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Abstract 

This study employs a dynamic fuzzy-set qualitative comparative analysis (fsQCA) approach, 

utilizing panel data from 121 low-carbon pilot cities in China from 2007 to 2019. Grounded in 

complex systems theory and the triple bottom line framework (Economy-Society-Environment), 

the research aims to optimize resource allocation to enhance regional employment governance 

performance. The key findings include that the initial implementation of low-carbon policies 

resulted in a short-term decline in employment levels, with minimal long-term impact on overall 

employment figures but a significant effect on high-level urban wages. Significant disparities in 

employment levels were observed among pilot cities, driven by regional population sizes and 
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economic development levels. Four development models for low-carbon cities were identified: 

human resources-driven, energy transition-driven, industrial cluster-driven, and comprehensive 

factor-driven models. These models provide strategic pathways for promoting low-carbon urban 

development and enhancing employment. The findings offer valuable insights into governance 

strategies for China’s low-carbon pilot cities, facilitating the context-specific promotion of 

sustainable urban development and improved employment opportunities. 

Keywords: Dynamic fsQCA；Employment governance；Low-carbon pilot cities；Resource 

allocation；Sustainable urban development 

Highlights: 

1. Developed a comprehensive evaluation system combining complex systems theory and the 

triple bottom line framework. 

2. Explored the complex relationship between low-carbon urban transformation and employment 

levels. 

3. Dynamic fsQCA was used to examine temporal and spatial disparities. 

4. Findings reveal heterogeneous short-term and long-term impacts of low-carbon policies on 

employment. 

5. Identified four unique development models for low-carbon cities. 

Abbreviations table： 

Full Forns Abbreviatlons 

Industrialization Level IND 

Energy Structure ENE 

Economic Development Level ECO 

Population Size POP 

Consumption Level CON 

Carbon Emissions Decline CAR 

Number of Urban Employed Persons EMP 

Level of Urban Wages WAG 

fuzzy-set Qualitative Comparative Analysis fsQCA 

1.Introduction 

China is urgently addressing global warming as the world's second-largest economy and the 

largest carbon emitter (Chen et al., 2024). However, China's past development model, which relied 

on resource-intensive consumption and cheap labour, has exacerbated conflicts between humans 

and nature despite generating material wealth(Xue et al., 2022). China faces one of the most 

severe environmental challenges globally(Wolf et al., 2022). These issues indicate that China's 

economic sustainability can no longer rely on large-scale resource consumption, and the 

development of low-carbon cities has become an inevitable trend for high-quality, sustainable 

development(Di et al., 2023). 

Since 2010, China's National Development and Reform Commission has initiated the first 

batch of national-level low-carbon province and city pilot projects, releasing the second and third 

batches of pilot city lists in 2012 and 2017 (Li et al., 2018). To better achieve carbon peak targets, 

China continuously explores decarbonization approaches at the city level (Shan et al., 2022). Low-



 

 

carbon pilot cities actively explore green and low-carbon development models and paths suitable 

for their conditions, providing demonstrations and experiences for the low-carbon development of 

Chinese cities(L. M. Chen et al., 2023; W. Chen et al., 2023). 

However, the development of low-carbon cities constitutes a comprehensive and profound 

systemic transformation of economic and social systems (Wang et al., 2018), inevitably impacting 

various domains such as investment, production, circulation, and consumption (Raff et al., 2019). 

In this transformation process, employees across multiple sectors must face adjustments, 

competition, and elimination regarding job positions and work methods (Crato & Paruolo, 2019). 

Therefore, an important and urgent question is how China's ongoing development of low-carbon 

cities can achieve carbon reduction goals while ensuring employment stability (Mathiesen et al., 

2011). Existing research indicates that elucidating the complex relationship between low-carbon 

city development and employment is not straightforward (Maslach et al., 2001; Mathiesen et al., 

2011). Some studies suggest that developing low-carbon cities results in significant layoffs within 

highly energy-intensive and polluting industries, restraining employment opportunities (Pearl-

Martinez et al., 2016). 

Conversely, other findings indicate that the trend towards low-carbon economic and societal 

transformation could guide or compel companies to engage in clean production, thus creating 

opportunities for green employment (Wang et al., 2021). Furthermore, research points out 

differing short-term and long-term effects of low-carbon city development on employment (Ren et 

al., 2020). Research on developing low-carbon cities in China primarily focuses on assessing their 

economic and environmental impacts. More literature is needed to examine the social effects, and 

even fewer studies are required to investigate the influence of low-carbon city pilot policies on 

employment(Ren et al., 2020). 

Against this backdrop, this study will focus on the impact of China's low-carbon city pilot 

policies on employment, aiming to delve into the complex configurational relationships between 

low-carbon urban development and employment This paper addresses the following questions: 

What is the mechanism linking the development of low-carbon cities with employment levels? 

Over time, are there differences in the impact of developing low-carbon cities on employment 

levels in the short term versus the long term? In spatial terms, do different types of low-carbon 

cities have varying effects on employment levels? This paper attempts to expand the existing 

literature in three aspects: Firstly, this paper employs a complex systems configurational analysis 

approach to delve into the impact of low-carbon city transformation on regional employment 

levels. This method offers a new theoretical perspective to the field, aiming to uncover results that 

are challenging to obtain through traditional econometric methods. Through dynamic fuzzy-set 

Qualitative Comparative Analysis (fsQCA) methods, this paper seeks to reveal insights beyond 

what can be obtained through conventional statistical analysis, offering a fresh research 

perspective on a comprehensive understanding of the impact of low-carbon city transformation on 

regional employment levels. Secondly, this paper not only focuses on the impact of low-carbon 

city transformation on employment but also delves into the underlying theoretical mechanisms. 



 

 

Drawing from resource allocation theory, the research identifies 11 configurations and four 

adaptation models for achieving high-level regional employment, elucidating the differences in 

employment levels among low-carbon pilot cities. This in-depth theoretical analysis contributes to 

a deeper understanding of the driving paths and mechanisms through which the development of 

low-carbon cities affects regional employment levels. Finally, to ensure the reliability of research 

results, this paper employs enhanced standard analysis and the Tibot panel model to validate the 

configurational analysis results. This step further enhances the credibility of the research, 

indicating that the results are robust. 

This paper provides new theories and methods for the research field of low-carbon city 

transformation and regional employment levels through the perspective of complex systems 

configurational analysis, in-depth theoretical mechanism analysis, and reliability validation of 

results. It contributes to a deeper understanding of the complex relationship between low-carbon 

urban development and employment levels and offers more targeted policy recommendations. The 

paper consists of seven main sections: introduction, theoretical framework, research methods and 

data sources, analysis of research results, robustness tests, discussion , and conclusion. 

2.Literature review  

2.1 Literature on the effect of environmental regulation on employment 

How does environmental regulation affect employment? Scholars hold varying viewpoints on 

this issue(Berman et al., 2001). Firstly, assessments of the impact of environmental regulation on 

overall economic employment have revealed complexity(Lahteenmaki-Uutela et al., 2021). 

Researchers(Goodstein & Polasky, 2017), based on a review of large-scale macroeconomic 

models, found that out of nine studies, seven indicated that employment would increase, one 

showed a decrease, and one had mixed effects. The conclusions drawn from these nine studies 

suggest that while environmental regulation does have some impact on employment, the 

magnitude of this impact is not substantial. On the other hand, Hazilla and Kopp (Hazilla & Kopp, 

1990), as well as general equilibrium assessments by Jorgenson and Wilcoxen(Jorgenson & 

Wilcoxen, 1990), operate under the assumption of full employment, where labour demand equals 

labour supply. Consequently, Palmer often conclude that environmental regulations reduce job 

opportunities(Palmer et al., 1995). However, these models typically overlook underemployment 

situations, where individuals might voluntarily reduce work hours or choose to be 

unemployed(Crato & Paruolo, 2019). In practice, according to surveys conducted by the U.S. 

Department of Labor, environmental regulations only result in the reduction of approximately 650 

related jobs per year, less than one-tenth of one per cent of all significant layoffs in the United 

States. 

