 10% of samples are provided for 
validation purpose over the dataset 
https://www.kaggle.com/datasets/virajkadam/sen12flood 

4.2. Methods of Comparison 

Semantic frameworks are ideally suited to various 
remotely sensed applications, such as land covering 
categorization, flood diagnosis & edge detection. It makes 
sense to incorporate construction made for text 
categorization into computer vision frameworks. For 
instance, the ASPP module—the essential part of 
DeepLabv3+—was used by (Khanday et al. 2022) to 
improve feature modelling capacity. U-shaped 
convolution network with a fundamental topology similar 

to D-LinkNet was suggested for activity recognition. We 
examined CBPSO to four commonly used feature 
extraction concepts: DeepLabv3+, PSPNet, OCRNet, and D-
LinkNet to demonstrate the usefulness of function multi-
modal temporal lobe information fusion. We used 
MCANet and CMGFNet to show our neural network-based 
approach's advantage in multi-modal analysis software. 
The newest model in the DeepLab line is DeepLabv3+ 
(Tripathi et al. 2023). Several land cover categorizationand 
change detection investigations relied on DeepLabv3+. 
Expanding the region of interest and strengthening multi-
scale feature interactions, PSPNet, like DeepLabv3+, 
increases model accuracy. OCRNet, a more current 
feature extraction method than DeepLabv3+ and PSPNet 
(Asokan and Preethi, 2021) uses self-attention 
components to construct the pixel-object association and 
beats DeepLabv3+ on most benchmark problems. One of 
the most often used deep learning approaches for 
analyzing spatial patterns via satellite imagery is D-LinkNet 
(Alzubaidi et al. 2023). It was initially designed for road 
separation but has been extensively used for water body 
separation and other land-covering data mining 
algorithms. The other two fully convolutional models, 
MCANet and CMGFNet, reflect more recent developments 
in inter-land cover research and were used for 
comparability. To improve complementary interactions 
across various methods, these networks, which are dual-
stream approaches, combine extracted features. Table 4 
provides the super parameters. 

ResNet-50 was employed as the backbone by all methods 
beyond CBPSO. The 2 test pictures' predictions findings 
are given in Figure 8. The figures show deep learning-
based disaster identification may be employed when 
floods occur regularly. Lakes, interior river plain 
communities, and estuaries are good places to look for 
flood regions.   In this investigation, the CBPSO had the 
most outstanding results (Acc = 97.28, Precision = 94.17, 
Recall = 96.99, F1-Score = 95.51 & IoU = 88.85) The flood-
extracting characteristics under various techniques are 
compared. CBPSO can produce sharper outlines and is 
more aligned with the actual data. Due to the more 
significant memory requirements that dual-stream 
algorithms use during learning, we used a tiny sample size 
of 16 & a lower learning period rate of 0.0002. 

Table 5. Evaluation of the algorithmic accuracy. 

Techniques Accuracy in % Precision in % Recall in % F1-score in % IoU in % 

DeepLabv3+ [2] 97.53 92.03 96.71 94.17 88.59 

DeepLabv3+CNN [8] 96.51 91.07 95.49 93.11 87.48 

PSPNet [9] 96.49 91.03 95.45 93.06 87.40 

OCRNet [11] 96.13 90.04 96.39 92.45 86.40 

D-LinkNet [12] 96.26 90.20 96.89 92.73 86.86 

CMGFNet [13] 96.54 90.99 96.92 93.20 88.62 

MCANet [15] 96.54 90.93 96.99 94.56 88.64 

CBPSO (Proposed) 97.28 93.17 97.98 95.52 89.85 

 

To assess CBPSO's performance more thoroughly, we 
developed a brand-new DeepLabv3 + s model based on 
DeepLabv3+ and used the same packet size and starting 

learning algorithm as CBPSO. Table 5 displays the test 
accuracy for DeepLabv3 + s, with an IoU metric equivalent 
to DeepLabv3(IoU +'s = 87.58). CBPSO's greater accuracy 
on the testing dataset is not due to a tiny sample size or 
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lower learning period rate, according to DeepLabv3 + s. In 
multi-modal flood recognition, CBPSO outperformed 
CMGFNet and MCANet. Moreover, CBPSO outperformed 
its base technique, D-LinkNet (IoU = 86.85), 
demonstrating the viability of our suggested 
modifications. The network complexity shows some 
variation during the training process with respect to 
number of epochs. The proposed CBPSO (Chaos-based 
Particle Swarm Optimization) method achieves an 
accuracy of 97.28%, which is higher than several existing 
models, but slightly lower than DeepLabv3+ at 97.53%. 

Deep learning models often have a degree of randomness 
in their training due to factors like weight initialization and 
stochastic optimization algorithms. It's possible that the 
proposed CBPSO converged to a suboptimal solution 
during training, whereas DeepLabv3+ may have found a 
slightly better configuration in its random initialization. 
And also the performance of deep learning models can be 
influenced by the dataset they are trained on. If the 
proposed CBPSO model was trained on a dataset that is 
slightly different from the one used for benchmarking the 
other models, it could result in variations in accuracy. 

 

Figure 8. Outcomes of the estuary region of Australia's Wilsons Rivers Basin's testing location roi4's predictions 

 

Hyperparameter Tuning for the proposed Urban Flood 
Detection 

1. Model Selection: 

   - Chosen Model: XGBoost (eXtreme Gradient Boosting) 

2. Dataset Preparation: 

   - Urban features, SAR data, meteorological data, and historical 

flood records are used. 

