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Abstract 

This study examines the use of Co3O4 nanocomposite as a photo-catalyst in an aqueous solution 

for photocatalytic degradation of dyes under U.V. It has been observed that substrate 

concentrations, catalyst, pH, oxidant present and temperature affect dye degradation. The 

characterization of synthesized Co3O4 NPs and Co3O4/Na-Alg NC was done using UV-visible, 

S.E.M., XRD, and FTIR. Co3O4 NPs and Co3O4/Na-Alg NC were found to be 23 nm and 10 nm 

in size, respectively. The synthesized Co3O4/NaAlg NC were employed to degrade Direct Red 31 

dye using batch experiments by optimization of experimental conditions. Eighty minutes were 
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given to the experiment. At ideal conditions, including 0.02% dye, three mg/L Co3O4/NaAlg NC 

photocatalyst, 0.03 mM H2O2, pH 5, and 70 °C temperature, the maximum degradation (68.24%) 

was achieved. T.O.C. and C.O.D. were evaluated to check the proficiency of this process. It was 

found that the percentage reduction in T.O.C. and C.O.D. was 66.7% and 65.2%. The generation 

of non-toxic products was validated by the Direct Red 31 dye degradation route. The study 

concluded that the synthesized nanocomposites could be chosen for the remediation of dyes-

containing wastewater. Because it is economical and environmentally beneficial, the produced 

Co3O4/Na-Alg NC is strongly advised for dye degradation.  

Keywords: Co-precipitation, Co3O4/Na-Alginate nanocomposite, Characterization, Direct Red 

31 dye degradation, Photocatalysis, Kinetic and Mineralization study. 

1. Introduction 

Dyes are significant industrial commodities, as the majority of dyes' by-products are released 

into the environment, which significantly contributes to environmental damage. Without any 

additional treatment, the textile and paper sectors discharge large amounts of these non-

biodegradable, carcinogenic pollutants into the water, so contaminating the water (Kumar et al., 

2023). These hues can cause cyanosis, jaundice, shock, increased heart rate, vomiting, tissue 

necrosis, and quadriplegia, among other harmful effects in people (Waliullah et al., 2023). Due 

to their complex structure, pigments accumulate in water and block sunlight penetration, 

preventing sequential photosynthesis. As a result, dye pollution is recognized as a serious issue, 

which motivates authorities to act and create effective remediation techniques.  Various methods 

are used to get rid of dye pollution (Kiran et al., 2017). They are coagulation/flocculation 

(Hadadi et al., 2023), ion exchange (Raji et al., 2023), membrane filtration (Sheikh et al., 2023), 

electrocoagulation (Negash et al., 2023), ozonation (Lanzetta et al., 2023), Fenton process 

(Eskikaya et al., 2023), photocatalytic degradation (Matei et al., 2023) and adsorption process 

(Waliullah et al., 2023). There are a number of disadvantages to treating wastewater containing 

textile dye using conventional chemical, physical, and biological processes, including high 

treatment costs, high energy requirements, and the creation of secondary contaminants (Kiran et 

al., 2018; Bano et al., 2024; Bhutto et al., 2024). 



 

 

In this regard, the application of transition metal nanoparticles has gained traction (Krishnan et 

al., 2023). Transition metal oxide nanoparticles with a suitable band gap and flat band potential 

energy levels are the main components of photocatalysts. The use of transition metal oxide 

nanoparticles to treat effluent containing dangerous dyes has also achieved high popularity 

(Mahdiani et al., 2018; Maniammal et al., 2018; Dammala et al., 2019; Sujatha et al., 2019). 

Their unique photocatalytic property is associated with their large surface area and 

semiconducting characteristics (Roy et al., 2023). The synthesis of transition metal oxides at the 

nanoscale with varying morphologies is highly desirable because of their unique properties, 

which are dependent on their structure, morphology, dimension, and size distribution in addition 

to their chemical composition (Wu et al., 2020; Yin and Hasegawa, 2023; Al-Askar et al., 2023). 

The transition metal nanoparticles' qualities like magnetic, electronic, and optical qualities 

(Mayakkannan et al., 2023), have made it possible to be successfully applied over a wide range 

of applications comprising lithium-ion batteries (Hu et al., 2023; Elsharawy et al., 2023; Akram 

et al., 2024), sensors (Yao et al., 2023), and catalysis (Tyagi et al., 2020; Akram et al., 2023). 