Furthermore, research into the impact of environmental regulations on specific industries 

reveals diversity in findings(Guo & Yuan, 2020). Some early studies suggested (Song et al., 

2021)that the electricity sector experienced significant job losses as environmental regulations 

increased. However, recent research indicates that even when considering factors like inducements 



 

 

for factories to exit or deterring new factories(Cai et al., 2020), there is no evidence suggesting 

that environmental regulations reduce labour demand(Du et al., 2021). A study focused mainly on 

refineries in the Los Angeles area found that the impact of environmental regulations on 

employment might be minimal. It may increase employment. An additional explanation for the 

limited effect on employment, as demonstrated in the empirical study by Stern(Stern et al., 2001), 

is that environmental regulations target industries with relatively fewer jobs, which are capital-

intensive. Industries such as refineries(Morgenstern et al., 2002), chemicals, cement, 

transportation, and other heavy industries are energy-intensive (Napp et al., 2014) . For capital-

intensive industries like pulp and paper (Hafstead & Williams III, 2018), the price elasticity of 

industry demand is significantly lower than that of product demand(Sheng et al., 2019). Suppose 

all firms in the industry face similar cost-increasing regulatory changes, and product demand is 

inelastic. In that case, the individual firm's output may only experience a slight decrease due to 

environmental regulations(Liu et al., 2018). In such a scenario, the negative impact on 

employment from the output elasticity of labour demand is likely dominated by the positive effect 

of technological innovation and marginal technical substitution rates between labour, leading to a 

net increase in employment due to regulation(Morgenstern et al., 2002). 

Moreover, based on the Porter hypothesis(Porter & Linde, 1995), an increasing number of 

researchers have found that when the market competition environment becomes more intense and 

uncertain, some firms tend to increase their research and development (R&D) investments and 

generate more innovations (Qingbin et al., 2017). This has received support from several empirical 

studies (Pearl-Martinez et al., 2016). However, some scholars (Voytenko et al., 2016) emphasize 

that production factors are, to some extent, "trapped," meaning they cannot freely flow between 

firms or industries in the short term. This implies that when facing adverse shocks, firms have 

limited ability in the short term to respond by changing factor inputs or exiting the market. Firms 

must adapt by innovating in production technology or management practices(Di, Chen, Shi, Cai, 

& Zhang, 2024) . As firm-level innovation carries positive externalities, adverse macroeconomic 

shocks may, under specific conditions, enhance firm-level productivity and promote long-term 

overall economic growth. 

Scholars have previously investigated the impact of environmental regulations on 

employment using econometric methods. They often employ techniques such as difference-in-

differences or other econometric models to analyze data, aiming to derive comparisons and causal 

inferences to understand better how environmental regulations affect employment. However, 

recent scholars believe that the impact of environmental regulations on employment is a complex 

and diverse issue, requiring comprehensive consideration of multiple factors. 

2.2. Literature on Low-carbon city construction 

Since the initiation of the first batch of low-carbon city pilot policies in China in 2010, 

scholars have conducted in-depth research into various impacts of this policy. Research in this 

area encompasses theoretical aspects, such as the concept(Yang et al., 2013), framework(Khanna 



 

 

et al., 2014), policies(Voytenko et al., 2016), and public participation related to low-carbon cities, 

as well as empirical aspects(Yu & Zhang, 2021), with a primary focus on assessing the 

environmental and economic effects of low-carbon pilot city policies (Pan et al., 2022). 

When assessing the environmental effects of the low-carbon city pilot policies, some studies 

have analyzed their impact on Green Total Factor Energy Efficiency (GTFEE) and carbon 

emissions (Wen et al., 2022). For instance, Some scholars(Gao et al. 2022)utilized city-level data 

from 2006 to 2019 and employed the Difference-in-Differences (DID) method to investigate the 

effects of low-carbon city policies on urban Green Total Factor Energy Efficiency (GTFEE) and 

its underlying mechanisms. Their research found that these policies significantly enhance urban 

GTFEE. On the other hand, certain studies in the literature have explored the impact of low-

carbon city pilot policies on carbon emissions efficiency (CO2) (Liu et al., 2022). 

When assessing the economic effects of the low-carbon city pilot policies, some scholars 

(Song et al., 2020) have examined their impact on total factor productivity at the city and 

enterprise levels. Chen, based on data from listed companies between 2005 and 2019, found that 

the low-carbon city pilot policies primarily promoted the improvement of enterprise total factor 

productivity through technological innovation and optimizing resource allocation efficiency(Chen 

et al., 2021). Another study by Wang  employed a Difference-in-Differences (DID) model, 

identifying the positive impact of the low-carbon economic policies implemented in China in 2012 

on urban Green Total Factor Productivity (GTFP) and explaining its transmission 

mechanism(Wang et al., 2023). 

While there is a considerable body of research on the impact of environmental regulations on 

employment (Refer to Figure 1), these studies typically rely on the paradigm of traditional 

econometrics(Gilli & Winker, 2009), focusing primarily on the linear relationship between 

environmental regulations and labour demand(Marin & Mazzanti, 2013). So far, more research 

needs to be done from the perspective of complex configurations to delve into the intricate 

relationship between environmental regulations and employment. Therefore, this paper aims to 

enrich this research field by employing dynamic fsQCA methods, focusing on the multifaceted 

causal relationships, causal asymmetry, and various complexities in the relationship between low-

carbon pilot cities and regional employment levels. 

It is essential to emphasize that, despite existing literature evaluating the impacts of low-

carbon city pilot policies, most of this research has concentrated on assessing the policy's 

environmental and economic effects, lacking a comprehensive evaluation of its social impacts, and 

particularly, its impact on employment(Moss et al., 2010). However, employment is pivotal in 

achieving high-quality and sustainable development in China's economic and social stability. 

Hence, the significance of this study lies in filling this research gap, contributing to a more holistic 

understanding of the impact of low-carbon city pilot policies, and providing robust support and 

recommendations for policy formulation.2.3.  Gaps in the literatureAlthough existing studies 

have evaluated the impact of low-carbon city pilot policies from a broader literature perspective, 

most have focused on their environmental and economic effects, needing a comprehensive 



 

 

assessment of their social impacts, particularly on employment. However, employment is crucial 

to China's economic and social stability and achieving sustainable development. Therefore, the 

significance of this study lies in filling this research gap, comprehensively and profoundly 

understanding the impact of low-carbon city pilot policies, and providing vital support and 

recommendations for relevant policy formulation. 

In developed countries, the impact of environmental regulations on employment has been a 

long-standing and widely studied topic. Academia holds diverse perspectives on the influence of 

environmental regulations on employment. Studies have shown that environmental regulations' 

impact on employment is insignificant and varies across different industries. Although some 

sectors may be affected, others may only experience minor impacts or even see a slight increase in 

employment. Additionally, environmental regulations stimulate corporate innovation, potentially 

generating positive long-term employment effects. Currently, numerous scholars employ 

econometric methods, such as difference-in-differences or other quantitative models, to study the 

impact of environmental regulations on employment. These methods aid in obtaining comparisons 

and causal inferences from data, providing a clearer understanding of the impact of environmental 

regulations on employment. However, recent research has recognized the complexity and diversity 

of the impact of environmental regulations on employment, necessitating a comprehensive 

consideration of multiple factors. 

In contrast, for developing countries like China, the impact of low-carbon city development 

on employment is more significant and intricate. Against rapid industrialization and urbanization, 

China faces pressures to accelerate sustainable development and address environmental challenges. 

Therefore, developing low-carbon cities aims to reduce carbon emissions and improve 

environmental quality. It is also perceived as a significant economic opportunity, potentially 

creating new employment opportunities in the job market.  Academic attention on low-carbon city 

development in China typically revolves around theoretical aspects, such as conceptual 

frameworks, policies, public participation, and empirical research evaluating environmental and 

economic impacts. 

