
 

Global NEST Journal, Vol 26, No 6, 05844 
Copyright© 2024 Global NEST 

Printed in Greece. All rights reserved 

 

Wang Y., Zuo T., Xing F., Hu Y., Cui T., Wu J., Shen X., Wang S. and Xiao Q. (2024), Enhancing the european space agency’s climate 

change initiative soil moisture product over china, Global NEST Journal, 26(6), 05844. 

Enhancing the european space agency’s climate change initiative 
soil moisture product over China 

Wang Y.a, b, *, Zuo T.b, Xing F.b, c, Hu Y.d, Cui T.b, Wu J.e, Shen X.f, g, h, Wang S.a and Xiao Qa 
aYellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, China 
bCollege of Geography and Remote Sensing, Hohai University, Nanjing, China 
cSchool of Earth Sciences and Engineering, Hohai University, Nanjing, China 
dJiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, China 
eCollege of Hydrology and Water Resources, Hohai University, Nanjing, China 
fThe National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China 
gYangtze Institute for Conservation and Development, Hohai University, Nanjing, China 
hChina Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, China 

Received: 22/02/2024, Accepted: 24/06/2024, Available online: 28/06/2024 

*to whom all correspondence should be addressed: e-mail: wongyinan@foxmail.com 

https://doi.org/10.30955/gnj.005844 

Graphical abstract 

 

Abstract 

Soil moisture heavily influences the energy exchange 
between land and the atmosphere, and it plays an 
important role in ecological systems. Quantitatively 
acquiring soil moisture information is important for 
agricultural production, ecological protection and other 
processes. The current range of soil moisture data 
products is diverse, but how to enhance the applicability 
and accuracy of these products in China through data 
fusion is a question worth exploring. As a new, merged 
soil moisture product, ECV_SM was initially developed 
under the European Space Agency’s (ESA’s) Water Cycle 
Multi-Mission Observation Strategy (WACMOS) project 
and is currently being extended and improved within the 
ESA’s Climate Change Initiative (CCI). In this study, an 
empirical model is suggested to improve the performance 
of ECV_SM over China. First, the study area was divided 
into seven sub-areas using digital elevation model (DEM), 
land surface roughness (ROUGHNESS) and vegetation 
optical depth (VOD). Then, nine impact factors (DEM, 
ROUGHNESS, VOD, antecedent precipitation index, slope, 
aspect, sand content, clay content and ECV_SM) and in-
situ soil moisture data were used to build an empirical soil 

moisture estimation model for each sub-area. In total, 
70% of the in-situ soil moisture data was used for 
modeling and 30% was used for validation. The validation 
results indicate that the BIAS, root-mean-square 
difference (RMSD) and mean relative error (MRE) 
improved from 0.078 cm3/cm3 to 0.062 cm3/cm3, from 
0.099 cm3/cm3 to 0.078 cm3/cm3, and from 30.0% to 
22.6%, respectively. The spatial distribution of the 
improved dataset is also consistent with the actual 
conditions. The approach optimizes the ECV_SM product; 
therefore, the approach is efficient. The results of this 
study have successfully improved the accuracy of existing 
data products in China and enhanced the efficiency of 
data fusion. This has significant implications for the impact 
of soil moisture products on the regional ecological 
environment and agricultural production in China. 
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1. Introduction 

