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Abstract 

Investigating the influence of climate change on drought 
in a dynamic environment is essential for human society, 
agriculture, and ecology. Draught forecasting often 
considers machine learning techniques that use climate-
mode indices as predictor variables. However, forecasting 
in long lead times is still difficult due to the consequences 
of climate change and the difficulties associated with 
evaluating drought. In this study, a novel ensemble 
learning with optimized pruning model (EnsLOP) based on 
different deep learning models, i.e., multilayer perceptron 
(MLP), convolutional neural network (CNN), temporal 
convolutional feature network (TCFN) and Attention-
driven LSTM Autoencoder (AttLSTMAE), is applied to 
improve the forecasting capability of draught index 
namely Standardised Precipitation Evapotranspiration 
Index (SPEI). This study collects the preceding lag memory 
of climatic mode indicators such as rainfall, temperature, 
precipitation, and cloud cover as predictor variables to 
achieve significantly accurate draught forecasts. Also, a 
new flexible error correction (FEC) is proposed to reduce 
the prediction errors of the core predictors. The 

simulation results demonstrate that the proposed EnsLOP 
model gained a distinct advantage in terms of SPEI 
prediction with comparatively low relative errors (RMSE 
=0.098 and R2 < 0.098). 

Keywords: Climate variables, draught, standardized 
precipitation evapotranspiration index (SPEI), ensemble 
learning, pruning, error correction and forecasting. 

1. Introduction 

Climate change is one of the most significant challenges of 
the twentieth century. India is one of many places in the 
world that are now undergoing climatic variability. Yang et 
al. (2023) developed an extreme events with more 
frequent and intense globally as a result of climate 
change, and tropical regions are particularly at risk of 
experiencing these occurrences. Kumar et al. (2023) 
introduce a Climate factors such as temperature and 
precipitation have a great influence on agricultural 
practices and water bodies. Yang et al. (2020) the 
hydrological cycle is mainly controlled by meteorological 
factors, and extreme variations in annual precipitation 
and temperature over long periods of time can cause 
natural disasters such as floods and droughts. Tamilvizhi T 
et al. (2022) implemented a methods for droughts occur 
in all climatic zones due to dry weather that can last for 
extended periods of time and cause a major imbalance in 
the water cycle. 

Nguyen et al. (2023) executed a drought will get worse if 
the rate of precipitation varies. In light of this, scientists 
have employed a number of drought indexes; The 
Standard Precipitation Index (SPI) is the most widely used 
index for analyzing precipitation data. The SPI is used 
together with other indicators such as the Rainfall 
Anomaly Index (RAI) to identify severe drought evented 
by Santhanaraj R. K et al. (2023). Liu et al. (2021) 
introduced a SPI to determine the start and end of a 
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drought event and assess the influence of draught at 
multiple time intervals (monthly to yearly). Surendran R et 
al. (2023) stated the Univariate indices may not 
adequately capture the essence of a drought episode 
because drought is caused by many variables (such as 
precipitation, evapotranspiration, and soil moisture). 
Sharma et al. (2022) found the result, multivariate 
drought indices have been created including the US 
Drought Monitor (USDM), the Multivariate Standardized 
Drought Index (MSDI), and the Standardized Precipitation 
Evapotranspiration Index (SPEI). Wang et al. (2020) shared 
Information from two or more meteorological variables is 
integrated using multivariate indicators. Xu et al. (2021) 
discussed the use of drought index to analyze future 
drought estimates based on current levels is beneficial to 
climate policy and drought responses. 

Rehana et al. (2020) developed the SPEI has gained 
popularity as a meteorological drought index because it 
includes atmospheric climatic need, such as the disparity 
between precipitation and potential evapotranspiration 
(PET). SPEI has been shown to be a more trustworthy 
metric than SPI because it incorporates both PET and 
precipitation. Ullah et al. (2023) discussed about 
temperature and the techniques used to calculate 
evapotranspiration have an impact on SPEI. Furthermore, 
it has been demonstrated that the drought characteristics 
calculated from SPI and SPEI in monsoon regions are 
equivalent at short time scales. Surendran R et al. (2023) 
analyzed in the literature, three different types of model, 
such as physical, data-driven, and hybrid models, are used 
for forecasting draught because draught is fundamentally 
nonlinear. Hu et al. (2021) said the application of data-
driven models has received more attention because it has 
been shown to produce better forecasting results than 
physical-based models. 