Existing research primarily employs traditional econometric paradigms (as shown in Figure 1), 

focusing on the linear relationship between environmental regulations and labour demand, lacking 

in-depth exploration of the intrinsic connections between ecological regulations and employment 

from the perspective of complex configurations. Therefore, this paper will utilize the dynamic 

fuzzy-set Qualitative Comparative Analysis (fsQCA) method, focusing on the multi-factor causal 

relationships, causal asymmetry, and other complexities between low-carbon pilot city policies 

and regional employment levels, thereby enriching this research field. By filling this gap in the 

existing literature, this study contributes to a comprehensive and in-depth understanding of the 

impact of low-carbon city pilot policies. It provides solid theoretical support and practical policy 

recommendations for relevant policy formulation.Figure 1. A bibliometric chart



 

 

 

3. Theoretical Mechanism 
Urban low-carbon transformation is a complex systematic project that requires careful 

consideration of multiple objectives, including economic, social, and environmental goals(De 

Boer et al., 2016) . The Triple Bottom Line (TBL) framework proposed by Elkington (Elkington, 

1998) provides theoretical support, suggesting that a low-carbon economy, society, and 

environment form a dynamic and complex system. This study explores how various key indicators 

under these three dimensions affect regional employment levels using the dynamic fuzzy set 

qualitative comparative analysis (dynamic fsQCA) method (as illustrated in the Graphical 

abstract). 

Firstly, the concept of a low-carbon economy emphasizes a transition from traditional 

industrialization to more environmentally friendly and sustainable industrialization(Grossman & 

Krueger, 1991). This includes adjusting the energy structure, improving energy efficiency, and 

developing green industries. At this level, it is essential to consider urban economic growth, 

optimizing industrial structures, and the sustainable use of energy. Developing a low-carbon 

economy helps reduce greenhouse gas emissions and promotes urban economic prosperity. There 

is a close relationship between industrial structure, urbanization level, and emission reduction, 

which is also tightly linked to economic growth. As income levels rise, these factors change 

significantly, profoundly influencing urban economic structures. In this trajectory, the impact of 

economic growth on environmental quality shifts from negative to positive. With the continuous 

strengthening of environmental regulations, the industrial sector gradually adopts more 

environmentally friendly technologies to meet the growing demand for a cleaner environment 

while reducing carbon emissions. This stage of progress is known as the technology effect. 

Meanwhile, the growth rate of the tertiary sector surpasses that of the secondary industry, 

transitioning the urban economy from capital-intensive to knowledge-intensive. Investment in 

research and development activities can stimulate economic growth while enhancing 

environmental management technology, thereby improving environmental quality. 

Secondly, building a low-carbon society involves adjusting population size and consumption 



 

 

levels (Peretto & Smulders, 2002). The size of the urban population directly impacts resource 

utilization and the environment. Promoting low-carbon lifestyles and consumption patterns can 

reduce resource waste and carbon emissions. A low-carbon society encourages increased attention 

to environmental protection, sustainable development, and reducing carbon footprints. The impact 

of economic development level, energy structure, population size, and consumption level on the 

environment can be divided into three types: scale, technology, and structure effect. As population 

size, consumption level, and economic development level increase, these factors, in turn, raise 

regional pollution levels, a phenomenon known as the scale effect. According to neoclassical 

growth theory, economic growth is driven by human capital and technological innovation. 

Therefore, the growth of population and consumption levels will lead to the optimization of 

human capital, economic development level, and energy structure, producing a technological 

effect that benefits environmental quality. 

Moreover, the structure effect is influenced by regional resource distribution and 

environmental policies. Different cities have comparative advantages in the low-carbon 

transformation process, such as capital-intensive, labour-intensive, resource-rich, and resource-

depleted cities. These cities continuously optimize their economic structures and resource 

allocation to reduce carbon emissions. Additionally, the policy environment for low-carbon urban 

transformation is usually stricter, potentially causing different cities to experience varying impacts 

from the structure effect. 

Specifically, the low-carbon economy dimension includes potential conditions such as 

industrialization level, energy structure, and economic development level. These conditions affect 

greenhouse gas emissions and are closely related to urban economic prosperity (Wang et al., 2021). 

The low-carbon society dimension focuses on factors like population size and consumption levels, 

which affect environmental quality through scale, technology, and structure effects (Di et al., 

2023). The low-carbon environment dimension emphasizes the relationship between urbanization 

level and carbon emission control, requiring scientific urban planning and environmental 

management measures(Wang et al., 2020). These seven key indicators collectively reflect the 

comprehensive performance of urban low-carbon development, helping to reveal the various 

complex paths affecting employment and deepening the understanding of how low-carbon city 

policies impact employment. 

4. Data 
China's three phases of low-carbon city pilot policies were launched in July 2010, November 

2012, and January 2017. To comprehensively account for the implementation timeline and lag 

effects of these pilot policies while ensuring the operational feasibility of this study, we have 

chosen the start dates of the three phases as 2010, 2013, and 2017 (as shown in Figure 2). This 

decision follows the methodology of Zheng (Zheng et al. 2021), wherein all prefecture-level cities 

in provinces involved in the low-carbon pilot program were treated as low-carbon pilot cities. 

Under this sample processing strategy, the earliest was considered if a city had multiple policy 

implementation start times (Shi and Xu 2022). 

It is essential to clarify that the statistical scope of this study includes only prefecture-level 

cities within the provinces involved in the low-carbon pilot program; county-level towns are not 

included. This study employs panel data from 2007 to 2019. Carbon emission data are sourced 

from the CEADs database(Shan et al., 2019), jointly maintained by expert teams from the UK, the 

US, and China. This database focuses on emission accounting methods and applications in China 



 

 

and other emerging economies. Data related to industrialization, urbanization, energy structure, 

economic development, population size, consumption level, urban employment, and urban wage 

levels are obtained from the "China City Statistical Yearbook." This yearbook compiles central 

statistical data related to the socioeconomic development of cities at all levels across the country, 

provided by relevant government departments of each city. This sample selection approach 

simplifies the research design, enhances research feasibility, and ensures the consistency and 

comparability of the analysis. By clearly defining the start time and scope of low-carbon pilot 

cities, this approach helps ensure the accuracy and scientific rigour of the study, laying a solid 

foundation for the credibility of the research results. 

Figure 2. Map of low-carbon pilot cities 

 

Notes: 

1.Ankang 17.Dandong  33.Huai'an 
49.Jingdezhe

n 
65.Ningbo 81.Shenzhen 97. Xiamen 113.Yuxi 

2.Anshan  18.Dongguan 34.Huaibei 50.Jingmen 66.Panjin 
82.Shijiazhuan

g 
98. Xiangtan 114.Zhanjiang 

3.Baoding  19.Ezhou 35.Huanggang 51.Jingmen 67.Pu'er 83.Shiyan 99. Xiangyang 115.Zhaoqing 

4.Baoji 20.Foshan  36.Huangshan 52.Jinhua 68.Qingdao 84.Suizhou 100. Xianning 116.Zhaotong  

5.Baoshan 21.Fushun 37.Huangshi 53.Jinzhou  69.Qingyuan 85.Suzhou 101. Xianyang 117.Zhenjiang 

6.Beijing 22.Fuxin  38.Huizhou 54.Kunming 
70.Qinhuangda

o 
86.Tianjin 102. Xiaogan 

118.Zhongsha

n 

7.Benxi 23.Fuzhou 39.Huludao 55.Lanzhou 71.Qujing 87.Tieling  103. Xining 119.Zhuhai 

8.Changsha 24.Ganzhou 40.Hulunbuir 56.Liaoyang 72.Quzhou 88.Tongchuan 
104. 

Xuancheng 
120.Zhuzhou 

9.Changzhou 25.Ganzhou 41.Ji'an  57.Lijiang 73.Sanming 89.Urumqi 105. Yan'an 121.Zunyi 

10.Chaoyang 
26.Guangzho

u 
42.Jiangmen 58.Lincang 74.Sanya 90.Weifang 106. Yangjiang  

11.Chaozhou 27.Guiyang 43.Jiaxing 59.Lu'an 75.Shanghai 91.Weinan 107. Yantai  

12.Chengdu 28.Haikou 44.Jieyang 60.Maoming 76.Shangluo  92.Wenzhou 108. Yichang  

13.Chenzhou 29.Hangzhou 45.Jilin 61.Meizhou 77.Shantou 93.Wuhai 109. Yinchuan  

14.Chizhou 30.Hanzhong  46.Ji'nan 62.Nanchang 78.Shanwei 94.Wuhan 110. Yingkou  



 

 

15.Chongqin

g 
31.Hefei 47.Jinchang 63.Nanjing 79.Shaoguan  95.Wuzhong 111. Yulin  

16.Dalian 32.Heyuan 48.Jincheng 64.Nanping 80.Shenyang 96.Xi'an 112. Yunfu  

5. Dynamic fsQCA analysis 

Traditional QCA methods, constrained by theoretical and data limitations, heavily rely on 

cross-sectional data, making it challenging to explore longitudinal configurational effects. 