Soil moisture plays an extremely important role in 
ecosystems and agricultural production. The growth and 
development of plants, their nutrient absorption and 
transport, and their ability to adapt to environmental 
changes are all closely related to the conditions of soil 
moisture. Soil moisture not only affects plant growth but 
also impacts the activity and diversity of soil 
microorganisms. These microorganisms play a key role in 
the nutrient cycling and decomposition of organic matter 
in the soil, which in turn affects the nutrient supply to 
vegetation. Appropriate soil moisture is one of the key 
factors ensuring the healthy growth of crops. Uneven soil 
moisture can lead to field water management issues, 
thereby affecting the uniformity and yield of crops. For 
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instance, rice requires sufficient waterlogging conditions 
to thrive, while crops like wheat and soybeans need good 
drainage to prevent root rot. Accurate monitoring and 
management of soil moisture can help farmers irrigate 
more effectively, avoiding over- or under-watering and 
maximizing the efficiency of water resource use. This can 
not only increase crop yield but also reduce the wastage 
of water resources. Utilizing soil moisture sensors, 
satellite remote sensing technologies, and climate models 
can help agricultural practitioners better understand and 
predict soil moisture conditions, thus making more 
informed decisions. Soil moisture conditions influence 
subsequent runoff generation, modulate interactions 
between land surface and atmosphere, and participate in 
the feedback between land and the atmosphere (McCabe 
et al. 2005). Soil moisture information over a large area 
would greatly benefit global climate forecasting, drought 
monitoring and yield estimation.  

Microwave remote sensing provides an efficient 
alternative to quantitatively acquire soil moisture 
information at various scales. Various microwave 
instruments have been launched and operated. The types 
of sensors carried can be roughly divided into two 
categories: datasets based on active microwave sensors 
and datasets based on passive microwave sensors. The 
earliest remote sensing satellites launched with 
active/passive microwave sensors include SMMR, SMMI, 
TMI, SCAT, etc. After 2000, remote sensing satellites 
carrying new active/passive microwave sensors were 
launched successively, and many soil moisture datasets 
were generated, such as AMSR-E ((Njoku et al. 2003; Owe 
et al. 2008), WindSat ((Li et al. 2010; Parinussa et al. 
2012), Aquarius (Vine et al. 2007), ERS-AMI, and MetOp-
ASCAT (Bartalis et al. 2007; Scipal et al. 2002). However, 
these sensors are not specifically designed for measuring 
soil moisture, and soil moisture products developed based 
on these data also differ in design objectives, 
spatiotemporal resolution and coverage range, data 
sources, algorithms, and delays (Beck et al. 2021). In 2009, 
the European Space Agency launched an L-band 
instrument for the Soil Moisture and Marine Salinity 
(SMOS) mission (Mecklenburg et al. 2012). Subsequently, 
novel and specialized soil moisture datasets such as SMAP 
(Entekhabi et al. 2008) emerged. In 2012, as a follow-up 
mission to AMSR-E (Parinussa et al. 2015), AMSR-2 was 
launched along with ASCAT sensors based on the MetOp-
B platform (Entekhabi et al. 2010; Chan et al. 2018; O'Neill 
et al. 2019). Between 2014 and 2015, Sentinel-1A and 
SMAPL (Entekhabi et al. 2010; Chan et al. 2018; O’Neill et 
al. 2019) were successfully launched. In recent years, new 
sensors such as radar biomass and NISAR will also be 
introduced one after another. The development of these 
instruments has driven the development of (near real-
time) soil moisture products, guarantee the continuity of 
soil moisture products and will contribute to the maturity 
of microwave remote sensing of soil moisture. 

Individual microwave products cannot cover the period 
required for a climatological or hydrological analysis. 
Additionally, differences in system and mission designs 