   - Split dataset into training and validation sets. 

3. Baseline Model Configuration: 

   - Initial configuration with default hyperparameters. 

4. Grid Search Cross-Validation: 

   - Explore a range of hyperparameters systematically: 

      - Learning rate: [0.01, 0.1, 0.2] 

      - Maximum depth of trees: [3, 5, 7] 

      - Number of trees (boosting rounds): [50, 100, 150] 

      - Minimum child weight: [1, 3, 5] 

      - Subsample ratio: [0.6, 0.8, 1.0] 

      - Column subsample ratio: [0.6, 0.8, 1.0] 

      - Gamma (minimum loss reduction): [0, 0.1, 0.2] 

      - Regularization terms (alpha, lambda): [0, 1, 2] 

      - Sampling method: [stratified, uniform] 

5. Cross-Validation Setup: 

   - K-fold cross-validation (e.g., 5 folds). 

6. Performance Metrics: 

   - Evaluate metrics: accuracy, precision, recall, F1-score, ROC-

AUC. 

7. Iterative Tuning Process: 

   - Refine based on grid search results iteratively. 

8. Randomized Search (Optional): 

   - Randomly sample hyperparameter combinations. 

9. Final Model Selection: 

   - Choose hyperparameters optimizing the selected metric. 

10. Model Evaluation: 

   - Evaluate final model on a separate test dataset. 

11. Model Deployment (Optional): 

   - Deploy for real-time urban flood detection. 

This is the tuning of hyperparameters of the proposed 
model which is optimized for efficient urban flood 
detection over vulnerable zones. The chosen hyper-



URBAN FLOOD DETECTION WITH THE AUGMENTATION OF GRADIENT BOOSTING AND MACHINE LEARNING FOR PRIOR WARNING  11 

parameter values lead to improved performance metrics, 
ensuring the model's reliability in real-world scenarios. 

4.3. Complexity issues 

The Extreme Gradient Boosting (XGBoost) algorithm 
exhibits specific complexity considerations. In terms of 
time complexity, XGBoost builds an ensemble of decision 
trees iteratively, and the overall complexity depends on 
the number of trees, their depth, and the complexity of 
the weak learner used. Memory complexity is influenced 
by the dataset size, the number of features, and the 
number of trees, as each tree requires memory for 
storage. Scalability is determined by the dataset size and 
the available computational resources, as larger datasets 
and complex problems may require more time and 
memory. Additionally, XGBoost involves tuning 
hyperparameters, which introduces complexity in finding 
optimal parameter settings. Understanding these 
complexity issues helps evaluate the feasibility and 
practicality of using XGBoost for large-scale or resource-
constrained applications. 

The time complexity of training each individual base 
model (usually a decision tree) is influenced by factors 
such as the number of features (m), the number of 
samples (n), and the depth of the trees (d). 

For decision trees, the typical time complexity is O (m * n 
* log(n) * d). 

The complexity is affected by tree-specific optimizations, 
such as column blockings and tree pruning. 

5. Conclusion 

This study proposes improving the XGBoost algorithm 
using Concatenated Boosting Particle Swarm Optimization 
(CBPSO). CBPSO demonstrates strong capabilities in 
overcoming local optima and premature convergence, 
thus enhancing the convergence of the population and 
particle training. This research uses CBPSO to fill in missing 
data and adjust the atmospheric reflection index over the 
oceans to evaluate its effectiveness. The experiment 
utilizes high-resolution sounding balloon data to calculate 
the adjusted ambient optical properties at various points. 
The output comprises the adjusted atmospheric refractive 
indices of the middle layer (100-4500 m), while the input 
consists of the refractive index in the lower levels 
(approximately 100 m to 4500 m). To train the enhanced 
XGBoost algorithm, missing data for the modified index of 
refraction within the middle layer (100 m–4500 m) are 
filled in. Due to the scarcity of large-scale remote sensing 
data specifically related to multispectral flood risk 
assessment, this study successfully addresses this 
challenge using CAU-Flood, which also serves as testing 
data for future research in this domain. The authors 
extensively analyze various state-of-the-art (SOTA) 
techniques in urban flood detection, and the testing 
results demonstrate that the proposed algorithm achieves 
higher recognition accuracy than other algorithms. 

However, it should be noted that the suggested algorithm 
does not account for weather-related physical 
phenomena and merely fills in values for the modified air 
refractive index. Future research endeavours will 

incorporate these considerations to enhance the 
suggested method further and improve the accuracy of 
filling in missing values for the adjusted atmospheric 
refractive index. 

Nomenclature 

S.No. Abbrevation Description 

1 XGBOOST Extreme Gradient Boosting 

2 CBPSO Concatenated Boosting Particle 

Swarm Optimization 

3 BP Backpropagation 

4 DT Decision Trees 

5 RF Random Forest 

6 SVM Support Vector Machines 

7 ANN Artificial Neural Networks 

8 NB Navie Bayes 

9 LR Logistic Regression 

10 FR Feature Ranking 

11 MCDA Multi-Criteria Decision-Making 

12 MLP-NN Multi-Layer Perceptron Neural 

Network 

13 EM Expectation-Maximization 

14 PCA Principalcomponent Analysis 

15 AUC Area Under Curve 

16 MCCA Markov Chain Cellular Automata 

17 REPtree Reduced Errors Prune Tree 

18 MICE Multiple Imputation By Chained 

Equations 

19 TP True Positive 

20 TN True Negative 

21 FP False Positive 

22 FN False Negative 
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