
 

1 

 

Comprehensive evaluation of leaching toxicity of tailings in non-resource-based 

cities in Anhui Province based on entropy weight-clustering method  

Xiaoyu Zhu1, Kangping Cui1,2, *, Wei Ni3, Ming Yang3, Tao Tao4 

 

1School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 

230009, China 

2Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei 

University of Technology, Hefei 230009, China 

3Assessment Center of Environmental Engineering of Anhui Province, Hefei 230071, China 

4Anhui O’rigin Environmental Engineering Co., Ltd., Hefei 230000, China 

*Corresponding author: Kangping Cui 

E-mail: cuikangping@hfut.edu.cn 

  



 

2 

 

GRAPHICAL ABSTRACT 

 

ABSTRACT 

Toxic components in tailings pose a severe threat to the ecosystem and human health and negatively 

affect tailings’ resource utilization. Therefore, using the entropy weight-clustering method, we 

evaluated the leaching toxicity based on tailings samples from non-resource cities in Anhui Province. 

The results show that, all the extracted tailings samples first passed the leaching toxicity test, but there 

is still a large room for improvement. Secondly, there are complex interrelationships among the 15 

indicators measuring leaching toxicity. Thirdly, in the process of entropy weight method calculation, 

the top three indicators in terms of weight are Cu (17.65%), Ag (16.52%), and Be (8.66%). Finally, 

the Ward clustering results show that the toxicity scores of tailings in each mining area exhibit distinct 

hierarchical characteristics, and they can be divided into two major categories and three subcategories 

(Ⅰ-1, Ⅰ-2, Ⅱ), with the toxicity scores of category Ⅰ-1 significantly higher than the rest of the mining 

areas. These findings provide empirical evidence for targeted treatment of tailings resources. 

Graphical abstract: 
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1. Introduction 

It is widely acknowledged that humans have had an indelible impact on planetary processes and that 

human activity has changed the earth enough to usher in a new geological era, the Anthropocene 

(Malhi, 2017; Waters et al., 2016; Zeng et al., 2020). In the context of the Anthropocene and post-

covid-19 era, depletion of mineral resources, environmental degradation, and natural resource 

exploitation are the three significant global challenges (Xiong et al., 2023), and the resource 

utilization of tailings is a synergistic and effective way to address these three challenges. 

Tailings are “waste” slag left after extracting useful substances or elements from raw ore from metal 

or non-metal mines. The rapid mining of mineral resources is accompanied by massive tailings (Guo 

et al., 2022). Since reform and opening up, China’s rapid urban development and economic growth 

have led to an expanding demand for mineral resources (Liu & McDonald, 2010; Shen et al., 2005), 

resulting in a concomitant increase in tailings emissions. According to statistics, in 2018, the tailings 

generation of key survey industrial enterprises in China was 880 million tons, accounting for 27.4% 

of the general solid waste generation of key survey industrial enterprises. However, its comprehensive 

utilization rate was only 27.1%, which is still a big gap with the average comprehensive utilization 

rate of other industrial solid wastes (Wang et al., 2020). One of the critical factors affecting the 

resource utilization of tailings is their toxic composition. 

Generally, tailings contain high concentrations of toxic metals and metalloids (Nguyen et al., 2021). 

These toxic components in tailings pose a severe threat to the ecosystem and human health and 

negatively affect the resource utilization of tailings. High concentrations of toxic elements in tailings 

can make it particularly difficult to utilize them, as treatment of such elements often requires complex 

scientific techniques and high economic costs. In addition, the tailings pond is not only a pollution 

source, but also a risk source for safety accidents. Recent studies have shown that microorganisms 

also have an impact on the safety of tailings (Cao et al., 2019; Wang et al., 2022). 