and the use of different retrieval algorithms have led to 
data with spatio-temporally varying quality (Dorigo et al. 
2010; Parinussa et al. 2011). Many studies (Karthikeyan et 
al. 2020; Chawla et al. 2020; Miralles et al. 2019; Tian et 
al. 2019; Brocca et al. 2017; Dorigo and Jeu, 2016; 
Ochsner et al. 2013; Albergel et al. 2012; Taylor et al. 
2012; Dorigo et al. 2010) have indicated that active and 
passive microwave data are complementary for different 
land cover types; radiometers generally perform best over 
dry areas, while scatterometers perform best over densely 
vegetated areas (Dorigo et al. 2014). Therefore, 
combining active and passive microwave datasets will 
contribute substantially to offering improved estimates of 
surface soil moisture at various scales. In a novel study, 
Liu et al. (2011; 2012;) merged active and passive 
microwave products into a single multi-decadal ECV for 
soil moisture (ECV_SM). Subsequently, Dorigo et al. (2012) 
was the first to globally assess trends in the ECV_SM for 
the period 1988-2010; they compared these trends with 
soil moisture trends from two model-based surface soil 
moisture datasets, a precipitation dataset, and a 
vegetation dataset. Later, Albergel et al. (2013) used soil 
moisture from ERA-Land to monitor the global-scale 
consistency of ECV_SM and found that ECV_SM is 
generally relatively stable over time with respect to ERA-
Land. Recently, based on existing validation studies, 
Dorigo et al. (2014) provided a more in-depth evaluation 
of ECV_SM over space and time using ground-based 
observations. A few years later, their latest research 
(Dorigo et al. 2017) showed that the product quality of 
ESA CCI SM had steadily increased with each successive 
release and that the merged products generally 
outperform the single-sensor input products. However, 
domestic research over China regarding the ECV_SM 
product has rarely been conducted. 

China is located in eastern Asia on the western Pacific 
border. China is vast, covering 9.63 million square 
kilometers. China’s average altitude decreases from west 
to east. The landforms include plateaus, mountains, hills, 
basins, plains and five basic terrain types. The 
mountainous area accounts for two-thirds of the surface 
area. The large latitude range, coupled with the 

topography, leads to uneven temperature and 
precipitation distributions. Thus, accurately acquiring soil 
moisture information for all of China is very difficult when 
using individual sensor products; many studies (Chen, 
2010; Li et al. 2013; Xi et al. 2014) have demonstrated this 
point. Chen et al. (2012) developed a modified surface 
roughness index to map the land surface roughness. 
Combining the microwave polarization difference index 
(MPDI) and the modified surface roughness index, they 
derived a semi-empirical model for soil moisture. The 
model was validated using in situ observations, indicating 
the effectiveness of the model, although it was only 
examined in Guangdong Province, southern China. The 
aforementioned studies primarily focused on validation 
and algorithm development for soil moisture in China. 
Some scientists have concentrated on improving the 
performance of the existing remote sensing soil moisture 
datasets over China. Yan et al. (2008) constructed multiple 
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linear estimation models for Yanan City, China, with 
backward and forward stepwise regression. Ma (2007) 
improved the retrieval algorithm for AMSR-E soil moisture 
data over Xinjiang Province, China, using MPDI and 
calculated the vegetation opacity. The average correlation 
coefficient between the improved dataset and the 
ground-based dataset was found to be 0.811. 

The new and synthetic soil moisture product, ECV_SM, 
will provide new research opportunities for studying soil 
moisture and climate patterns in China. Therefore, this 
study aims to establish a multiple stepwise linear-
regression model for the ECV_SM product using in-situ 
soil moisture data over China and to improve the data 
accuracy over China. Additionally, the improved ECV_SM 
product is validated to show the good performance of the 
improvement method. 

2. Materials and methods 

2.1. The ECV_SM dataset 

ECV_SM (Version 02.0) is a newly merged soil moisture 
product developed under the framework of the European 
Space Agency's Water Cycle Multi-mission Observation 
Strategy (WACMOS) and CCI projects. The product was 
generated by spaceborne active and passive microwave 
instruments; it originates from a number of Earth 
Observation (EO) missions, agencies and sensor systems. 
The active dataset was generated by the University of 
Vienna using observations from the C-band 
scatterometers on board ERS-1/2 and METOP-A. The 
passive dataset was generated by the VU University 
Amsterdam in collaboration with NASA using passive 
microwave observations from Nimbus 7 SMMR, DMSP 
SSM/I, TRMM TMI, Aqua AMSR-E, Coriolis WindSat, and 
GCOM-W1 AMSR2. As shown in Figure 1, the suite of 
datasets covers a 35-year period, from the late 1970s to 
the present. At present, the product provides global 
coverage at a spatial resolution of 0.25 degrees. 