However, since 2010, the National Development and Reform Commission (NDRC) has launched 

three phases of low-carbon city pilot projects in China. The first phase began on July 19, 2010, 

involving five provinces and eight cities. The second phase was confirmed on November 26, 2012, 

comprising one province and 28 cities. The third phase commenced on January 7, 2017, 

encompassing 41 cities and four districts. These three phases of low-carbon city pilot projects 

represent a continuous series of events along the timeline. Single cross-sectional data 

configurations cannot adequately elucidate interactive effects' causal relationships and temporal 

dimensions. 

To address this, this study's research design employs a dynamic QCA analysis method to 

enhance rigour. This approach draws on relevant theories and methods proposed by scholars such 

as Garcia-Castro(Castro et al., 2016). It leverages the R programming language to bridge the gap 

between panel data and QCA. This enables an in-depth examination of configurational 

relationships under time effects and enhances the precision of configurational analysis through 

Enhanced Standard Analysis (ESA). 

Dynamic QCA offers two advantages over traditional QCA methods(Boratyńska, 2016). First, 

it employs measurements across three dimensions: between, within, and pooled. This allows for a 

more comprehensive capture of configurational consistency across different sizes and their 

interrelationships. Second, dynamic QCA (Soares et al., 2016) uses Consistency Distance to 

describe the extent of consistency variation across time and case dimensions, thus more accurately 

reflecting the evolving characteristics of causal relationships over time. 

Using this dynamic QCA method facilitates a deeper understanding and explanation of the 

dynamic impact processes and influencing factors of low-carbon city development on employment 

levels. This provides policymakers with a more targeted theoretical basis, helping better address 

urban development's complexity and diversity and offering practical support for achieving 

sustainable development goals. 

5.1. Measurement and calibration 

Pre-calibration of the conditions and outcomes is necessary as part of the preparatory work 

for fsQCA analysis. This pre-calibration involves calibrating the considered conditions and 

outcomes (original values) into fuzzy set membership scores ranging from 0 to 1, following 

Ragin's (2008) (Ragin et al., 2008) framework. To ensure data consistency and coverage, this 

study carried out a unified calibration of the data based on existing theories (Fiss, 2011)， and 

previous research(Boratyńska, 2016). 

Using a direct calibration method, this study set the 95th percentile, 50th percentile, and 5th 

percentile as calibration anchor points based on the characteristics of the variables, representing 



 

 

full membership, crossover points, and no membership, respectively. The specific calibration 

results are presented in Table 1. This study uniformly transformed the condition and outcome 

variables into positive values, setting their calibration points at the 95th, 50th, and 5th percentiles. 

This calibration process ensures consistency and accuracy in subsequent analyses at the within-

case, cross-case, and overall levels. The application of this method, grounded in previous research 

and theoretical foundations, contributes to enhancing data comparability and the scientific rigour 

of the analysis. 

Table 1. Descriptive statistics and calibration 

Variables  IND URB ENE ECO POP CON CAR EMP WAG 

Numbers  1573 1573 1573 1573 1573 1573 1573 1573 1573 

Average  48.378  56.560  0.414  10.601  5.896  15.546  12.372  3.690  4.860  

SD 10.950  11.043  0.144  0.706  0.694  1.219  0.816  0.946  2.199  

Skewness 0.020  0.011  -0.249  -0.570  -0.215  -0.195  0.078  0.605  0.948  

Kurtosis 0.520  -0.164  -0.726  2.927  0.838  2.531  -0.282  0.118  1.483  

Minimum  16.160  28.240  0.010  4.600  3.780  5.470  9.950  1.100  1.220  

Maximum  90.380  89.600  0.720  13.060  8.140  18.880  14.650  6.650  17.320  

Affiliation (95%) 65.510  70.700  0.630  11.693  6.905  17.643  13.671  5.504  8.766  

Intersection(50%) 48.250  57.100  0.440  10.633  5.865  15.461  12.377  3.529  4.511  

Unaffiliated (5%) 30.412  39.246  0.176  9.408  4.786  13.667  11.073  2.303  1.989  

Notes: IND= Value added of secondary industry as a proportion of regional GDP. URB= Share of urban 

population in total population. ENE= Ratio of coal consumption to total energy consumption. ECO= Log of 

regional GDP per capita. POP=Logarithm of total city year-end population. CON=Log of total retail sales of social 

consumer goods. CAR=Log of urban CO2 emissions decline. EMP=Log of the average number of urban workers 

on the job. WAG=Log of the average wage of urban workers on the job. 

5.2. Necessity analysis 

The necessary condition analysis in dynamic fsQCA (Castro et al., 2016) is an independent 

process used to assess whether individual conditions (possibly more than one) are necessary or 

essentially necessary for the occurrence of the outcome. In critical condition analysis, the criterion 

for determining necessity is when the consistency level exceeds 0.9; the condition variable is 

considered an essential condition for the outcome variable. In dynamic QCA panel data analysis, 

when the adjustment distance is less than 0.1, high consistency suggests that the condition variable 

may be necessary. However, when the adjustment distance exceeds 0.1, further investigation is 

required to ascertain its necessity. 

The results of this analysis are shown in Table 2, with the outcome variables being the 

average number of on-duty employees and the urban wage level. The seven condition variables 

related to industrialization level, urbanization level, energy structure, economic development level, 

population size, consumption level, and carbon emissions reduction (IND, URB, ENE, ECO, POP, 

CON, and CAR) all exhibit a summarized consistency level of less than 0.9. This indicates that 



 

 

these factors are not necessary conditions for the outcome variables. Nevertheless, as the 

consistency adjustment distance for all these factors is more significant than 0.1, it suggests 

further analysis. In Appendix A, we provide scatter plots to determine whether these factors are 

necessary. It should be emphasized that this analytical approach helps determine which conditions 

are essential or essentially required for outcome variables, enhancing our understanding of these 

conditions' roles in dynamic fsQCA analysis. 

Table 2. Analysis of necessity for Employment levels (High-EMP and High-WAG). 

Condition  Outcome   Outcome  

  High-EMP   High-WAG  

  consistency coverage  consistency coverage 

IND High 0.649 0.633  0.589 0.559 

IND Low 0.684 0.686  0.738 0.720 

URB High 0.707 0.680  0.751 0.703 

URB Low 0.586 0.596  0.532 0.527 

ENE High 0.597 0.607  0.544 0.539 

ENE Low 0.715 0.687  0.776 0.726 

ECO High 0.808 0.789  0.837 0.796 

ECO Low 0.544 0.544  0.512 0.499 

POP High 0.844 0.803  0.700 0.649 

POP Low 0.515 0.530  0.605 0.606 

CON High 0.893 0.883  0.797 0.767 

CON Low 0.510 0.504  0.543 0.522 

CAR High 0.862 0.859  0.731 0.709 

CAR Low 0.517 0.507  0.584 0.557 

5.3. Sufficiency analysis 

Sufficiency analysis (Ragin et al., 2008) aims to identify different combinations of conditions 

that meet specific criteria for the occurrence of outcomes. To ensure the sufficiency of 

observations in the context of low-carbon cities, the membership scores of outcomes must 

consistently exceed the membership scores of combinations of conditions. This analysis is based 

on a truth table, which enumerates all logically possible combinations of conditions and outcomes, 

including high-EMP and low-EMP. Four conditions are considered in this context, resulting in 2^7 

= 128 logically possible configurations. Each configuration is characterized by values of 0 and 1, 

where 0 indicates the absence and 1 indicates the presence of each condition. A condition's 

membership score for a low-carbon city observation is assigned based on a threshold value of 0.5; 

a score greater than 0.5 indicates the presence of the condition, while a score of 0.5 or less 

indicates its absence.Further consideration is given to two solutions, namely the intermediate 

solution and the parsimonious solution, employing a nested approach involving both solutions. 