Dikshit et al. (2021) implements the artificial neural 
networks (ANN) method to predict draught with both 
short and long lead times. Guo et al. (2024) were able to 
quickly identify broad trends or differences between 
drought indices and weather information. Chao et al. 
(2020) executes the basic deep learning networks 
developed for sequence modelling are repeat (RNN) and 
convolutional neural networks (CNN) and are often 
preferred over multilayered perceptrons (MLPs) to 
forecast climate changes. Surendran R et al. (2023) 
developed a the long-short-term memory unit (LSTM) unit 
is a variant of the ordinary RNN design that incorporates 
gating approaches and skip connections to address the 
issue of vanishing or expanding gradients.  

Dikshit et al. (2021) established a deep learning models 
are known to have high variances and low biases. Bentsen 
et al. (2023) maintaining high prediction accuracy and 
durability is challenging for a single deep learning model 
in a complex and dynamic application environment. 
Barzkar et al. (2022) provide an ensemble learning has 
proven to be a successful approach to resolving this 
problem. It does this by utilizing multiple distinct 
individual models, as well as specific ensemble 
procedures, to enhance the generality of the complete 

model. These points motivate us to propose a novel 
ensemble learning to forecast the draught by analysing 
the climate variables. The scope of this research work are 
listed as follows:  

• Analyze the climate variables at variable lead times 
for monthly SPEI predictions. 

• Introduce a robust temporal convolutional feature 
network (TCFN) to extract adequate local features. 

• Minimize the prediction errors of the core predictors 
using the flexible error correction (FEC) approach. 

The Objectives of the proposed work are listed as follows: 

• To transform the original input data from high-
dimensional to low-dimensional while retaining 
important features through the introduction of a 
novel Attention-Driven LSTM Autoencoder 
(AttLSTMAE).  

• To propose a new ensemble deep learning model 
based on MLP, CNN, TCFN and AttLSTMAE for SPEI 
forecasting. It can improve the generality and 
resilience of the entire model based on the idea of 
adaptable extraction of inherent features within the 
climate variables. 

• To eliminate redundant learners according to the 
similarity and diversity-based pruning method. 

The structure of this paper is organized as follows. Section 
2 describes recent draught forecasting methods. Section 3 
explains in detail the proposed forecasting model. Section 
4 validates the performance of the proposed method 
through simulation. Finally, the paper is concluded in 
Section 5.  

2. Related Works 

The most susceptible societies can be warned of 
impending droughts and prepared for their negative 
effects with the help of drought predictions. Wan et al. 
(2023) analysed the temporal and spatial patterns of the 
drought period and harshness using Theil-Sen and Mann-
Kendall (M-K) tests. Furthermore, the association between 
drought characteristics and climate parameters has been 
investigated using partial correlation analysis. According 
to this study, decision makers could develop an efficient 
measure to mitigate the negative social and ecological 
impacts related to climate change by knowing the primary 
climate elements that cause drought episodes. The author 
examined the possibility of creating drought prediction 
models using different machine learning methods: 
Support Vector Machine (SVM), Artificial Neural Network 
(ANN), and k-Nearest Neighbour (KNN). These models 
were used to estimate three classes of droughts: 
moderate, severe, and extreme, taking into account 
different cropping cycles. Furthermore, a unique feature 
selection method was applied for the first time in drought 
modelling to find the best possible set of predictors.  

Al Moteri et al. (2024) introduced a hybrid Convolutional 
long short-term memory with self-attention for 
forecasting the shoreline drought because of its ability to 
capture intricate interactions between climate 
parameters. The effectiveness of the LSTM model on the 
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prediction of draughts has been validated by considering 
several drought factors, including the severity of the 
drought, the classification of the drought, or geographical 
variation. Dikshit et al. (2023) aimed to predict the widely 
used drought measure, SPEI, using a stacked LSTM model. 
Here, the hydroclimatic indicators including temperature, 
PET, rainfall, and cloud cover were used along with some 
meteorological measurement. The results of this paper 
showed that the prediction abilities at an extended 
forecasting horizon can be improved by lagged climatic 
variables. 

