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Abstract 

Predicting air pollution using environmental data 
assessment parameters becomes increasingly significant 
amid growing fears about climate change and the 
sustainability of urban areas. The use of sophisticated 
deep learning (DL) methods to model the intricate relation 
among these variables represents a promising area of 
research. However, current approaches have not 
effectively taken advantage of the temporal features 
derived from spatiotemporal correlations among air 
quality prediction systems, leading to poor long-term 
predictions. This work presents an AM (attention module) 
with CNN (convolutional neural network)-OptBiLSTM 
(optimal bidirectional long- and short-term memory) for 
AQIP (air quality index prediction). Here, the optimal 
process is carried out by the WSA (white shark algorithm). 
The analysis is demonstrated on the dataset and achieved 
better MSE and MAE values of 0.72 and 0.532 

respectively. The developed model has the potential for 
application to other air pollutants. This proposed AM-
CNN-OptBiLSTM has the capacity to substantially improve 
information services related to air quality prediction for 
the public. In addition, it provides support for regional 
pollution control and early warning systems. 

Keywords: Air pollution, air quality index prediction, 
optimal bidirectional long-short-term memory, white 
shark algorithm 

1. Introduction 

Air quality issues pose a serious threat to public health 
and constitute a widespread focus of research for 
researchers around the world. Due to the rapid growth of 
the world economy and the emergence of urbanization 
and industrialization, air pollution is a problem in various 
cities worldwide (Terroso-Saenz et al. 2023). The 
challenges posed by air pollution are becoming 
increasingly evident, posing a serious threat to human 
productivity, life, and long-term social progress. As a 
prominent criterion of environmental pollution, air 
pollution has attracted global attention. Robust, reliable, 
and consistent AQIP (air quality index prediction) is 
essential for effective atmospheric environment 
management and public health management (Surendran 
et al. 2021). 

AQIP is an essential factor to judge the level of air 
pollution. Accurate prediction of air pollution levels is 
crucial for collaboration with governments and raising 
public awareness about the hazards of pollution (Heydari 
et al. 2022). Air pollution data is commonly described by 
identifying trends such as rising or falling patterns, 
seasonal variations, cycles, or erratic movements. AQIP 
play a crucial role in mitigating air pollution and 
addressing environmental degradation issues (Gugnani 
and singh 2022). Consequently, a set of prediction factors 
is required to compile air quality statistics. However, there 
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are numerous air pollution factors and they are 
complicated (Sachdeva et al. 2023). 

Existing research methods often do not provide effective 
predictions for air pollution. Notably, O3, PM2.5, PM10, CO, 
NO2, SO2 emerges as the primary factors in air pollution, 
and the rising concentration of PM2.5directly impacts the 
health of human. The sub-index with the highest range is 
chosen as the AQI (Iskandaryan et al. 2022). This 
quantitatively describes the AQI of the respective area in a 
specific manner. Currently, numerous air quality 
monitoring systems have been established in many places 
to monitor meteorological parameters and pollutants 
concentrations (Santhanaraj et al. 2023). On the contrary, 
statistical approaches do not consider physical variation, 
transport, and chemical processes. They rely solely on 
data-driven exploration of the interior relation with the 
prior data. Consequently, the cost of computation for 
these methods is considerably less than that of numerical 
methods. Conventional statistical methods such as ARIMA 
(integrated adaptive moving average) and ARMA 
(integrated adaptive moving average) are very easy to 
evaluate (Nilesh and Vahora 2023). But these approaches 
are well adaptable for small databases and modelling of 
single parameters. Additionally, they are based on linear 
consideration and impose high needs on data stationarity. 
Therefore, capturing non-linear relationships in the data 
becomes inherently challenging. These limitations 
significantly slow the efficiency and availability of 
conventional statistical methods in AQIP (Huiyong et al. 
2023). 

DL (deep learning) models prove to be well suited for 
addressing air pollution prediction challenges, particularly 
those involving nonlinear, sequential, cyclical and 
seasonal dependencies within pollutants (Surendran et al. 
2023). The DL models like LSTM (long-short-term 
memory) and BI-LSTM (bidirectional LSTM) models are 
developed for capturing long-range dependencies from 
time series dataset, outperforming the ML (machine 
learning) models. Challenges such as predicting pollution 
levels and the parameters influenced by sequential-based 
behavior align well with the ability of the DL model to 
retain internal memory (Zhang et al. 2021; Surendran et 
al. 2023; Jun et al. 2019). That is, the prediction of the 
pollution levels for every gas is based on previous 
analyses, where similar behavioral patterns will appear in 
the future (Zhang et al. 2023). 