 

Figure 1. An overview of the active and passive sensors that 

provide the ECV_SM product (source: WACMOS project (2012)) 

2.2. Ground-based data 

A standard ground-based dataset, named CHINA, was 
obtained from the International Soil Moisture Network 
(ISMN) and was produced by the Institute of Geographic 
Sciences and Natural Resources Research of the Chinese 
Academy of Sciences. A total of 40 stations are mainly 
distributed throughout northeastern and eastern China.  

The in-situ soil moisture data, which are derived from the 
Chinese crop growth and farmland soil moisture dataset, 
were downloaded from the China Meteorological Data 
Sharing Service System.  

2.3. Auxiliary datasets 

The brightness temperature dataset from the AMSR-E 
Level-3 land surface product (AE_Land3) was downloaded 
from the American National Snow and Ice Data Center. 
The data with a 56-km mean spatial resolution are 
resampled to global cylindrical 25-km Equal-Area Scalable 
Earth Grid (EASE-Grid) cell spacing. The data are stored in 
HDF-EOS format and are available via FTP. 

AMSR2 (Advanced Microwave Scanning Radiometer 2) is 
an improved version of AMSR (Aperture 2.0 meters) on 
ADEOS II and AMSR-E (Aperture 1.6 meters) on NASA 
Aqua satellites. AMSR-2 is onboard GCOM-W1, which was 
developed by the Japan Aerospace Exploration Agency 
(JAXA) and launched successfully on 18 May 2012. AMSR-
2 is a passive microwave remote sensing instrument that 
cannot emit electromagnetic waves but can detect the 
characteristics of a target by passively receiving the 
microwave energy emitted by the observed object. AMSR-
2 is a seven-frequency passive microwave radiometer 
system that measures brightness temperatures at 6.9, 7.3, 
10.7, 18.7, 23.8, 36.5, and 89.0 GHz in horizontal and 
vertical polarization modes, resulting in a total of 14 
observation channels. Each scanning band contains data 
from the relevant scanning area, which are stored in 
HDF5, a hierarchical data format with L1R representing 
the resampled data (Shen et al. 2019). 

The soil dataset of China, which is from the Harmonized 
World Soil Database (HWSD), was downloaded from the 
Heihe Plan Science Data Center of the National Natural 
Science Foundation of China. The dataset includes the 
following attributes: soil name, classification, soil texture, 
soil depth, soil water content, sand content, and silt 
content. The data are gridded using the WGS-84 
projection. 

The land cover products for China were downloaded from 
the Cold and Arid Regions Science Data Center. In these 
products, China’s land surface is divided into 17 
categories, including evergreen broadleaf forests, 
grasslands, permanent wetlands, croplands, urban and 
built-up lands, glaciers and water bodies (Ran et al. 2006; 
Ran et al. 2012). 

The daily gridded precipitation data are extracted from 
the real-time rainfall data at more than 2400 sites and are 
downloaded from the China Meteorological Data Sharing 
Service System. 

2.4. Data preprocessing 

In-situ soil moisture data were collected from 
agrometeorological stations on the eighth day of every 
ten-day interval each month. A maximum merging 
method was used to process ECV_SM and to unify the 
time periods of the two datasets. The ECV_SM data 
observed on the 7th, 8th and 9th day of every month were 
merged. A similar procedure was performed on the 17th, 
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18th and 19th days and on the 27th, 28th and 29th days. This 
procedure not only retains the temporal characteristics of 
the soil moisture data but also eliminates noise in the 
observations. Pixel values in the ice-covered and densely 
vegetated regions, where the microwave band was not 
viable, were rejected. A 5-by-5 moving window was used 
to inspect every pixel and fill the rejected pixels with the 
average of nearby values. 