For each outcome, namely, High-Level Employment (High-EMP) and High-Level Urban 

Wages (High-WAG), we have adopted the presentation format for fsQCA analysis results as 

proposed by Ragin (Ragin et al., 2008) and Fiss (Fiss, 2011). The advantage of this presentation 

format lies in its ability to demonstrate the relative importance of each condition within the 



 

 

configuration.Here, ● signifies the presence of a condition, indicating that the condition variable 

takes a higher value, while ⊗ means the absence of a condition, indicating that the condition 

variable takes a lower value. Large circles represent "core conditions," small circles represent 

"peripheral conditions," and blank spaces denote that the presence of the condition variable is 

inconsequential for the outcome. 

6. Panel data breakdown of fsQCA results 

This section aims to analyze the dynamic fsQCA results across different years and cities 

using panel data. As previously mentioned, this approach utilizes techniques introduced by Castro 

(Castro et al., 2016) and elaborated upon by Guedes (Guedes et al., 2016), with further technical 

details provided in Appendix A. Here, we employ a three-step process to assess the consistency 

and coverage between the conditional variables and outcome variables in the city-year dataset. 

The first step involves evaluating the overall consistency of the entire panel, which is measured 

using POCO scores. The second step entails using BECONS values for each year from 2007 to 

2019. Regardless of whether the overall consistency (POCONS) is high or low, the presence of 

significant BECONS distance between years may indicate the existence of consistent solid set-

theoretic relationships in specific years, suggesting a temporal dimension to these relationships. 

Finally, WICONS values are utilized to measure the coverage of low-carbon cities across different 

configurations, aiding in explaining regional disparities. This approach comprehensively explores 

the dynamic fsQCA results, considering variations across time and location. 

6.1 High-EMP 

Table 3 presents sufficient conditions, precisely six driving pathways, to explain the high 

level of on-the-job employees. Each column represents a possible configuration of conditions. 

The overall solution consistency is 0.97, indicating that among all 121 low-carbon city 

transformation cases that satisfy these six types of condition configurations, 97% exhibit a high 

level of on-the-job employees. The solution coverage is 0.552, implying that these six condition 

configurations can explain 55.2% of the cases of low-carbon city transformation regarding high 

on-the-job employee levels. Both solution consistency and coverage are higher than the critical 

threshold, demonstrating the effectiveness of the empirical analysis. These six favourable 

configurations are sufficient conditions for developing low-carbon cities with high levels of on-

the-job employees. Among them, HRD1, HRD2, HRD3, and HRD4 belong to the Human 

Resource-Driven category, while ETD1 and ETD2 fall into the Energy Transition-Driven 

category.Within the configurations HRD1, HRD2, HRD3, and HRD4, the presence of three 

essential conditions—namely, "population size," "consumption level," and "carbon emissions 

reduction"—plays a pivotal role. These configurations collectively represent a pathway driven 

by the human resources model, showcasing how it contributes to achieving high employment 

levels. In Figure 3, we delve into the evolving dynamics of BECONS values from 2007 to 2019, 

drawing comparisons to POCONS (represented by the dashed horizontal line). The fluctuations 

in the 13 BECONS values across different years are evident through the adj-distance of 



 

 

BECONS. Notably, for HRD1, HRD2, HRD3, and HRD4, the consistency adjustment distances 

are consistently less than 0.1. This suggests that over the long term, from 2007 to 2019, the 

influence of low-carbon city development on employment numbers does not display significant 

temporal variations. 

Nevertheless, it is worthwhile to explore short-term variations as well. Upon closer 

examination, a fascinating trend emerged in 2013, where we observed a collective decrease in 

consistency. This trend became even more pronounced in 2017. This intriguing pattern may be 

closely linked to the timing of policy implementations, precisely aligning with the initiation of the 

second batch of low-carbon pilot city policies in November 2012 and the subsequent rollout of the 

third batch in January 2017. This detailed analysis provides valuable insights into the dynamic 

relationship between low-carbon urban development and employment numbers. It underscores the 

importance of considering both long-term and short-term perspectives when evaluating the impact 

of policy interventions on employment outcomes. 

In Figure 4, we present an analysis of the WICONS values among the 121 low-carbon pilot 

cities to compare the differences in coverage between these regions. The configurations 

represented by HRD1, HRD2, HRD3, and HRD4 suggest that even when a city's level of 

industrialization is relatively low, as long as its population size, consumption level, and carbon 

emission reduction level are high, the city's employment level can remain high. This phenomenon 

is particularly pronounced in tourist-oriented cities, exemplified by five Type II significant cities 

(as defined by the Chinese State Council, with a permanent population ranging from one to three 

million): Chizhou (No. 14), Quzhou (No. 72), Suizhou (No. 84), Xuancheng (No. 104), and 

Huangshan (No. 36). These five cities exhibit relatively low levels of industrialization. 

Taking Chizhou City as an example, it was designated as China's first national ecological 

economic demonstration zone and consistently ranked at the forefront of Anhui Province in terms 

of total tourism reception and scale. In 2021, the service sector, dominated by the cultural and 

tourism industry, accounted for a substantial 45.7% of the GDP, reaching 100.42 billion RMB, 

with a growth rate of 10.2%. This placed Chizhou City third among the 41 cities in Anhui 

Province and the Yangtze River Delta region. Simultaneously, Chizhou City achieved a 

remarkable 15.7% growth in industrial value-added in 2021, ranking second in Anhui Province. 

These tourist-oriented cities provide valuable insights, demonstrating that in the development of 

low-carbon cities, a high level of employment can be achieved through the synergistic effect of 

critical factors such as population size, consumption level, and carbon emission reduction, even 

when the level of industrialization is relatively low. These findings offer important implications 

for urban development and sustainability policies. 

In configurations ETD1 and ETD2, we delve into the dynamics of high employment levels 

driven by the transformation of energy structures. These configurations highlight the central role 

of four critical conditions: energy structure transformation, elevated economic development, 

consumption levels, and reduced carbon emissions. They shed light on how transitioning energy 

resources can positively impact employment outcomes. 



 

 

Figure 5 provides a comprehensive view of how BECONS values evolved from 2007 to 

2019, allowing for a direct comparison with the POCONS (dashed horizontal line in the graph) 

for reference. The 13 years of BECONS variation is captured through the adj-distance of 

BECONS. Remarkably, ETD1 and ETD2 exhibit consistency adjustment distances of less than 

0.1. This suggests that when considering the long-term perspective (from 2007 to 2019), the 

development of low-carbon cities appears to have a relatively stable influence on employment 

levels without significant temporal fluctuations.However, a more detailed examination of the 

short-term dynamics reveals intriguing trends. 2013 consistency declined noticeably, with an 

even more pronounced drop in 2017. These trends are closely associated with the timing of 

policy implementations, precisely the second batch of low-carbon pilot city policies introduced 

in November 2012, followed by the launch of the third batch in January 2017.In summary, our 

analysis indicates that BECONS values remain relatively consistent over the long term, 

reflecting a stable relationship between low-carbon urban development and employment. 

Nevertheless, policy implementations exert a notable influence in the short term, particularly 

evident in 2013 and 2017. This finding underscores the dynamic interplay between policy 

factors and their impact on employment in the context of low-carbon urban development.In 

Figure 6, we illustrate the WICONS values among 121 low-carbon pilot cities and compare their 

differences in coverage. The configurations of ETD1 and ETD2 suggest that when a city 

undergoes a transition in its energy structure, experiences an elevation in economic development, 

witnesses an increase in consumption levels, and achieves a reduction in carbon emissions, it 

can maintain a high level of employment even if its industrial development is relatively weak. 

These configurations can be exemplified by energy transition cities such as Zhenjiang 

(117), Changzhou (9), Foshan (20), Fushun (21), Jiaxing (43), Dongguan (18), and Zhuhai (119). 