The work used Gene Expression Programming, Model 
Tree, and Multivariate Adaptive Regression Spline models 
to compute SPEI values for different climates. These 
models were executed using meteorological data such as 
wind speed, rainfall, relative humidity, maximum, lowest 
temperatures, and average temperatures. CNN-LSTM is a 
new hybrid intelligence model that has been developed 
and verified for short-term climate-based drought 
projection. This model was used to anticipate multiple 
time-scale drought indicators, specifically three- and six-
month SPEI. The effectiveness of this model was verified 
using statistical accuracy measurements and graphical 
examinations. According to the results, CNN-LSTM 
performed better than all the benchmarks. 

This investigation demonstrates that data-driven models 
are generally chosen for forecasting weather-related 
water and parameters. In the previous ten years, several 
researches investigated the use of numerous intelligent 
data models, including SVM, ANN, and kNN, to 
considerably forecast the draught. But these independent 
machine learning techniques lead to overfitting for large 
datasets due to the intricate and non-linear interactions 
between the predictors. To overcome the limitations of 
individual models, deep learning (DL) techniques such as 
CNN and LSTM have been developed and have been 
shown to produce greater precision. Although these 
individual learners provide ease of use and computational 
speed, their generalizability, robustness, and scalability 
are frequently constrained. Nevertheless, ensemble 
learning approaches can reduce these drawbacks and 
improve overall model performance through the 
aggregation of predictions from several models. The final 
ensemble performance is greatly influenced by the 
modelling and optimization techniques used at each step. 
Therefore, the objective of the current work was to 
improve the performance of the ensemble by applying 
error correction and pruning techniques.  

3. Materials and methods 

3.1. Data and Selection of Drought Index 

In this paper, the daily weather records given by the CRU 
TS v 4.03 dataset are utilized. This data set has been used 
in a number of research projects, including agricultural, 
ancient climate, and climatic variation investigations. The 
dataset offers ten distinct principal and auxiliary variables. 
The variables used in this study are divided into three 
categories: principal variables, which include mean 
temperature and precipitation; auxiliary variables, which 

include cloud cover and vapour pressure; and derivative 
variables, which include minimum and maximum 
temperatures and potential evapotranspiration. Drought 
indices are valuable measurements for identifying, 
tracking and measuring drought occurrences. The most 
commonly utilized draught measurement is SPEI. It 
depends on both rainfall and temperature data, while SPI 
depends only on rainfall data. The factors used to 
calculate SPEI are precipitation and PET as given below:  

' 'D P PET= −  (1) 

where P′ denotes the precipitation (millimetre) and PET 
denotes the potential evapotranspiration (millimeter). The 
D′ series is fitted with different log-logistic distributions to 
compute SPEI. The PDF and CDF of different log-logistic 
distributions are defined as follows:  
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where , α and ϑ are the magnitude, silhouette and 
source variables, respectively. Also, the L-moment process 
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provided as follows:  
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the following expression: 

where ω0, ω1 and ω2 denotes the weighted probability 
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where m denotes the dimension of the sample and 𝑥𝑖  
represents the descending ordered vector descending of 
the data points. Then, the predictable Pearson-III 
distribution parameters are used to compute the CDF of 
log-logistic dissemination.  
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Here, the time series of (P′ − PET) is modelled across many 
time scales using log-logistic distribution variables. 
Moreover, the Kolmogorov-Smirnov (K-S) test is used to 
validate the fitted log-logistic distribution variables for 
hydrological water balance data of D′. With the values of 
(x), the SPEI values were calculated as given below: 
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Where ( )2      0.5W ln p for W= −  , P denotes the likelihood of 

surpassing a detected D′ value, P=1-G(x) When P > 0.5, P is 
substituted by 1-P and the sign of the resulting SPEI is 
inverted. The coefficients are 0 2.55155170=ð , 1 0.8028530=ð , 