Current methods for assessing the toxicity of tailings can be categorized into environmental impacts 

and health risks. The most used assessment methods in the environmental impact category are the 
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geoaccumulation index (Ιgeo) proposed by Muller (1969) and the potential ecological risk assessment 

(RI) proposed by Hakanson (1980). Among them, Ιgeo provides a basis for assessing soil 

contamination in mining areas by comparing the metal concentrations found in tailings samples with 

those of geochemical background value (Li et al., 2014).RI, on the other hand, is based on a specific 

set of equations, which can be used to assess the potential ecological risk index by placing the metal 

concentrations of tailings samples, the corresponding background value, and the toxic biological 

response factor as variables(Lima et al., 2024; Shen et al., 2019). Unlike environmental impact 

assessment methods, health risk assessment for tailings toxicity requires multiple steps. First, an 

average daily intake (ADI) is calculated based on the three exposure pathways: oral ingestion, dermal 

contact, and inhalation. Second, the hazard quotient (HQ) is calculated based on the reference dose 

(RfD) with ADI, which assesses the non-carcinogenic risk. Finally, the carcinogenic risk (CR) is 

calculated based on the slope factor (SF) with ADI (Kan et al., 2021). By sorting out the toxicity 

assessment methods of tailings, it can be found that most of the current commonly used assessment 

methods need to rely on the background value with parameters, which may lead to measurement 

errors. The entropy value method, as a commonly used objective assignment method, can effectively 

reduce the errors caused by improper parameter setting and has been widely used in the assessment 

of coal mine safety and green mine construction level in recent years (Li et al., 2011; Yin et al., 2024). 

Therefore, we have developed a new comprehensive framework for assessing the leaching toxicity 

of tailings and conducted analysis based on tailings samples from Anhui Province, which provides 

empirical evidence for targeted treatment of tailings resources. 

The rest of the paper is structured as follows. Section 2 outlines the sample selection and analysis 

process, providing a brief overview of the statistical methods used in this paper. Section 3 presents 

the results, including descriptive statistics, correlation analysis, entropy weight analysis, and 

clustering analysis. Finally, in section 4, the findings are discussed and summarized. 

 

2. Materials and methods 
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2.1. Sample selection  

The study area of this paper is Anhui Province in China. Located in the central-eastern part of China, 

Anhui Province boasts diverse and complex geographical features, predominantly characterized by 

hills and mountains. It is a significant base for China’s energy, raw materials, and manufacturing 

(Jiang et al., 2018). Mineral resources in Anhui Province are relatively wealthy, and many mines 

exist. As of the end of 2015, 76 kinds of solid minerals (including subspecies) were utilized in Anhui 

Province, with 1638 mines, including 835 production mines, accounting for 50.98%. Solid mines 

produced 465 million tons of ore annually, with an output value of 77.6 billion yuan, accounting for 

3.53% of the province’s gross domestic product (Bureau of Geology and Mineral Exploration of 

Anhui Province, 2018). We selected three mining areas in Huoqiu County, Anhui Province 

(designated as KF, LT, and FQ), and two mining areas in Lujiang County, Anhui Province (designated 

as JD and WX) as sampling sites. This choice was made because these two regions are neither 

resource-based cities nor resource-depleted areas, thus exhibiting typicality and representativeness 

regarding natural resource endowment. In addition, this sample selection approach also facilitates 

extending the research experience to other regions, which can make a more outstanding theoretical 

contribution to the resource utilization of tailings. 

2.2. Sample analysis 

Twenty-six samples from five mining areas were analyzed for leaching toxicity by the Solid waste-

Extraction procedure for leaching toxicity-Sulphuric acid & nitric acid method (HJ/T 299-2007, 

2007). Final measurements include Copper (Cu), Zinc (Zn), Lead (Pb), Chromium (Cr), Hexavalent 

Chromium (Cr(VI)), Beryllium (Be), Barium (Ba), Cadmium (Cd), Nickel (Ni), Silver (Ag), Arsenic 

(As), Selenium (Se), Mercury (Hg), Fluoride (FL), and Cyanide (CN). All 15 indicators will be used 

to assess the leaching toxicity of tailings. 