The selection of suitable stations for the soil moisture 
data was based on the criteria in the Product Validation 
Plan. A total of 533 stations were obtained. The field 
capacity was calculated using the China soil dataset. This 
procedure was used to convert in-situ soil moisture data 
into volumetric water content (cm3/cm3). The in-situ soil 
moisture data were evaluated using the standard CHINA 
dataset. The results show that the two datasets are 
significantly similar. The average correlation coefficient is 
0.811, which passed the significance test at p=0.005. Thus, 
the in-situ soil moisture data were used in the modeling 
and validation procedures. 

2.5. Model parameter analysis and acquisition 

The effects of vegetation cover and vegetation water 
content on soil moisture are manifested as the water 
interception effect of crowns, the reduction of soil water 
evaporation and the increase in transpiration losses. Litter 
cover and plant roots can enhance soil water infiltration, 
which impacts soil moisture (Qiu et al. 2007). The effects 
of meteorological factors on soil moisture are mainly 
reflected in the precipitation. Hawley et al. (1983) and 
Henninger et al. (1976) found that the spatial variability 
and average value of soil moisture varies with 
precipitation changes and that consistent trends in 
seasonal variations occur. The main terrain factors are the 
slope, aspect and elevation. Generally, soil moisture 
decreases as the slope increases. The influence of the 
aspect on soil moisture is mainly manifested as a 
difference in solar radiation. Soil water preservation is 
mainly determined by the soil porosity and soil texture: a 
smaller soil particle size corresponds to increased 
preservation (Owe et al. 2001; Parinussa et al. 2011). 
Therefore, the following nine factors were used to build 
the empirical soil moisture model: DEM, ROUGHNESS, 
VOD, API, slope, aspect, SAND, CLAY and ECV_SM.  

2.6. Retrieving the API 

The following API definition, which was proposed in the 
1950s by Kohler and Linsley (McQuigg, 1954), was applied 
in this study: 

( ) ( ) ( )i = i +k i-1API P API
 

(1) 

where P is the precipitation and k is the attenuation 
coefficient of the API.  

Equation (1) can be expanded as follows: 

( ) ( )


 −
d=0

i = kdAPI P i d  
(2) 

In this study, k was set to 0.9 based on previous studies 
(Jr., 2002; Yuan and Zhou, 2004), and the influence of the 

two prior months was considered when calculating the 
API. 

2.7. Retrieving roughness 

According to microwave radiation transfer theory, surface 
soil moisture, VOD and canopy temperature greatly 
influence canopy brightness temperatures. In the Jin 
(1998) surface-roughness empirical model, the rough 
surface reflectivity is represented as 

( )  
-h

sv ov ohr = 1-Q r + r eQ
 

(3) 

( )  
-h

sh oh ovr = 1-Q r + r eQ
 

(4) 

where Q is a polarization mixing parameter, which ranges 
between 0 and 0.5; h is the vertical surface roughness 
parameter; rsv and rsh represent the vertical and horizontal 
polarization reflectivities, respectively, of a rough surface; 
and rov and roh represent the vertical and horizontal 
polarization reflectivities, respectively, of a flat surface.  

Therefore, the MPDI can be characterized as follows (Ma, 
2007): 

( )( ) ( )( )
+

=
− −

c2 +hov oh

ov oh ov oh

r r1 1
- 2e

1 2 r -r 1 2 r -rMPDI Q Q  

(5) 

where rov + roh and (1−2Q) (rov + roh) are only affected by 
soil moisture. Three MPDIs can be obtained from AMSR-E 
6.9 GHz, 10.7 GHz and 18.7 GHz brightness temperature 
data to calculate Γ (Ma, 2007): 

 

 