2 0.0103280=ð , 1 1.4327880d = , 2 0.1892690d = , 2 0.0013080.d =  

Different types of draught can be illustrated by calculating 
SPEI at varying time scales from one month to twenty-four 
months. In general, meteorological drought is best 
described by shorter time scales (1-3 months), agrarian 
drought is best described by longer time scales (3-6 
months), and hydrological drought is best described by 
longer time scales (12-24 months). Access to the global 
SPEI database using the CRU data set on various monthly 
scales is available at https://spei.csic.es/database.html. 
After the data are calculated, they might be utilized to 
comprehend various aspects of the drought. The 
categories of different draughts based on SPEI values are 
provided in Table 1. 

Table 1. Draught Classes Based on SPEI Range 

3.2. Model development 

After the SPEI data collection, predictor values were 
gathered from related sources. This study uses high-
resolution hydroclimatic predictors such as temperature 
(minimum, maximum, and mean), precipitation, cloud 
cover, and PET. In this work, a new ensemble learning 
model with optimized pruning (EnsLOP) is proposed to 
anticipate month-wise SPEI at various lead times. This 
paper mainly aims to offer an adequate testing dataset in 
addition to the largest possible input dataset for training. 
Thus, the parameter obtained from 1901 to 1990 is used 
for training, and the remaining data from 1990 to 2018 is 
used for testing purposes. Figure 1 shows the structural 
configuration of the proposed EnsLOP model for the 
prediction of SPEI. The three phases of the model are data 
preparation, core predictor development (CPD), and core 
predictor fusion (CPF). In the initial phase, the raw high-
resolution data are partitioned using the cross-validation 
method. During the CPD phase, the training and testing 
set are utilized to construct a sequence of core predictors. 
In addition, a flexible error correction (FEC) technique is 
proposed to address all the core predictor predictions. 
The final ensemble model is created in the CPF phase by 
combining the core predictors using a stacking-basis 
ensemble approach. Finally, a similarity index and a 
divergence-based ensemble pruning approach is 
introduced to improve the accuracy and steadyness of the 
ensemble model. 

 
Figure 1. Proposed architecture for draught forecasting 

3.2.1. Development of the core predictor 

Different kinds of data features can be effectively 
extracted by specific kinds of Deep neural networks 
(DNNs). The ensemble learning uses different machine 
learning methods (i.e., core learners) for solving a 
problem and then merged to provide superior outcomes. 
In this work, a MLP, CNN, temporal convolutional feature 
network (TCFN) and an Attention-driven LSTM 
autoencoder (AttLSTMAE) are proposed as the core 
predictors for the ensemble model. MLP denotes a 
feedforward artificial neural network. Its network 
structure is more straightforward than that of other 
neural networks; it consists primarily of three layers: an 
input layer, a hidden layer, and an output layer. CNN uses 
a structure similar to a grid to signify and extract data 
features. A CNN applies a number of distinct convolution 
kernels (weight matrices) to the local data for creating 
feature maps with various feature information. After that, 
more abstract data features are extracted by convolving 
these feature maps. 

3.2.2. Temporal convolutional feature network 

As seen in Figure 2, the fundamental building block of 
TCFN is a "Conv1D," which is responsible for extracting 
local characteristics from the input. Additionally, TCFN 
uses 2 multiple head convolutional neural layers, each 
made up of three Conv1D blocks to find higher-level 
multiple scale features from the previously extracted low-
level features. In addition, a self-attention layer is placed 
between the two multiple head layers to correlating the 
locations of the local features acquired from the first 
multiple head layer and enhancing the input features of 
the second multiple head layer. 