Motivation: The improvement of AQIP accuracy is of 
significant importance in the control of air pollution and 
the improvement of air quality. The conventional models 
like RNN (recurrent neural network), GRU and ARIMA 
approaches may find it complex to capture deep features. 
To address this, the study introduces AM-CNN-OptBiLSTM 
and utilizes AQIP and for handling long time series. 
Consequently, the proposed AM-CNN-OptBiLSTM model, 
compared to its existing counterparts, exhibits improved 
prediction accuracy through comprehensive learning, 
analysis, and historical data processing across different 
models. Training the DL model involves a crucial step of 
finding its hyperparameters. The choice of hyper-

parameters is pivotal, as inappropriate selections can 
result in overfitting or underfitting, impacting the overall 
performance. Meta-heuristic-based approaches are 
employed for hyperparameter optimization for enhancing 
prediction performance. These algorithms exhibit global 
search ability, generalization, and robustness, making 
them suitable for addressing various problems. The 
foremost contributions are as follows: 

To present an enhanced DL model for AQIP (air quality 
index prediction) and long-range dependencies. 

To enhance the performance of AQIP by AM (attention 
module) with CNN (convolutional neural network)-
OptBiLSTM (optimal bidirectional long-term memory). 

To enhance the prediction performance of the WSA 
(white shark algorithm). 

The remainder of the work is unfolded as follows: Section 
2 delves into an exploration of related work that includes 
various air quality prediction approaches. Section 3, 
elucidates the algorithmic process of the proposed air 
quality prediction approach. The implementation and 
results of our method are examined in Section 4. Finally, 
Section 5 encapsulates the conclusion, summarizing the 
work, and engaging in a discussion on result analysis. 

2. Related Works 

Zhang et al. (2023) introduced SABT (sparse attention 
based Transformer) for predicting the PM2.5 pollutant. It 
was an encoder with a decoder model for reducing the 
complexity and the complex relation from the PM2.5 and 
the RMSE value achieved was 0.93. Ravindiran et al. 
(2023) introduced different ML models to predict AQIP in 
the coastal city of Visakhapatnam, India. When comparing 
all ML models, Catboost achieved better MAE and RMSE 
of 0.6 and 0.76 respectively.  Janarthanan et al. (2021) 
presented SVR (support vector regression) SVR for 
classifying the AQI values. The texture features were then 
extracted by the GLCM and the RMSE value achieved was 
7.8.  

Gilik et al. (2022) presented CNN with LSTM model to 
extract spatial and temporal features in AQIP. The goals of 
this existing work involve creating a supervised approach 
to predict air pollution utilizing actual sensor data and 
transferring the model across different cities. In addition, 
this work performed various pollutants in cities such as 
Barcelona, Istanbul, and Kocaeli.  

Lakshmipathy et al. (2023) developed ESCA (enhanced 
serial cascaded autoencoder) based LSTM -MVR 
(multivariate regression) model for AQIP. That is, ESCA 
was exploited for feature extraction and LSTM –MVR was 
exploited for AQIP. Then, the FIFDO (fitness- improved 
flow direction optimizer) was utilized for producing better 
prediction results.  Drewil et al. (2022) presented a DL 
model LSTM and GA (genetic algorithm) to predict air 
pollution. The objective of this existing work was to 
identify the optimal hyperparameters for LSTM and 
predict the level of pollution for the next day based on 
different pollutants. The MAE and RMSE values achieved 
were 19.1 and 9.5 respectively. 
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Zhang et al. (2022) presented a DL model CNN with LSTM 
for AQIP. Initially, CNN was exploited to extract features, 
and LSTM was exploited for AQIP. When comparing other 
approaches, CNN with LSTM achieved better 
performance. Mao et al. (2022) presented TS-LSTME 
(temporal sliding long-short-term memory extended 
approach) for AQIP. This existing work incorporated the 
optimized time lagging to enable sliding prediction using a 
multilayer bidirectional long-short-term memory (LSTM) 
network. This involved considering the hourly historical 
concentration of PM2.5, meteorological data, and temporal 
data. 