Taking Zhuhai, Foshan, and Dongguan as examples, these three cities exhibit relatively high 

levels of economic development and have attracted a significant influx of external population in 

recent years. Overall, these three cities have a high degree of industrialization and have 

substantial potential for reducing carbon emissions in their industrial and energy sectors. By 

2020, these three cities' combined GDP accounted for 21.62% of the entire province, with an 

average per capita GDP of 116,300 yuan, surpassing the provincial average. In terms of 

industrial structure, these cities show a relatively balanced distribution between the secondary 

and tertiary sectors, ranging from 40% to 55%. In recent years, they have been transitioning 

toward a more service-oriented economy. 

Furthermore, these three cities have a relatively large number of large-scale industrial 

enterprises (especially Dongguan and Foshan), accounting for 35.96% of the total in the 

province. However, the total energy consumption of these enterprises only represents 17.63% of 

the province's total, indicating a significant decoupling between economic growth and carbon 

emissions in these cities. In recent years, these cities have notably optimized their energy 

consumption structure, especially Dongguan, which has significantly reduced the proportion of 

coal consumption. Between 2016 and 2020, the proportion of coal consumption in Foshan and 



 

 

Zhuhai decreased from 20.68% and 5.11% to 18.48% and 4.52%, respectively. During the same 

period, Dongguan's coal consumption proportion significantly reduced from 41.18% to 27.45%, 

a reduction of nearly 15 percentage points. 

These city characteristics suggest that high-level economic development and carbon 

reduction coexist, providing valuable insights for sustainable development and low-carbon 

transformation in other regions. The successful experiences of these cities can serve as valuable 

lessons for governments at all levels looking to promote sustainable development and low-carbon 

transitions. 

Table 3.Suficiency analysis for Employment levels (High-EMP) 

Conditional High-EMP     

 Human resource driven Energy transition drive 

IND       

URB    ●  ● 

ENE   ●    
ECO  ●   ● ● 

POP ● ● ● ●   

CON ● ● ● ● ● ● 

CAR ● ● ● ● ● ● 

Type of configuration HRD1 HRD2 HRD3 HRD4 ETD1 ETD2 

Consistency 0.970  0.981  0.974  0.977  0.969  0.958  

PRI 0.933  0.961  0.922  0.944  0.926  0.907  

Coverage 0.552  0.636  0.414  0.496  0.458  0.526  

Unique coverage 0.004  0.027  0.021  0.008  0.006  0.025  

Consistency adjustment distance between groups 0.020  0.016  0.016  0.016  0.020  0.016  

Consistency adjustment distance within groups 0.111  0.089  0.089  0.089  0.111  0.111  

Overall PRI 0.933  

Overall consistency 0.970  

Overall coverage 0.552  

Notes: The consistency and coverage values are over the whole data set of cases (not just from those 

configurations shown associated in strong membership terms). 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3. BECONS values (2007–2019) for causal recipes HRD1, HRD2, HRD3, and HRD4 

(High-EMP outcome) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 4. WICONS values across Low-carbon cities for causal recipes HRD1, HRD2, HRD3, 

and HRD4 (High-EMP outcome). 

 

Figure 5. BECONS values (2007–2019) for causal recipes ETD1 and ETD2 (High-EMP 

outcome) 

 

 

 

 



 

 

 

 

 

 

Figure 6. WICONS values across Low-carbon cities for causal recipes ETD1 and ETD2 

(High-EMP outcome). 

6.2 High-WAG 

Table 4 presents sufficient conditions for explaining the generation of high-level urban wages, 

which encompass five distinct driving pathways. Each column represents a possible configuration 

of conditions. The overall solution consistency is 0.955, signifying that among the cities that meet 

these five condition configurations in the transformation cases of 121 low-carbon towns, 95.5% 

exhibit higher urban wage levels. The solution coverage stands at 0.483, indicating that these five 

condition configurations can account for 48.3% of the cases concerning the transformation of low-

carbon cities in terms of high-level urban wages. Both solution consistency and coverage surpass 

the critical threshold, affirming the effectiveness of our empirical analysis. These five favourable 

configurations are sufficient condition combinations for the impact of low-carbon city 

transformation on high-level urban wages. Specifically, IGD1 and IGD2 belong to the Industry 

Group Drive category, while FFD1, FFD2, and FFD3 fall within the Full Factor Drive category. 

Figures 7 and 9 describe the BECONS values' evolution from 2007 to 2019, alongside a 

comparison with the POCONS (represented by the dashed horizontal line in the graphs). The 

13-year changes in BECONS are illustrated through the adj-distance of BECONS. The adj-

distance values for IGD1, IGD2, FFD1, FFD2, and FFD3 are all greater than 0.1. This suggests 

that over the long term (from 2007 to 2019), there is a certain degree of heterogeneity in how 

low-carbon urban development impacts urban wage levels across different years. Further 

analysis of the BECONS values in Figure 5 reveals that higher consistency peaks emerge as 

time progresses, especially after 2012. In summary, if there are sufficient theoretical reasons to 

believe that the heterogeneity in urban wage levels after 2012 is due to the implementation of 

low-carbon pilot policies, this can be examined using annual BECONS analysis. For instance, if 

changes in industrial and energy structures occur in different cities each year due to low-carbon 

pilot policies, this hypothesis can be tested. 



 

 

In Figure 8, we describe the WICONS values among 121 low-carbon pilot cities to 

compare the differences in coverage between these regions. The configurations of IGD1 and 

IGD2 suggest that when a city's urbanization level, energy structure transformation, economic 

development level, and consumption level are high, even if the city's pillar industries do not rely 

on the secondary sector, the city's wage level can remain high. Specific cases that can be 

explained include industrial structural transformation cities such as Dandong (17), Liaoyang 

(56), Wuzhong (95), Chaozhou (11), and Hangzhou (29). 

As one of the typical cases, Hangzhou has seen a continuous increase in the proportion of 

the tertiary industry, accounting for over 68% in 2021. Especially the development of low-

carbon and efficient industries, represented by the digital economy, has driven Hangzhou's low-

carbon transformation. Data shows that in recent years, Hangzhou's carbon emissions per unit of 

GDP have decreased, reaching about 0.57 tons per 10,000 yuan of GDP in 2020, achieving 

economic growth and energy conservation. 

For instance, Hangzhou has conducted energy-saving assessments on over 100,000 critical 

energy-consuming units in the city, requiring non-compliant enterprises to rectify their energy 

use. They have also conducted energy audits on 150 high-energy-consuming enterprises with an 

annual energy consumption of over 10,000 tons of standard coal, determining the energy 

baseline of key energy-consuming enterprises and identifying energy-saving opportunities. 

Hangzhou has intensified efforts in industrial structure adjustment, compelling enterprises to 

upgrade and transform. This has included eliminating and rectifying high-energy-consuming 

industries such as papermaking in Fuyang. Additionally, Hangzhou has allocated energy use 

quotas of more than 600,000 tons of standard coal to support over ten major industrial projects, 

including the Zhejiang Cloud Data Center, ensuring energy use for significant projects. This 

transformation highlights the importance of energy efficiency and structural adjustments in 

achieving low-carbon development and sustaining high wage levels in cities. 

In Figure 10, we describe the WICONS values among 121 low-carbon pilot cities to 

compare the differences in coverage between these regions. FFD1, FFD2, and FFD3 

configurations suggest that when a city's economic development level, population size, 

consumption level, and carbon emissions are all at high levels, this represents the path to 

achieving high-level urban wages driven by the full-factor model. As a specific illustrative case, 

Beijing (6), Baoji (4), Chengdu (12), Changzhou (9), Chenzhou (13), and Dongguan (18) are 

notable cities. Using Beijing as a typical example, it ranks at the forefront in terms of GDP total, 

per capita GDP, and other indicators of economic development quality. During the "Thirteenth 

Five-Year Plan" period, Beijing saw the cumulative exit of more than 2,000 general 

manufacturing companies, focusing on traditional high-energy-consumption industries such as 

building materials, machinery manufacturing, and processing. Beijing's tertiary sector accounts 

for a staggering 80%, ranking first among all cities in the country, with outstanding performance 

in modern service sectors such as technology services, finance, and the digital economy. These 

industries, characterized by lower carbon emissions, form the bedrock of Beijing's economy. 