−

 =

−

c c

c c

2 +h 2 +h
6.9 10.7 6.9 10.7

2 +h 2 +h
18.7 10.7

18.7 10.7

1 1

e -e
=

1 1 e -e

MPDI MPDI

MPDI MPDI

 

(6) 

Here, Γ is affected not only by the surface roughness but 
also by the vegetation coverage; consequently, Γ cannot 
represent ROUGHNESS well. Chen (2012) assumed that a 
linear relation exists among the various AMSR-E bands, 

namely,
6 9 10 7 18 7

  
 . . .

c c ce me ne , where m and n are 

coefficients. Thus, the following equation is derived (Chen 
et al. 2012):  



−

= 
 

− 
 

c

h h
6.9 10.7 6.9 10.7

h h
2 18.7 10.7
6.9

18.7 10.7

1 1

e -e1-m

n-m e -e1 1
e

MPDI MPDI

MPDI MPDI

 

(7) 

Using Owe’s vegetation optical depth (Owe et al. 2001), a 
simple surface roughness index (ΓMPDI) can be 
characterized (in cm) as follows (Chen et al. 2012): 

( )

−

  − 
 

− 
 



6.9 10.7

18.7 10.7

6.9

1 1

3.21111
1 1

-0.33280 +0.00178

MPDI

MPDI MPDI

MPDI MPDI

MPDI

 

(8) 
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Here, ΓMPDIis only influenced by the surface roughness of 
h; hence, ΓMPDImore reasonably represents ROUGHNESS 
than does Γ. Subsequently, Chen (2012) verified the 
results of using ΓMPDI and demonstrated its high accuracy. 
In this study, the ROUGHNESS was retrieved using the 
above method. 

3. Results and discussion 

3.1. Partitioning and modeling 

The vastness of China has a profound effect on the spatial 
variation in soil moisture; therefore, the area must be 
partitioned. Soil moisture is closely related to topography, 
geomorphology, vegetation, and other factors. Among the 
data used, DEM data can accurately reflect the 
topographical conditions, the roughness factor can 
accurately reflect the geomorphological conditions, and 
VOD data can represent the impact of vegetation factors 
on soil moisture. Each factor affects the soil moisture 
modeling: DEM influences through elevation and slope, 
ROUGHNESS through the land surface texture, and VOD as 
a measure of vegetation density, which impacts soil 
moisture through transpiration and interception. The 
study area was divided into seven sub-areas using DEM, 
ROUGHNESS and VOD, as shown in Figure 2. 

 

Figure 2. The partitioning result for China using an unsupervised 

classification 

Surface soil moisture modeling relies on many factors; 
thus, the precision of ECV_SM can be improved by 
establishing a regression model. The model can be 
characterized as follows:  

+ + +1 1 2 2 3 3= n nSM a X a X a X a X  
(9) 

where SM is the surface soil moisture; X1, X2, X3, Xn are 

various factors that influence SM; a1, a2, a3, … an are 

coefficients of the multiple regression calculation; and n is 
the number of impact factors. 

Figure 3. The distribution of the agrometeorological stations in 

each sub-area 

Many factors were considered when establishing the 
multiple linear stepwise-regression model; however, the 
parameter dimensions were not consistent. Therefore, 
normalization was applied when processing the datasets 
to eliminate the influence of the different parameter 
dimensions. The agrometeorological station soil moisture 
data were preprocessed and classified based on the seven 
sub-areas (Figure 3). To evaluate the precision of the 
modeling results, the data of each sub-area were divided 
into two parts: 70% of the data was used for modeling and 
the other 30% was used for validation. Because the nine 
selected parameters differently affect the soil moisture 
within each sub-area, a backward method was used to 
construct a multiple linear-regression model for China for 
2020 (specifically, early October). 

3.2. Validation and Analysis 

The parameter selection results in each sub-area are 
shown in Table 1. Lack of the observational data for the 
seventh sub-area led to the failure of the modeling 
process. 