Liao et al. (2023) developed DM-ST-GNN (Dynamic Multi 
granularity-Spatiotemporal- Graph Neural Network) for 
AQIP. It was an encoder-decoder-based model; on the 
encoder side, the spatial features were identified, and on 
the decoder side the attention LSTM was for learning 
temporal features. Zhang et al. (2023) introduced residual 
learning based CNN model for forecastingPM2.5 and PM10. 
A spatial temporal attention module was exploited for 
assigning weights and the residual learning-based CNN 
was utilized to extract features. Finally, the RMSE and 
MAE values achieved were 11.9 and 6.9 respectively.  

3. Proposed methodology 

This study aims to create a DL approach to forecasting air 
pollution using the transferability of the model between 
different cities. The proposed AQIP approach involves the 
integration of a DL approach AM-CNN-OptBiLSTM. This 
combination is designed to predict air pollutant 
concentrations across various places within a city by 
capturing spatiotemporal relationships in the data. Figure 
1 defines the framework of the proposed AQIP which 
includes various stages like preprocessing, spatiotemporal 
feature extraction, and AQIP. Here, the AM-CNN-
OptBiLSTM is utilized for extracting spatio-temporal 
features of AQI. Moreover, the AM is deployed to focus 
on the essential features that have a better relationship 
with the AQI outcomes. This section outlines the step-by-
step procedure flow for generating the AQIP model. 

Figure 1. Framework of the proposed AQIP 

3.1. Pre-processing 

Initially, data is extracted from the data set and subjected 
to pre-processing to remove unnecessary information. At 
first, the missing values are removed from the dataset. 

Also, missing data imputation fills in any gaps or missing 
values in your dataset with estimated or calculated values. 
The preprocessed data is fed into the proposed classifier 
for performing the AQIP. Following the removal of missing 
values, a type conversion from object to floating data type 
was performed on the AQIP.  

3.2. Feature extraction 

In this research, a DL approach AM-CNN-OptBiLSTM is 
introduced to predict air quality in India. The method 
combines the advantages of CNN and BiLSTM, with AM for 
assessing each feature significance in the input data.  CNN 
is utilized for the extraction of spatial features and AM 
with OptBiLSTM is utilized for AQIP. Figure 2 shows the 
structure of the proposed DL approach AM-CNN-
OptBiLSTM. The network has two blocks, such as the 
feature extraction block and the AQI prediction block. 
Within the feature extraction block, the CNN is employed 
for extracting spatial features, and the AM-OptBiLSTM is 
utilized for capturing long-range dependency features and 
identifying the AQIP. The outcomes from the BiLSTM are 
subsequently input into the AM, and it assigns diverse 
weights to the model's feature input, emphasizing the 
impact of essential features, thereby aiding the model in 
making more accurate predictions. Subsequently, the AQI 
prediction block incorporates the FC (fully connected) 
layer and an output layer to identify the outcomes. Every 
layer has training variables like size of filter, loss function, 
kernels, and total neurons that minimize the error.  

CNN:  CNN is constructed by layering three fundamental 
components: convolutional, pooling, and FC layer. Within 
every convolutional layer, there exists a set of adaptable 
filters designed to extract local features from the input 
matrix in an automated manner. These filters execute 
convolution operations, according to the concepts of 
weights and local connectivity, to alleviate the 
computational complexity and enhance the efficiency of 
the network. The result of the convolutional operation is 
given as: 

( ) + += =
=  + , , ,0 0

m mo in
k l con n p k n l pn p

Z W Z b
 

(1) 

where 
,

in

k n l pZ + +
and ,

o

k lZ are the input and output of the 

feature map, Wn, p is the convolutional kernel, b is the bias 

and con is the activation function.  

Figure 2. Structure of the proposed AM-CNN-OptBiLSTM 

Following the convolution, the pooling layer executes the 
down-sampling operation. The advantage of the pooling 
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layer is its ability to reduce the dimensionality of the 
feature map, thus preventing overfitting. In this feature 
extraction process, the ReLU is utilized as the activation 
term, and the BN (batch normalization) is utilized as the 
regularization term. Typically, the FC layer is incorporated 
finally and its role is to comprehend the non-linear 
combined features obtained using the convolution layer 
for generating the final outcomes. 