 

 

 

 

 

Table 4.Suficiency analysis for Employment levels (High-WAG) 

Conditional High-WAG    

 Industry Group Drive Full Factor Drive 

IND      

URB ● ● ●  ● 

ENE      
ECO ● ● ● ● ● 

POP   ● ● ● 

CON ●  ● ● ● 

CAR   ● ● ● 

Type of configuration IGD1 IGD2 FFD1 FFD2 FFD3 

Consistency 0.955 0.951 0.953 0.952 0.931 

PRI 0.898 0.802 0.885 0.886 0.840 

Coverage 0.483 0.300 0.418 0.422 0.458 

Unique coverage 0.019 0.015 0.021 0.024 0.061 

Consistency adjustment distance between groups 0.128 0.116 0.132 0.140 0.176 

Consistency adjustment distance within groups 0.055 0.066 0.055 0.055 0.066 

Overall PRI 0.898 

Overall consistency 0.955 

Overall coverage 0.483 

Notes: The consistency and coverage values are over the whole data set of cases (not just from those 

configurations shown associated in strong membership terms). 

Figure 7. BECONS values (2007–2019) for causal recipes IGD1 and IGD2 (High-WAG outcome) 

 

Figure 8. WICONS values across Low-carbon cities for causal recipes IGD1 and IGD2 (High-

WAG outcome). 



 

 

 

Figure 9. BECONS values (2007–2019) for causal recipes FFD1 ,FFD2 and FFD3 (High-WAG 

outcome) 

 



 

 

Figure 10. WICONS values across Low-carbon cities for causal recipes FFD1 ,FFD2 and FFD3 

(High-WAG outcome) 

 

7. Robustness test 

The robustness testing section conducts robustness checks on the configurations generated in 

the fifth section based on outcome variables: high employment (HRD1, HRD2, HRD3, HRD4, 

ETD1, and ETD2) and high city wages (IGD1, IGD2, FFD1, FFD2, FFD3). The fsQCA, as a 

set-theoretic method, is considered robust when slight variations in operations result in 

subsets of solutions that do not alter the substantive interpretations of the research findings 

(Zhang & Du, 2019; Du et al., 2020). In this study, we employ two methods, enhanced 

standard analysis and Tobit panel regression, to validate the 11 configuration results obtained 

in the fifth section. These robustness tests aim to ensure the reliability and stability of our 

research findings.7.1Enhanced standards analysis 

Based on a counterfactual analysis framework, enhanced standard analysis begins by 

simplifying assumptions to remove contradictions. Given the vast geographical expanse and 

varying resource endowments of urban regions in China, we focus solely on the necessity of 

economic development for regional employment levels. Determining their directional effects 

uniformly for other antecedent conditions is challenging, so we refrain from making 

directional assumptions, considering the remaining six condition variables as "present or 

absent." Ultimately, we obtain enhanced simple, intermediate, and complex solutions. 

Enhanced standard analysis primarily emphasizes intermediate enhanced solutions, 



 

 

complemented by enhanced simple solutions, to identify core and marginal conditions. Tables 

5 and 6 present the overall configuration analysis results. Specifically, we identify three 

configurations for the result condition of high-level employment, further reinforcing the 

reliability of the previously mentioned HRD1, HRD2, HRD3, HRD4, ETD1, and ETD2 

configurations. For the result condition of high-level urban wages, we identify five 

configurations, once again validating the reliability of the IGD1, IGD2, FFD1, FFD2, and 

FFD3 configurations. These enhanced standard analysis results ensure the reliability and 

stability of our research findings. 

Table 5.Results of the enhanced criteria analysis (High-EMP) 

Conditional Outcome(High-EMP) 

IND ⊗  ⊗ 

URB    

ENE   ⊗ 

ECO  ● ● 

POP ● ●  

CON ● ● ● 

CAR ● ● ● 

Complex Solution Enhanced 1 Enhanced 2 Enhanced 3 

Consistency 0.970 0.981 0.969 

PRI 0.933 0.961 0.926 

Coverage 0.552 0.636 0.458 

Unique coverage 0.053 0.137 0.036 

Consistency adjustment distance between groups 0.005 0.004 0.005 

Consistency adjustment distance within groups 0.020  0.016  0.020  

Overall PRI 0.010 0.008 0.010 

Overall consistency 0.111  0.089  0.111  

Overall coverage 0.932 

Notes: The consistency and coverage values are over the whole data set of cases (not just from those configurations shown 

associated in strong membership terms). 

Table 6.Results of the enhanced criteria analysis (High-WAG) 

Conditional Outcome(High-EMP) 

IND ⊗ ⊗ ⊗ ⊗  

URB ● ● ●  ● 

ENE ⊗ ⊗  ⊗ ⊗ 

ECO ● ● ● ● ● 

POP  ⊗ ● ● ● 

CON ●  ● ● ● 



 

 

CAR  ⊗ ● ● ● 

Complex Solution Enhanced 4 Enhanced 5 Enhanced 6 Enhanced 7 Enhanced 8 

Consistency 0.955 0.951 0.953 0.952 0.931 

PRI 0.898 0.802 0.885 0.886 0.84 

Coverage 0.483 0.300 0.418 0.422 0.458 

Unique coverage 0.019 0.015 0.021 0.024 0.061 

Consistency adjustment distance 

between groups 
0.129  0.117  0.133  0.141  0.177  

Consistency adjustment distance 

within groups 
0.056  0.067  0.056  0.056  0.067  

Overall PRI 0.898 

Overall consistency 0.955 

Overall coverage 0.483 

Notes: The consistency and coverage values are over the whole data set of cases (not just from those configurations shown 

associated in strong membership terms). 

7.2 Panel Tobit Robustness Tests 

The data in this study falls under the typical category of truncated data, with a left-

censoring point at 0 and a right-censoring point at 1. This model is known as the "censored 

regression model," also called the Tobit model (Tobin, 1958). We consider a panel model for 

censored data based on the following assumptions: 

 

Among these,  represents unobservable factors,  represents 

disturbances,   represents individual effects. 

We initially conducted a mixed Tobit regression on the configurations, utilizing 

clustered robust standard errors. Subsequently, we performed a random-effects panel Tobit 

regression to examine the individual effects of low-carbon pilot cities. Robustness tests for 

the configurations generating high-performance low-carbon cities were conducted through 

Tobit regression in this study. The data in this study falls under the category of typical 

censored data, with a left-censoring point at 0 and a right-censoring point at 1. Even after 

Tobit regression, the results for the configurations remain statistically significant, as shown in 

Table 7. 

Table 7.Panel Tobit robustness test 

Configuration Coefficient Standard error Z-statistic chibar2 

Resulting variables:EMP    

HRD1 0.095*** -0.024 4.000 1775.150 

HRD2 0.060** -0.024 2.530 1768.120 

HRD3 0.319*** -0.022 14.290 1743.840 

HRD4 0.039 -0.028 1.440 1708.580 
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ETD1 0.305*** -0.022 13.710 1678.710 

ETD2 0.102*** -0.025 4.100 1708.580 

Resulting variables:WAG    

IGD1 -0.524*** -0.029 -17.810 1309.250 

IGD2 0.160** -0.065 2.440 1312.180 

FFD1 -0.488*** -0.053 -9.220 1221.590 

FFD2 -0.491*** -0.056 -8.760 1169.070 

FFD3 -0.558*** -0.067 -8.390 1390.140 

Notes:*** p<0.01, ** p<0.05, * p<0.1 

Through panel Tobit regression, we discovered that when the dependent variable is 

employment, the seven conditional factors (IND, URB, ENE, ECO, POP, CON, and CAR) 

tend to exhibit more complementary effects among them. The estimated coefficients for the 

six configurations, HRD1, HRD2, HRD3, HRD4, ETD1, and ETD2, are statistically 

significant at the 1% level, with HRD3 and ETD1 displaying marginal utilities exceeding 0.3, 

indicating a considerable positive impact of economic development-driven configurations on 

employment. 