 
Figure 2. Architecture of TCFN 

A 1DConv unit contains a 1D convolution, a batch 
normalization (BN) and a leaky rectified linear unit (Lky-
ReLU) activation function, as given as follows: 

SPEI range Classes 

−2.00 Extremely Dry (ED) 

−1.99  −1.50 Severely Dry (SD) 

−1.49  −1.00 Moderately Dry (MD) 

−0.99  −0.99 Near Normal (NN) 

−1.00  −1.49 Moderately Wet (MW) 

−1.5  −1.99 Severely Wet (SW) 

2.00 Extremely Wet (EW) 

https://spei.csic.es/database.html


Analysis of Climate Change for Drought Forecasting Using High-Resolution Data  5 

( )( )( )1DC L ReLU BN convOut A A A s−=
 

(9) 

where, Out1Dc and s denote the outcome and income of 
the 1DConv unit correspondingly. L ReLUA − , BNA , and 

convA  represent the Lky-ReLU activation, BN, and 

convolution functions of Lky-ReLU, respectively. The 
convolution unit is utilized to explore the local features 
from the input as given below:  

( )conv cnn cnnA s s B = +
 

(10) 

where, cnn  and cnnB  denote the weight and bias values 

of CNN correspondingly.  represents the convolution 

operator. Consider  1 2, ,BN Ms x x x=   as the input of BN 

unit. Here, jx  and 𝑀denote the j-th sample and batch 

dimension. Also, 
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where, R +ò  and   Rò  denote the learning parameters  

and 0   represents small random value.  

The BN unit guarantees a quicker training process by 
eliminating the internal covariate shift. Furthermore, the 
capability of extracting local features is enhanced by 
regularizing the proposed model using BN. In contrast to 
the RELU, which takes only positive values into account, 
the Lky-ReLU incorporates both positive and negative 
values. As a result, the loss of characteristics throughout 
the data transfer process is minimized. The Lky-ReLU 
activation can be mathematically modelled as  

( ) {  , 0  , 0  actvn actvn actvn actvn actvns s s s s=    (12) 

where, actvns  denotes the input of the Lky-ReLU and   

represents the negative number’s coefficient.  

3.2.3. Attention-Driven LSTM Autoencoder (AttLSTMAE) 

This model integrates an LSTM with auto encoder (AE), 
and the resultant model is improved using an attention 
method to selectively focus on the input data. Figure 3 
illustrates the structure of the proposed AttLSTMAE. Here, 
the LSTM networks are used as the encoder and decoder 
model of the AE. The high-dimensional input data series is 
used as static vector input to the encoder. The data 
handled by the encoder technique maintain dependences 
between different data points within a time-series 
sequence through the usage of LSTM memory cells. It also 
continuously reduces the higher-dimensional input vector 
into a lower-dimensional vector until it grasps the latent 
space. The output vector is reconstructed from the 
compact representation of the input data in the latent 

space using the LSTM decoder. Additionally, it employs 
reconstruction error rates to detect SPEI.  

 

Figure 3. Structure of AttLSTMAE 

Step1: Input Sequence Data  

The input data is a time series data 1 2, , Nx x x . From 

this data, a static V-length time window data 

 1 2, , Vx x x is initially generated where 
n

tx R  

denotes a n -features input at time t. Then, the proposed 

model reshapes these data as a 2-dimensional matrix  

Step2: LSTM Encoder with Attention Mechanism 

The LSTMAE interacts with several LSTM units to 
recognize the most significant features of the input. In the 
LSTM model, the memory units replace the RNN 
summation units. The gating mechanism used by LSTM 
memory blocks allows the network to retain and access 
data for extended periods of time. These gates decide 
whether the cell state data should be updated, 
maintained, or removed by the LSTM unit. Although the 
output of the LSTM unit is a function of all previous time 
steps, it may not be able to efficiently collect data on long-
term inputs due to its small memory. The effectiveness of 
LSTM can be improved using an attention method while 
handing long-term input data. This attention method 
allowed the neural network to focus on the more crucial 
information in the input data. In the proposed model the 
attention method is placed in the space between the two 
layers of the LSTM network to give discerning significance 
to the input data. Initially, the attention method 
computes 𝑔𝑡𝑗at every time step according to the hidden 

state ℏ𝑡 of the LSTM encoder as provided as follows:  

( )  1, ,   1,1    tj a t j jg tanh u g −
 =  −   

(13) 