BI-LSTM: The LSTM can only use information in one single 
direction (forward). On the other hand, the BI-LSTM 
structure consists of two LSTM layers, one of which 
functions forward and the other backward. The standard 
LSTM has the layers like input ij, forget fj and output oj 

gates. Let the input data yt at the present stage and 
1−jh  

output from the hidden stage of the prior layer. The fj is 
utilized for deciding what feature must be retained or 
eliminated, and it is given as: 

( ) −
 = + 1 ,j f j j ff W h x b

 
(2) 

The ij is utilized for deciding which features are updated, 
and it is given as: 

( ) −
 = + 1 ,j j j j ii W h x b

 
(3) 

At last, the oj is represented as: 

( ) −
 = + 1 ,j f j j oo W h x b

 
(4) 

The hidden phase hj is given as: 

= tanh( )j j jh o c  (5) 

where cj is memory cell. 

On the contrary, the BILSTM network comprises two LSTM 
layers, positioned in both forward and backward 
directions. The forward LSTM is capable of assimilating 
information from the past information of the input 

sequence jh , while the reverse LSTM captures details 

regarding the future information of the input sequence jh

. Subsequently, the results of both hj are integrated and it 
is represented as 

→ 

= j j jh h h
 

(6) 

where is the summation. 

AM: The AM selectively concentrates on essential 
features, ignores unnecessary details, and amplifies 
relevant information. The essence of the attention 
function lies in its definition as a map from a Q(Query) to 
values of the pairs of K (Key) and V (Value). As depicted in 
Figure 3, the calculation of AM has three stages. Initially, 
in the first stage, the correlation between the Qand every 
K is computed as: 

( )= +tanht h t hA V h a
 

(7) 

where At, Vh, ht and ah are the attention value, weight, 
bias, and input value. The value of the first phase is 
standardized in the second stage, and the softmax is 
exploited for converting the At. 

=


exp( )

exp( )
t

t

t
t

A
b

A
 

(8) 

The third stage is obtained by the weighted summation of 
bt and ht and it is given as: 

= t t
t

A b h
 

(9) 

 

Figure 3. AM model 

WSA: Determining the hyperparameters of AM-CNN-
OptBiLSTM is a crucial step in the DL model. The training 
and overfitting issues are all greatly impacted by the 
selection of these hyperparameters, which in turn affects 
the final model's accuracy. In many instances, the 
selection of hyperparameters takes more time for 
attaining the best hyperparameters. To address the 
challenge of hyperparameter selection, particularly 
concerning the size of window and number of AM-CNN-
OptBiLSTM units, the metaheuristic approach WOA is 
utilized. The AM-CNN-OptBiLSTM is trained with WSA to 
find the best window size and the number of AM-CNN-
OptBiLSTM units and predict the level of air pollution.  

This optimizer mimics the remarkable characteristics 
observed in the WS (white shark), particularly its 
exceptional olfaction and hearing used in foraging and 
navigation. These distinctive traits can be effectively 
modelled numerically and scrutinized mathematically, 
establishing a balanced approach for studying and 
deploying this scheme. This methodology helps search 
agents to explore and exploit various zones within the 
search area systematically, facilitating a better process. 
Simultaneously, the search agents in the WSA have the 
capability to adjust the positions randomly. The position 
of WS is given as 

 
 
 

=
 
 
  

1 1 1
1 2

2 1 1
1 2

1 2

d

d

m m

v v v

v v v
v

v v

 

(10) 
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where v is the position of shark and the it is computed by 
the upper ulj and lower llj limits at the jth dimension is 
given as: 

( )= +  −  t
j j j jv ul rand ul ll

 
(11) 

where rand is the random number; When the high WS 
identifies its prey's location through wave frequency 
detection, it can approach the target using oscillating 
movements, guided by the expressed velocity. 

 

Figure 4. Flowchart of WSA 

( )+
   = + −  + −    1 1 1 2 2  t t t u t

k k gbk k b ku u p v v c p v v c  (12) 

 =  +(1, ) 1u m rand m  (13) 

where m is the random number, vk
t is the location of WS, 

vgbk is the best parameter, α is the WS term, 1+

t
ku and uk

t 

are the previous and present velocities; p1 and p2 are the 
parameters; c1 and c2 are the random parameters. The 
parameters p1and p2are given as:  

( )
 

= + −  − 
 

1 max max min

4
exp

k
p p p p

K  

(14) 

( )
 

= + −  − 
 

1 min max min

4
exp

k
p p p p

K  

(3) 

The progression toward locating optimal prey involves WS 
detecting the scent of the target, observing the motion of 
the prey, or potentially identifying the waves generated 
by the prey's actions. Continuously advancing towards the 
prey, the WS persistently tracks its motions. Even if the 
prey relocates or escapes its initial position, the lingering 
scent remains in that area. As a result, the WS updates its 
position accordingly. 