2.3. Evaluation criteria 

We chose to evaluate the leaching toxicity of tailings at each mine site using the entropy weight 

method. The basic ideology of entropy weight theory is that if the values of a given indicator differ 
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more between the evaluation samples, then it means that the indicator provides more information. 

When an indicator is equal in the evaluation sample, it is automatically filtered in the calculation 

process. In other words, the weight of such an indicator will be zero (Zhao et al., 2018). Drawing on 

Amiri et al. (2014), the entropy weight method is applied in this paper in the following steps: 

The first step is the dimensionless of the indicators. Because this study only deals with negative 

indicators, it is only necessary to use normalization for negative indicators: 

𝑥𝑖𝑗
′ =

𝑚𝑎𝑥 𝑥𝑖𝑗 − 𝑥𝑖𝑗

𝑚𝑎𝑥 𝑥𝑖𝑗 − 𝑚𝑖𝑛 𝑥𝑖𝑗
 (1) 

The second step calculates the ratio 𝑝𝑖𝑗 of the 𝑖 evaluation object on the 𝑗 indicator: 

𝑝𝑖𝑗 =
𝑥𝑖𝑗

′

∑ 𝑥𝑖𝑗
′𝑚

𝑖=1

 (2) 

The third step calculates the entropy value 𝑒𝑗 for each indicator based on 𝑝𝑖𝑗: 

𝑒𝑗 = −
1

𝑙𝑛 𝑚
∑ 𝑝𝑖𝑗

𝑚

𝑖=1
𝑙𝑛(𝑝𝑖𝑗) (3) 

To eliminate the effect of 𝑝𝑖𝑗 = 0 in equation (3), we apply a non-negative translation of 0.001 units. 

The fourth step calculates the weights 𝑤𝑗 for each indicator: 

𝑤𝑗 =
1 − 𝑒𝑗

∑ (1 − 𝑒𝑗)𝑛
𝑗=1

 (4) 

Finally, the toxicity score 𝑧𝑖 is calculated from the normalized data 𝑥𝑖𝑗
′  with weights 𝑤𝑗: 

𝑧𝑖 = ∑ 𝑥𝑖𝑗
′ × 𝑤𝑗

𝑛

𝑗=1
 (5) 

After calculating the comprehensive scores for the leaching toxicity of tailings in each mining area, 

we used the Ward hierarchical clustering method for classification. The Ward method, also known as 

the Ward variance minimization algorithm, initially considers each sample in the population as a 

cluster. Then, at each step of merging clusters, it selects the two clusters with the smallest increase in 

the sum of squared deviations and merges them until all samples are grouped into one cluster (Yang, 

2010). The specific steps are as follows: 
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Divide 𝑛  samples into 𝑘  clusters: 𝐺1, 𝐺2 … 𝐺𝑘 . Use 𝑦𝑖̅  to denote the centroid of 𝐺𝑖  (the mean of 

samples in this cluster), 𝑦𝑖𝑗 to represent the 𝑗 sample in 𝐺𝑖, and 𝑛𝑖 to denote the number of samples 

in 𝐺𝑖. Then, the sum of squared deviations of samples in 𝐺𝑖 is: 

𝑆𝑖 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖̅)
′
(𝑦𝑖𝑗 − 𝑦𝑖̅)

𝑛

𝑗=1
(6) 

The sum of squared deviations within each of the 𝑘 clusters is: 

𝑆′ = ∑ ∑ (𝑦𝑖𝑗 − 𝑦𝑖̅)
′
(𝑦𝑖𝑗 − 𝑦𝑖̅)

𝑛𝑖

𝑗=1

𝑘

𝑖=1
 (7) 

 

3. Results 

Table 1 shows the descriptive statistics of the leaching toxicity of the samples. Table 1 demonstrates 

that the concentrations of all detection factors of the selected samples are lower than the thresholds 

of the Identification standards for hazardous wastes-Identification for extraction toxicity (GB5085.3-

2007, 2007). It should be noted that the standard deviation of most of the indicators is significant, 

indicating a large degree of dispersion of the samples. In other words, although the leaching toxicity 

of tailings samples meets the basic requirements, there is still much room for improvement. 