Where 1tu − denotes the LSTM unit’s hidden state at one 

time step earlier and a  denotes a weight matrix that is 

fine-tuned throughout the training procedure. Also, tjg

stands for a placement model score, describing the 

relations between an input at location j  and an output at 

location t . Subsequently, this score undergoes 

normalization through a Softmax function as  

( )

( )
1

tj

tj T

i

exp g

exp ti
=

=


D  

(14) 

Next, the semantic vector is formed using the normalized 
score provided as follows.  
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1

 
T

t tj j

t

Z
=

=D  
(15) 

The above semantic vector is utilized for the calculation of 
the hidden state of the subsequent layer as: 

 ( )1 1, ' ,t b t t tu tanh u y Z − −=  (16) 

where 1'ty − represents one step earlier output.  

Step3: LSTM Decoder 

The primary function of the LSTM decoder is to function 
as a series unfolding layer, recovering the output time 
series structure after series folding. 

3.2.4. Flexible error correction method 

The forecast accuracy of the final ensemble model is 
derived from the forecast accuracy of the constituent core 
predictors. As a result, the forecast series of the core 
predictors must be thoroughly examined and corrected 
before combining the models. It needs an error correction 
model to correct future prediction results. This work 
introduced a new FEC approach to correct the errors of 

the core models. Initially, the error ( nE ) sequence at l  

time points prior to time 1n+  is gathered in order to 

anticipate the SPEI value. In this case, l  is found to be 

three by using the trial-and-error method. 

n n nE SPEI SPEI= −
 

(17) 

where nSPEI , nSPEI and nE  denote the actual SPEI, 

forecasted SPEI, and error, respectively. Then the 
proposed algorithm corrects the forecasting value 1nSPEI +  

as: 

( )

( )

1 1

1

'

l

n n n n

n

n n

SPEI SPEI SPEI SPEI

SPEI SPEI
exp n

MAE

+ +

=

= −



+ 

−
−


 

(18) 

where MAE denotes the maximum absolute, and 1'nSPEI +  

is the adjusted SPEI value. The above expression consists 
of two terms to correct the error series. The term 

( )
n n

n n

SPEI SPEI
SPEI SPEI

MAE

−
−   denotes the size and 

directional tendency of error, while the term ( )exp n−  

denotes the time decaying parameter. This shows that the 
impact of the past forecast inaccuracy on the forecasting 
value at time 1n+  slowly decreases with increasing time. 

Therefore, the proposed FEC uses past error series data 
flexibly to achieve real-time error correction during SPEI 
forecasting.  

3.2.5. Core predictor fusion using an optimized pruning 
method 

One of the crucial steps in the ensemble building process 
is core predictor fusion. The primary idea behind stacking 
is to combine the output of each core predictor to create 
new features. These features are then sent to the next-

stage metapredictor to construct the correspondence 
between the output of the core predictor and the actual 
SPEI. The existing accuracy-based pruning removes the 
effective east members of the ensemble. In this work, an 
optimized ensemble pruning process is introduced for 
producing the best fusion model and lowering the 
generalization error of the ensemble model. This method 
takes into account both the diversity of the core 
predictors and their predictive outcome for pruning. 
Figure 4 illustrates the incorporation of a two-stage 
pruning technique. 

 

Figure 4. Optimized ensemble pruning  

Initially, a collection of 𝑞 poor predictors (𝐿𝑑𝑖𝑣𝑒
𝑞

) are 

chosen from 𝑄total predictors in the ensemble (𝛦). These 
selection processes are carried out through the 
computation of weights of corresponding predictors on 
present input. The predictor with the lowest weight is 
regarded the worst in terms of precision. At the initial 
level of pruning, the predictors are compared to one 
another, and the conceptual equivalency is used to 
identify similar predictors. The prediction value of two 
predictors that are considered for comparison across all 

the  1 2, ,i NX x x x=  is represented as mL  and nL  

respectively. Subsequently, the similarity index is 
computed using the following expression:  

( )

( ) ( )

,  ,  

{1,  i  0   

v i m n

m n

P X L L

fL X L X otherwise

=

=
 

(19) 
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,  ,

c

v m n

c m n X

i
i

P X L L
SI X L L

X
=

=



 
(20) 

Where, ,vP  SI  and cX stands for predicted value, 

similarity index, and present correspondingly. When the 
predictors  mL  and nL  exhibit similarity, one of them is 

excluded from the ensemble, because they have been 
trained in the same way and represent the same notion. 