+

  +  +  


= 
+ 



0

1

t
k

t t
k t k

k

v v ul a ll b when rand nv

v u
v when rand nv

f
 

(16) 

where nv is the motion force and the motion to the best 
WS is given as: 

( )
→

+ = +   −



1 1 2

3

sgn 0.5t
k gbk vv v rand D rand

when rand S
 

(17) 

where rand1, rand2 and rand3 are the random numbers; S 

is the strength of the WS, vD is the distance among the 

prey and the WS. Figure 4 shows the WSA flow chart and 
Algorithm 1 defines the pseudocode of the overall AQIP.  

 

4. Analysis of results 

The implementation of smart contract-based malicious 
detection and mitigation is employed using PYTHON 
programming language and is assessed based on various 
measures. Table 1 presents the parameters used for the 
experimental analysis. 

4.1. Performance measures 

The evaluation measure for regression methods is 
employed to measure the efficiency of the model in 
forecasting output values according to the inputs. 
Measures like MSE (mean square error), RMSE (root MSE), 
MAE (mean absolute error), MAPE (mean absolute 
percentage error) and R-squared (R2).  

Table 1. Parameters 

Parameters Values 

Learning rate 0.0001 

Size of batch 64 

Epochs 100 

BiLSTM nodes 16 

Dropout 0.3 

Optimizer Adam 

Loss function  Cross entropy 



6  VISU et al 

MSE: It is the variation of predicted yk and actual values ŷk 
and RMSE is the square value of MSE. These two 
expressions are given as 

( )= −
21

ˆ
m

k k
k

MSE y y
m  

(18) 

( )= −
21

ˆ
m

k k
k

RMSE y y
m

 

(19) 

MAE: This measure serves as an alternative metric for 
quantifying the disparity between yk and ŷk. Its 
computation involves determining the absolute value of 
the variation among yk and ŷk, followed by averaging these 
absolute variations. 

= −
1

ˆ
m

k k
k

MAE y y
m  

(20) 

MAPE: It is a metric that defines the performance of the 
model, represented as a percentage. Its computation 
involves taking the absolute value of the variation among 
yk and ŷk, dividing it by the yk, and then averaging these 
resulting percentages. 

−
= 

ˆ100 m
k k

k k

y y
MAPE

m y
 

(21) 

R2: It is an indicator of how effectively a model aligns with 
the data set. Its calculation involves summing the squares 
of the differences between yk and ŷk. This sum is then 
divided by the sum of the squares of the variation among 

the average of the yk and ky .  

( )

( )

−
= −

−




2

2

2

ˆ
1 k k

k k

y y
R

y y
 

(22) 

4.2. Dataset Description 

The data set considered for this work is collected between 
2015 and 2023. from various metrological cites. This 
dataset includes the pollutants like PM2.5, PM10, CO, NO2, 
NH3, O3, NOx, SO2 

4.3. Performance Analysis 

This section examines and compares the evaluation 
metrics of the proposed AM-CNN-OptBiLSTM model with 
some DL approaches. Evaluation is a critical phase of any 
model evaluation, providing insights to determine the 
optimal process with respect to the performance 
outcomes. The study conducts a comprehensive 
evaluation analysis that compares the performance of 
various approaches using five metrics. 

 

 

Figure 5. Correlation of various pollutants 
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Figure 5 presents the correlation among the actual and 
predicted values. Pollutants like PM2.5, PM10, CO, NO2, 
NH3, O3, NOx, SO2 are compared with respect to R2 values. 
It is observed from the Figures that the pollutant PM2.5 
achieved better R2 value of 0.9872.  

 

Figure 6. AQI trends between 2015 and 2023 

Figure 6 presents the AQI trends between 2015 and 2023 
in India. It is observed that the actual and the predicted 
values are the same. 