Figure 2 visually represents the correlations between the 15 indicators measuring leaching toxicity. 

From Figure 2, it can be observed that there are complex relationships among these 15 indicators. 

Using only one or a few indicators as surrogate variables for tailings toxicity would result in losing 

crucial decision-making information. Therefore, to systematically evaluate the potential toxicity of 

Anhui Province tailings, we used the entropy weight method to assess the 15 indicators 

comprehensively. 

According to the previous application steps, we first normalized the 15 indicators. Then, we 

calculated each indicator’s entropy value and weight based on the processed data, and the results are 

shown in Figure 3. 

From Figure 3, the weight of the Cu indicator is the highest, reaching 17.65%, indicating that this 

indicator provides the most information and has the most significant impact on the evaluation of 
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tailings toxicity. Next, the weight of the Ag indicator also reaches 16.52%, similarly providing rich 

decision-making information. Furthermore, the weights of the Be, Hg, Ba, As, Se, and Ni indicators 

are all greater than 5%, indicating that these indicators also significantly influence the comprehensive 

evaluation of tailings toxicity. Lastly, although the weights of the Zn, FL, Cr, Pb, Cr(VI), Cd, and CN 

indicators are relatively small, they still threaten ecosystems and human health. Therefore, they 

should also be taken into consideration when evaluating tailings toxicity. 

The toxicity score for each sample can be calculated by substituting the resulting indicator weights 

into the previous equation (5), and the results are shown in Figure 4. When the mining area is used as 

the classification standard, it can be found that the fluctuation of the sample scores within the same 

mining area is relatively smooth, and the scores of each mining area are ranked in the order of WX, 

FQ, LT, JD, and KF. Among them, the sample scores of the WX mining area are above 0.75, which 

indicates that it has achieved the best result in the control of tailings toxicity. However, the sample 

scores for the JD mine, which is in the same domicile as the WX mine, are all within the 0.5-0.75 

range, suggesting that the corporate domicile is not a key determinant of its toxicity. Among the three 

mining areas from Huoqiu County, FQ and LT mining areas achieve relatively good toxicity scores. 

However, samples from the KF mining area have significantly lower scores than the other mining 

areas, once again indicating that the domicile determinism cannot adequately explain the toxicity 

scores of tailings in Anhui Province. 

After calculating the toxicity scores for each sample, we further analyzed them using Ward 

hierarchical clustering with the mine as the basis for classification. Figure 5 is a dendrogram of cluster 

analysis derived from the automatic partitioning performed using the hierarchical clustering function 

in the SciPy package of Python. The principles are previously introduced in equations (6) and (7). 

Specifically, the function’s output indicates that the construction of the dendrogram proceeded 

through four iterations: initially, the distance between the LT and FQ was 0.021, forming the first 

cluster (I-2); subsequently, the distance between WX and the first cluster was 0.215, merging to form 

the second cluster (I-1); next, the distance between KF and JD was 0.258, resulting in the third cluster 
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(II); finally, the distance between Cluster I and Cluster II was 0.589, marking the completion of the 

clustering process. Among them, the Ⅰ-1 category contains only the WX mine due to a significantly 

higher toxicity score than the rest of the mines. Secondly, the Ⅰ-2 category contains the LT and FQ 

mining areas, and the scores are lower than those of category Ⅰ-1, but are still at a reasonable level 

from a global perspective. Finally, the Ⅱ category contains the KF and JD mining areas, which have 

lower scores and more significant potential for improvement. 