Subsequently, the poor predictors q
dive
L are chosen from Q 

total predictors. Then q
dive
L is sent to diversity checking 
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unit that calculates the diversity of the ensemble E for 

removing the predictor q
q dive
L L 

  
. Here the predictor q  

being the one whose elimination results in the greatest 
diversity within the system  

Three widely used diversity measures including 
disagreement (DST), double fault (DFT), and Q-static (Q-S) 
have been examined in the second level of the pruning 

stage. When the predictor qL  forecasts the SPEI of input 

series accurately then ( ) 1SPEI X = . Alternatively, 

( ) 0SPEI X =
 when it forecasts SPEI wrongly. Let 

ijV be the 
amount of training data whose forecast is i and j (
 i, (0,1)j ) for predictors Lm and Ln correspondingly. The 

diversity measures Q-S, DFT and DST can be computed 
using 

( )
00 11 01 10

00 11 10 01
_ ,m n

V V V V
Q S L L

V V V V

−
=

+  

(21) 

( )
00

00 11 10 01
,m n

V
DFT L L

V V V V
=

+  

(22) 

( )
01 10

00 11 10 01
,m n

V V
DST L L

V V V V

+
=

+  

(23 

Finally, a meta-predictor is constructed over the current 
input for SPEI prediction.  

4. Results and discussion 

The proposed drought forecasting model is simulated 
using Python programming language. Figure 5 analyzes 
the predicted results with respect to several drought 
features for four different lead times: one month, three 
months, six months, and twelve months. It is not possible 
to depict all the anticipated outcomes during the testing 
phase. Consequently, the first sample of the predicted 
SPEI sequence was shown. For example, a one-month lead 
time is displayed for January 2016. Similarly, a lead time of 
three months is shown for March 2016, a lead time of six 
months for June 2016, and a lead time of twelve months 
for December 2016. 

 

Figure 5. Predicted SPEI 1 values with lead times of a) 1 month, 

b) 3 months, c) 6 months, and d) 12 months (e) SPEI scale 

Figures 6 (a) and (d) show the changes in the intensity 
values of the drought at various lead times. A helpful 
statistical measure called a threat score (TS) was 
employed to understand the predicted outcomes in 
relation to the observed values. TS uses the subsequent 
expression to calculate the percentage of accurately 
anticipated results with respect to the observed values: 

s

H

H M FA
 =

+ +  

(24) 

Where, 𝐻,𝑀and 𝐹𝐴 represents hit, miss and false alarm 
respectively. TS has a value between 0 and 1, where 0 
denotes no talent and 1 represents the best score. 
According to the findings, TS was 0.97 for a one-month 
lead time, 0.95 for a three-month lead time, 0.90 for a six-
month lead time, and 0.85 for a twelve-month lead time. 
These findings demonstrate that the model can predict 
monthly SPEI values with sufficient precision. 

 
Figure 6. Drought intensity values at various lead times (a) 1 

month (b) 3 months (c) 6 months (d) 12 months 

4.1. Ablation study 

This section examines the impact of individual deep 
learning models in the ensemble. Figure 7 (a) 
demonstrates that the EnsLOP prediction curve is more 
closely aligned with the actual value compared to the 
other four distinct deep learning models. Additionally, 
Figure 7 (b) illustrates the impact of the proposed FEC 
method in EnsLOP. It demonstrates that the ensemble 
model's forecasting curve is more similar to the real curve, 
while using the FEC processing. In Figure 7 (c), the forecast 
curve of EnsLOP is closer to the actual curve, while the 
forecast curve of EnsL without optimized ensemble 
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pruning (OEP) shows poor performance. These analyses 
verify the usefulness of each technique used in the 
suggested model, allowing the dominance of the 
suggested EnsLOP approach.  