Figure 7 presents the confusion matrix of the proposed 
AM-CNN-OptBiLSTM model that predicts the pollutants 
like PM2.5, PM10, CO, NO2, NH3, O3, NOx, SO2 

 

Figure 7. Confusion matrix of the proposed AM-CNN-OptBiLSTM 

model 

Figure 8 and Table 2 presents Figure 7 illustrates the 
performance comparison among various techniques, 
including LSTM, BiLSTM, OptBiLSTM and the proposed 
AM-CNN-OptBiLSTM. Evaluation metrics such as MSE, 
RMSE, MAE, MAPE and R2 are computed. 

 

Figure 8. Comparison of (a) MAE, (b) MAPE, (c) MSE, (d) R2 and (e) RMSE 
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In Figure 8 (a), the MSE performance of different DL 
approaches is presented. It is evident from the graph that 
the MSE value (0.72) of the proposed AM-CNN-OptBiLSTM 
is significantly lower than other approaches. Similarly, for 
an effective weather prediction model, a lower MAPE 
value is preferable, and in Figure 8 (b), the proposed AM-
CNN-OptBiLSTM exhibits a lower MAPE value of 4.47. 
Then, in Figure 8 (c), the MAE values achieved by the 
LSTM, BiLSTM, OptBiLSTM and the proposed AM-CNN-
OptBiLSTM are 1.23, 1.16, 0.9 and 0.53 respectively. 
Additionally, for an improved AQIP model, a higher R2 
value is desired, and in Figure 8 (d), the proposed AM-
CNN-OptBiLSTM achieves a high R2 value (0.98). Finally, in 
Figure 8 (e) also, the proposed AM-CNN-OptBiLSTM 
achieved a better RMSE value of 0.84. Across all 
comparisons, the proposed model outperforms others, 
attributed to better weight selection by CNN with BiLSTM 
and WSA.  

 

Figure 9. Accuracy-loss curves of the proposed AM-CNN-

OptBiLSTM 

Figure 9 illustrates the performance of the proposed AM-
CNN-OptBiLSTM instrument with respect to accuracy and 
loss curves. The evaluation covers variations in values 
over 100 epochs, and the graphs depict the relationship 
between the training and validation samples. In particular, 
the model does not exhibit under- or over-fitting, 
indicating its superior generalization capability. This 
substantiates the proposition that the proposed AM-CNN-
OptBiLSTM can be effectively utilized in the AQIP process. 
Table 3 analyzes the comparative analysis and all 
comparative measures, the proposed AQIP model 
outperformed recent research works with respect to 
measures like MSE, RMSE, MAE and R2. 

5. Conclusions 

The focus on monitoring air pollution is on the rise, with 
an increasing emphasis on understanding its impacts on 
human health. Presently, most air quality investigations 
transition from quantitative approaches to DL models. The 
AQIP experiences significant fluctuations influenced by 
pollutant concentrations. This study concentrates on 
establishing the AM-CNN-OptBiLSTM approach, 
reevaluating the AQI through the application of time 
series and DL methodology. The proposed AM-CNN-
OptBiLSTM successfully extracted the spatio-temporal 
features, predicted all pollutants, and attained better 
performance. In the future, addressing sudden 
fluctuations in time series data related to air pollution 
poses an intriguing and challenging task for AQIP. 
Successful prediction of sudden changes in air pollution in 
advance holds significant advantages for the protection of 
the environment, government decisions, and the daily 
health of individuals. 

Table 2. Comparative analysis 

Methods MSE RMSE MAE MAPE R2 

LSTM 1.11 1.05 1.23 8.77 0.80 

BiLSTM 1.07 1.03 1.16 6.57 0.83 

OptBiLSTM 1.04 1.02 0.90 6.38 0.87 

Proposed 0.72 0.84 0.53 4.47 0.98 

Table 3. Comparative analysis 

References MSE RMSE MAE R2 

Maltare et al. (2023) - 4.9  0.82 

Wu et al. (2023) - 2.3 2.1 0.94 

Zhang et al. (2023) 11.3 11.9 6.9 0.93 

Zhang et al. (2023) - 0.93 - - 

Ravindiran et al. (2023) 0.5 0.76 0.6 - 

Janarthanan et al. (2021) - 7.8 - 0.63 

Drewil et al. (2022) - 9.5 19.1 - 

Mao et al. (2022) - 17.9 12.3 0.87 

Proposed 0.72 0.84 0.53 0.98 
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