Table 1. An overview of the selected factors for simulating each sub-area 

Elements Partition Number of occurrences 

1 2 3 4 5 6  

API  √ √ √ √ √ 5 

ASPECT    √ √ √ 3 

ECV_SM √  √  √  3 

CLAY   √ √   2 

DEM     √  1 

ROUGHNESS     √  1 

SAND √ √ √  √ √ 5 

SLOPE √   √ √ √ 4 

VOD         √   1 
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Table 2. Multiple linear regression models for each sub-area 

Partition Station Number for Modeling  Model  R Adjust R2 p 

1 80 SM = 0.396*CCI-0.156*SAND+0.230    

*SLOPE+0.233 

0.543 0.266 0.000 

2 65 SM = 0.078*API-0.396*SAND+0.477 0.579 0.313 0.000 

3 57 SM = -0.206*SAND+0.155*API+0.313*CCI-

0.130 *CLAY+0.370 

0.735 0.505 0.000 

4 28 SM = 0.310*API+0.077*ASPECT+0.25   

*CLAY+0.146*SLOPE-0.104 

0.746 0.473 0.001 

5 72 SM = 0.286*API+0.029*ASPECT+0.040    

*CCI-0.149*DEM+0.095 *ROUGHNESS-

0.232*SAND+0.029 

*SLOPE+0.022*VOD+0.231 

0.802 0.596 0.000 

6 13 SM = 0.150*API-0.311*ASPECT+0.2     *SAND 

-0.148 *SLOPE+0.343 

0.854 0.594 0.021 

Table 3. Validation results 

Partition Validation 
Station 

Number  

Original Data Improved Data 

BIAS 

(cm3/cm3) 

RMSD MRE R2 p-
value 

BIAS RMSD MRE R2 p-
value 

1 35 0.075 0.096 0.299 0.380 0.000 0.062 0.076 0.222 0.372 0.000 

2 28 0.078 0.105 0.270 0.296 0.004 0.073 0.095 0.234 0.251 0.010 

3 25 0.081 0.097 0.318 0.246 0.013 0.043 0.056 0.221 0.433 0.000 

4 12 0.080 0.109 0.426 0.126 0.283 0.071 0.083 0.359 0.413 0.024 

5 31 0.079 0.096 0.285 0.301 0.001 0.062 0.078 0.265 0.430 0.000 

6 6 0.080 0.085 0.271 - - 0.049 0.058 0.185 - - 

Average  0.078 0.099 0.300 0.270 - 0.062 0.078 0.226 0.380 - 

 

Based on Table 1, the API and SAND appear five times; 
thus, these two factors most greatly affect soil moisture. 
The ECV_SM product appears three times, which could be 
attributed to the limitations of the microwave dataset, 
particularly in the high-altitude area (>800 m) where the 
precision is low. Notably, VOD, ROUGHNESS and DEM 
were found to be important factors that affected soil 
moisture in our previous analysis, but the model 
participation rates were not high. The three factors used 
for the partitioning process exhibit similar performances 
within the same sub-area; therefore, these factors are not 
considered important in the soil moisture modeling. 

R is the multiple correlation coefficient of the regression 
model; this coefficient represents the linear relationship 
between an independent variable and dependent 
variable. Compared with R2, the adjusted R2 can better 
suppress the influence of variable numbers and sample 
sizes. p is the significance. Based on Table 2, the 
significance of the models in sub-areas 1, 2, 3 and 5 are 
very good compared with those in sub-areas 4 and 6 
because of the abundant in-situ data. All models passed 
the 95% significance level test. Table 3 shows the results 
of the validation models using the remaining 30% of the 
data. 