However, when the dependent variable is high-level urban wages, the estimated 

coefficients for IGD1, FFD1, FFD2, and FFD3 are significantly negative at the 1% level. 

This suggests there may be more substitution effects among the seven conditional factors or 

potential multicollinearity issues in the data. Upon further analysis, we found strong 

collinearity between urban consumption and urban wage levels within IGD1, FFD1, FFD2, 

and FFD3. This collinearity leads to endogeneity issues, which explain the significantly 

negative coefficients for these configurations. 

According to Theodore W. Schultz's human capital theory(Schultz, 1960), when 

population growth slows down, the quality of labour (knowledge, technical skills, work 

capacity, and health) becomes more crucial for regional economic development. A 

considerable portion of overall consumption is invested in the workforce's continuous 

education and health management. This investment enhances the human capital of the 

labour force and contributes to long-term economic growth. Therefore, the increase in 

workforce quality resulting from improved consumption levels can positively impact 

regional wage levels, fostering a virtuous cycle of economic development and transforming 

human capital-intensive industries. 

8. Discussion 

The findings contribute to the broader literature on low-carbon city development and 

employment by elucidating the complex relationships and underlying mechanisms that drive these 

dynamics. Specifically, effective resource allocation in low-carbon pilot cities hinges on the 

interplay between environmental policies, economic incentives, and social initiatives. This aligns 

with the resource allocation theory, which posits that optimal resource distribution can enhance 

productivity and sustainability(Chen et al., 2024; Maslach et al., 2001). The study supports 

previous research indicating that low-carbon initiatives can stimulate green employment 



 

 

opportunities by compelling companies to adopt cleaner production methods(Di, Chen, Shi, Cai, 

Liu, et al., 2024; Yasir et al., 2020). However, it also highlights the short-term adverse effects on 

employment in high-polluting industries, corroborating findings from other studies (Di, Chen, Shi, 

Cai, & Zhang, 2024; Fan et al., 2023). The dynamic fsQCA approach allowed for identifying 

specific configurations and adaptation models that lead to high employment levels, providing a 

nuanced understanding that traditional econometric methods might overlook. 

Despite these contributions, the study has several limitations. First, the reliance on data 

from low-carbon pilot cities in China limits the generalizability of the findings to other contexts. 

Future research should consider comparative studies involving low-carbon initiatives in 

different countries to enhance the robustness and applicability of the results. Second, the 

dynamic nature of QCA analysis means that the findings are contingent on the selected time 

frame and variables. Longitudinal studies could provide deeper insights into how these 

relationships evolve. Another limitation is the potential bias in data collection, as the study relies 

on secondary data sources that may only capture some relevant variables influencing 

employment outcomes. Future research could incorporate primary data collection methods like 

surveys or interviews to validate and expand upon the findings. 

Future research should explore the following areas to build on these findings: conducting 

comparative studies across different countries and regions to understand how varying socio-

economic contexts influence the relationship between low-carbon city development and 

employment; implementing longitudinal studies to track the long-term effects of low-carbon 

policies on employment and to identify potential lag effects not captured in cross-sectional 

analyses; incorporating primary data collection methods, such as field surveys and interviews, to 

validate secondary data findings and uncover additional variables impacting employment in 

low-carbon cities; and examining the specific impacts of individual policy measures within the 

broader framework of low-carbon city initiatives to identify the most effective strategies for 

enhancing employment. By addressing these limitations and pursuing these research directions, 

future studies can further advance the understanding of the complex interplay between low-

carbon city development and employment. 

9.Conclusions 

This study employs dynamic fsQCA research methodology, focusing on 121 low-carbon 

pilot cities in China as case studies, to investigate the synergistic effects and driving pathways 

of China's low-carbon urban governance on employment from 2007 to 2019. It reveals the 

core conditions and their complex interactions that influence high-level employment and 

high-level urban wages from both temporal and regional dimensions. 

First and foremost, by analyzing the impacts of seven conditional variables (IND, 

URB, ENE, ECO, POP, CON, and CAR) on high-level employment (High-EMP) and high-

level urban wages (High-WAG), this study finds that none of the seven low-carbon urban 

development factors can independently serve as necessary conditions for elevating regional 

employment levels. This suggests that individual factors must be considered bottlenecks to 

significantly boost regional employment levels. Developing low-carbon cities leads to six 

driving pathways for high-level employment, broadly categorized into the Human 

Resources-Driven Model and the Energy Transition-Driven Model. Furthermore, the 

influence of low-carbon urban development on high-level urban wages is shaped by five 



 

 

driving pathways, categorized into the Industry Agglomeration-Driven Model and the Total 

Factor Productivity-Driven Model. 

Secondly, this research illustrates the changing trends of the impacts of the seven 

conditional variables on employment levels (High-EMP and High-WAG) from 2007 to 

2019, addressing previous research gaps. Notably, industrialization, energy structure, and 

carbon emission reduction have formed evident time effects on regional employment levels, 

particularly around 2016. This result validates the Porter-Clark theorem, helping us 

understand the relationship between the industrialization level of low-carbon cities and 

regional employment levels from the perspective of industrial development evolution. 

According to the theory of structural transformation, the equilibrium level of industrial 

structure, energy structure, and carbon emission reduction tends to approach reasonableness 

as economic development progresses, often involving structural changes that contribute to 

increased factor productivity. 

In addition, we observe increasing time effects related to urbanization and 

consumption levels, especially around 2014. The rise in urbanization stimulates urban 

construction and infrastructure development, promoting the growth of various industries 

and thus creating more employment opportunities. With the increase in urbanization levels, 

urban scale and population size also continuously increase, further driving the improvement 

of employment levels. Economic development is another significant driving factor. During 

periods of economic prosperity, enterprises tend to expand, generating more job 

opportunities. Economic development also promotes technological innovation and scientific 

development, fostering the growth of emerging industries and further boosting employment 

levels. Consumption levels are also one of the crucial factors driving regional employment 

levels. As consumption levels rise, market demand increases accordingly, prompting 

businesses to increase production and operations and create more job opportunities. Finally, 

the time effects of economic development on regional employment levels are the most 

prominent among all conditional variables, particularly evident in regional employment and 

urban wage levels. 

In summary, this research makes two primary theoretical contributions compared to 

previous studies on related topics. Firstly, past assessments of net employment gains or 

losses (Chen et al., 2024) often relied on traditional econometric models' increasing or 

decreasing marginal effects. These approaches have limitations because traditional 

quantitative methods are based on models that assume independence, unidirectional linear 

relationships, and causal symmetry among independent variables. They analyze the "net 

effects" of independent variables on dependent variables under the control of other factors, 

which cannot explain the complex causal relationships among interdependent variables. 

Therefore, this study adopts an analysis perspective based on holistic configurations, 

treating the research objects as configurations of different combinations of conditional 

variables. This approach integrates the advantages of case studies and variable studies and, 

through the dynamic fsQCA analysis method, explores the set relationships between factors 

and outcomes. This approach aids in addressing multiple concurrent causal relationships, 

causal asymmetry, and equivalence of various scenarios in understanding the impact of 

developing low-carbon cities on employment. Secondly, in previous research on related 

topics, there may have been a "time blind spot" issue, indicating a lack of consideration of 



 

 

the temporal dimension, thereby neglecting the influence of time on conditional 

configurations. To overcome this "time blind spot," this study improved upon previous 

work by using panel data. By comprehensively evaluating data for 13 years, including 

industrialization levels, urbanization levels, energy structures, economic development levels, 

population sizes, consumption levels, carbon emissions, average on-duty workers, and 

urban wage levels, this research used the dynamic QCA method. This method helps enrich 

the theoretical dynamism and theoretical saturation during the theoretical construction 

phase and forms robust configuration conclusions during empirical testing. 

This study helps uncover results that traditional econometric methods cannot provide, 

contributing to expanding research in this field. By exploring the conditions and 

mechanisms that drive low-carbon urban development to affect employment levels from 

both temporal and regional perspectives, this research enhances our understanding of the 

driving pathways and mechanisms of low-carbon cities on employment levels. It promotes 

the development of low-carbon local towns and the improvement of employment levels in a 

context-sensitive manner. 
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