 

4. Discussion 

The concentrations of the detection factors in the mining samples were all below the thresholds, 

reflecting that the mining industry has achieved remarkable results as a critical area of solid waste 

pollution prevention and control. At the same time, the 15 indicators used to measure the toxicity 

have large standard deviations, indicating that there is still much room for progress in the governance 

of tailings toxicity in Anhui Province. In further entropy weight method analyses and clustering 

analyses, we can find that the tailings toxicity scores of the mines show a hierarchical characteristic. 

The scores of the samples within the same mine are similar, and there is a significant difference in 

the scores of the samples from different mines. Therefore, it is imperative for mining companies to 

actively promote innovation in tailings treatment technologies, building upon the achievements of 

expanding the governance of tailings toxicity. Furthermore, efforts should be intensified to enhance 

supervision over mining areas with lower scores. 

The original contributions of this paper are mainly in terms of the research area and methodology. 

On the one hand, most of the previous works on tailings in Anhui Province focus on resource-based 

cities such as Tongling (Yang et al., 2014) and Maanshan (Zhou et al., 2022). In contrast, this paper 

takes Lujiang and Huoqiu, two non-resource-based counties as the study area, which is conducive to 

broadening the understanding of tailings toxicity and making the results more generalizable. On the 

other hand, due to the complex correlation between the indicators and the hierarchical differences 

between the samples, this paper chose to employ the entropy weight-clustering method to achieve a 
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comprehensive evaluation of the leaching toxicity of tailings in non-resource-based cities in Anhui 

Province, which also provides new ideas for academic research in this field. 

This paper also had some limitations due to difficulties in data collection. For instance, the sample 

size used for statistical analyses was only 26, which limited the choice of methodology for this paper. 

In addition, the small sample size also resulted in the inability to perform refined analysis. Therefore, 

we hope that future research can expand the sample size and, based on tailings classification (Gou et 

al., 2019), comprehensively evaluate the leaching toxicity of tailings such as silicate minerals, 

carbonate minerals, feldspar minerals, and clay minerals. 

 

5. Conclusion 

In summary, the following conclusions were drawn from this paper. Firstly, all the extracted tailings 

samples passed the leaching toxicity test, but there is still a large room for improvement. Secondly, 

there are complex interrelationships among the 15 indicators measuring leaching toxicity. Thirdly, in 

the process of entropy weight method calculation, the top three indicators in terms of weight are Cu 

(17.65%), Ag (16.52%), and Be (8.66%). Finally, the Ward clustering results show that the toxicity 

scores of tailings in each mining area exhibit distinct hierarchical characteristics. They can be divided 

into two major categories and three subcategories (Ⅰ-1, Ⅰ-2, Ⅱ), with the toxicity scores of category Ⅰ-

1 significantly higher than the rest of the mining areas. 
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Table 1. Descriptive statistics of toxicity indicators 

Variables Mean Standard Deviation Min Max GB5085.3-2007 Unit 

Cu 0.010 0.009 0.000 0.020 100 

mg/L 

Zn 0.043 0.058 0.003 0.178 100 

Pb 0.071 0.093 0.001 0.340 5 

Cr 0.054 0.047 0.002 0.170 15 

Cr(VI) 0.005 0.008 0.000 0.032 5 

Be 0.002 0.002 0.000 0.005 0.02 

Ba 0.282 0.410 0.020 1.090 100 

Cd 0.002 0.002 0.000 0.009 1 

Ni 0.034 0.019 0.002 0.070 5 

Ag 0.004 0.005 0.000 0.010 5 

As 0.029 0.041 0.000 0.110 5 

Se 0.111 0.218 0.000 0.550 1 

Hg 0.005 0.008 0.000 0.020 0.1 

FL 0.308 0.166 0.080 0.700 100 

CN 0.025 0.085 0.000 0.399 5 

Note: Round to three decimal places after rounding. 
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Figure 1. Sampling locations for tailings 
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Figure 2. Correlation among toxicity indicators 
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Figure 3. Weighting of toxicity indicators in the calculation process 
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Figure 4. Scores of various mining areas 

 

Figure 5. Dendrogram based on hierarchical clustering 
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