Based on Table 3, all statistical measures pertaining to 
each sub-area improved after the simulations. The 
improvements in sub-areas 3 and 6 are particularly 
notable; however, the amount of observational data for 
sub-area 6 is small, leading to uncertainty in the results. 
Generally, the models performed well; thus, the improved 
ECV_SM can be used for soil moisture related studies and 
applications. Figure 4 shows the China soil moisture 

distribution map. Null pixel information is displayed in 
white due to the lack of values in the original ECV_SM 
product, and the seventh sub-area relied on the original 
ECV_SM data because of the failure of the modeling 
process. 

 

Figure 4. China soil moisture map derived from the improved 

ECV_SM in early October 2020 (cm3/cm3) 

Figure 4 presents an overview of the spatial distribution of 
the surface soil moisture according to the improved 
ECV_SM product. Overall, the northwest is dry, and the 
southeast is wet. A high soil moisture value between 0.3 
cm3/cm3 and 0.5 cm3/cm3 is mainly found south of the 
Qinling Mountains to the Huaihe River, the three 
northeastern provinces and the eastern Tibetan Plateau. 
This finding is consistent with the geographical 
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distribution of the humid areas. The abnormally high soil 
moisture value in the southern Tibetan Plateau is 
attributed to the original ECV_SM data. A low soil 
moisture value between 0 and 0.1 is mainly observed in 
Xinjiang province and central Inner Mongolia province. 
This finding is consistent with the actual conditions of arid 
areas. A soil moisture value between 0.1 and 0.3 is mainly 
observed near the dry-wet climate boundary. A soil 
moisture value between 0.1 and 0.2 is observed in the 
Inner Mongolia Plateau, Central Xinjiang, the Tibetan 
Plateau and the Loess Plateau. The regions whose soil 
moisture value ranges from 0.2 to 0.3 are located in the 
North China Plain, the Northeast China Plain, the Loess 
Plateau and northern Xinjiang province. From the above 
analysis, we found that the ECV_SM optimization results 
are similar to the spatial patterns of drought and wet soil 
in China and therefore reflect the rationality of the 
research. In addition, the average soil moisture contents 
of Yunnan and Guizhou are the highest among all of the 
provinces because rainfall occurred in early October in 
these areas. The abnormally high soil moisture contents in 
the northeastern Tibetan Plateau may be caused by the 
insufficient in situ observational data. 

4. Conclusions and recommendations 

In this research, the study area was initially divided into 
seven sub-areas using DEM, ROUGHNESS and VOD. The 
VOD, API, DEM, SLOPE, ASPECT, SAND, CLAY, ROUGHNESS 
and ECV_SM parameters, which greatly influence the soil 
moisture, were selected to build the empirical soil 
moisture multiple stepwise-regression model; 70% of the 
in-situ soil moisture observations was applied to 
modeling, and the remaining 30% of the data was used to 
validate the accuracy. The soil moisture map of China for 
2020 (early October) was consistent with the actual 
conditions. The validation results show that the BIAS, 
RMSD and MRE were improved from 0.078 cm3/cm3 to 
0.062 cm3/cm3, from 0.099 cm3/cm3 to 0.078 cm3/cm3 and 
from 30.0% to 22.6%, respectively. The approach 
optimizes the ECV_SM product; therefore, the method is 
efficient. However, the approach only filled the sporadic 
null pixel values in the study area, and a large unfilled 
district remained unprocessed. In addition, because of the 
influence of ice-covered soil and low temperatures, a 
large number of agrometeorological stations lack 
measured data from winter. This data scarcity has an 
impact on the calibration results. Furthermore, the 
research is limited to short-term data. In future studies, 
this problem, as well as the identification of the 
partitioning and modeling rules, will be considered to 
generate new methods of evaluating large areas and 
multiple temporal and high-precision soil moisture data 
sets. Additionally, future studies will consider the use of 
more advanced soil moisture sensing technologies or 
methods to improve the accuracy of research data. 
Furthermore, efforts will be made to enhance the 
applicability and improvement methodologies of specific 
data in extreme areas such as high-altitude regions, 
providing more comprehensive data outcomes for the 
research. 
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