 
Figure 7. Ablation study with (a) individual core predictors, (b) 

FEC approach, and (c) optimized ensemble pruning (OEP) 

The root mean square error (RMSE) and the coefficient of 
determination (R2) were used as statistical metrics to 
analyze the effectiveness of the proposed framework. 

RMSE is a useful metric for forecasting and penalizes big 
errors. The degree of correlation between the predicted 
and observed values is shown by the R2 value. This R2 
value is a number between 0 and 1, where 0 means there 
is no relation and 1 represents an accurate match. 
However, a smaller RMSE score indicates better 
performance. The performance of the suggested EnsLOP 
is compared with that of the core predictors, CNN, TCFN, 
MLP and AttLSTMAE in Figure 8. It shows that the 
forecasting results of individual core predictors perform 
poorly compared to the suggested EnsLOP.  

 

Figure 8. Comparative analysis (a) R2 and (b) RMSE 

The performance of the suggested draught prediction is 
compared with the state-of-the-art methods in Table 2. It 
is evident that the suggested EnsLOP performs better than 
any of the current models by achieving RMSE of 0.098 and 
R2 of 0.98. The reason for this is that the large-scale 
variance of climate data may be too much for traditional 
CNN, SVM, and KNN models to handle when trying to 
extract features with varying scales. The stacked LSTMs do 
not have the capability for handling temporal 
dependences which are lengthier than a certain step. 
When trained on a long-term dependency dataset (for 
example, 100 steps), the network encountered difficulties 
in learning the task. As a result, the effectiveness of these 
methods is not good enough for draught forecasting. 
However, the proposed model integrates the benefits of 
different models to achieve the best results. 

Table 2. Comparative analysis with state-of-the-art methods 

References Datasets: Climate variables Model RMSE R2 

Surendran R., et al. 

(2023) 

PGF- version 3/ Air temperature, 

geopotential height, relative 

humidity, wind, Sea level pressure 

SVM 0.33 @ 6- month lead 0.96 @ 6- month lead 

ANN  0.49 @ 6- month lead 0.95 @ 6- month lead 

KNN 0.62 @ 6- month lead 0.75 @ 6- month lead 

Dikshit et al. (2021) 
CRU: Temperature, PET, rainfall, 

cloud cover and climatic indices  
Stacked LSTM 0.11 @ 6-month lead 0.92@ 6month lead 

Bentsen et al. 

(2023) 

synoptic stations at Iran: 

Temperature, humidity, rainfall and 

wind speed 

GEP 0.250 - 

MT 0.107 - 

MARS 0.148 - 

Proposed 
CRU: Temperature, PET, rainfall, 

cloud cover 
EnsLOP 

0.098 @ 6- month 

lead 
0.98 @ 6- month lead 

 

5. Conclusions 

This study presented a novel ensemble learning with an 
optimized pruning model for draught forecasting. High-

resolution hydroclimatic variables, including temperature 
(minimum, maximum and mean), precipitation, cloud 
cover, and PET, were employed to validate the 
effectiveness of the techniques in the suggested model 
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and the dominance of the general ensemble draught 
forecasting model. During the testing time, the suggested 
EnsLOP model predicts SPEI at varied lead periods and 
performs better than other baseline models. The 
proposed FEC approach aimed to reduce the forecasting 
error by taking into account the comparative pattern and 
temporal deterioration in the error series. The predicted 
results were evaluated using statistical metrics and 
looking at various aspects of the drought. The results 
demonstrated that the EnsLOP model performs better 
than conventional data-driven models in terms of 
statistical metrics. Regional drought management 
planners may find this study highly beneficial in planning 
for future potential drought conditions. The suggested 
approach can produce good forecasting results; however, 
it is not directly scalable to multidimensional data. 
Extending the suggested model to multivariate and 
multistep time series forecasting is one potential avenue 
for future research.  

Data Availability Statement: 

The source of data sets are download from the following 
link  

https://www.ncdc.noaa.gov/cdo-web/datasets and 
http://apdrc.soest.hawaii.edu/data/data.php 
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