Numerous transition metals and their oxide nanostructures have been synthesized and studied, 

including cobalt (Kharat et al., 2023), iron (Tai et al., 2023), zinc (Al-Enizi et al., 2023), copper 

(Obisesan et al., 2019), etc. Among these, Co3O4, in particular, exhibited an amazing track 

record of wide-ranging applications for dyes, catalysts, gas sensors, and energy storage materials, 

as well as magnetic compounds (Vinayagam et al., 2023). The Co-based nanostructures have 

been considered due to their unbeatable and novel physiochemical properties. Co3O4 is a p-type 

semiconductor that has a narrow band gap (1.2–2.1 eV), good thermal and chemical stability, 

low solubility, and intriguing electrical, magnetic, and catalytic properties (Yousefi et al., 2021; 

Kumarage and Comini, 2021). Co3O4 can be used as a photocatalyst or co-catalyst for visible-

light-driven photocatalytic reactions because of its exceptional qualities (Chang et al., 2020; 

Ghobadifard et al., 2023). In order to synthesize nanocomposites for wastewater treatment, 

nanomaterials have been added to polymeric materials. Moreover, adding these inorganic 

components to a polymeric matrix can improve the photocatalytic function of the nanocomposite 

materials (Makhado et al., 2019b; Akram et al., 2021).    

Alginate is a naturally occurring polymer obtained from brown algae. It is made up of a linear 

polymer with different ratios of β-L-guluronate (G) and β-D-mannuronate (M) units. Alginate 

has drawn interest because of its many uses, porosity, and surface area, and it is s stable in many 
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organic solvents (Sellimi et al., 2015; Hecht and Srebnik, 2016). It is appropriate for use as an 

immobilization matrix in the treatment of wastewater. Moreover, because of the presence of 

negative carboxylate functionalities along its polymeric chains, it possesses endearing qualities, 

including ion selectivity, high affinity, and binding ability for cations (Shen and Wang, 2014; 

Lin et al., 2023; Alavinia et al., 2023).  

For the first time ever, a cobalt oxide/alginate nanocomposite (Co3O4/Na-Alg NC) was created in 

this study to help degrade the Direct Red 31 dye (D.R. 31 dye) under U.V. light. This study 

involved the synthesis of Co3O4 nanoparticles by the co-precipitation method and was 

incorporated in a sodium alginate matrix to form a cobalt oxide/sodium alginate nanocomposite 

(Figure 1). Cobalt oxide/alginate nanocomposite (Co3O4/Na-Alg NC) was applied for the photo-

degradation of the D.R. 31 dye.  

 

                       Figure 1. Reaction for the synthesis of Cobalt oxide/Na-alginate bio-nanocomposite  

2. Material and Methods 

All of the chemicals were taken from the Nadeem Scientific and Chemical store in Faisalabad, 

Punjab, Pakistan. Cobalt chloride, sodium alginate, Sodium hydroxide (NaOH), Hydrogen 

peroxide (H2O2, 35%), sulphuric acid (H2SO4). Direct Red 31 dye (D.R. 31 dye) was supplied by 

the Dyes and Chemicals store in Faisalabad, Punjab, Pakistan. All chemicals used in this study 

were pure and used as such. All experiments were conducted with distilled water (D.W.). 



 

 

 

Figure 2. Structure of Direct Red 31 dye (C.I. 29100).    

2.1. Synthesis of Co3O4 nanoparticles (Co3O4 NPs)  

Co3O4 nanoparticles (Co3O4 NPs) were synthesized following Samer et al. (2022) via co-

precipitation method with modifications where required. 50 mL NaOH solution (4 M) into 

50 mL of CoCl2.6H2O solution (0.2 M) at an approximate rate of 5 mL/min in strong mixing 

conditions (1500 rpm). The stirring of the mixture continued for 4 hours. The precipitates were 

collected, filtered, rinsed with deionized water and filtered and dried in an oven at 100 °C. To get 

a homogeneous powder, the dry precipitates were ground using an agar mortar. The calcination 

of the resulting powder was done for five hours at 200 °C (Figure 3) (Samer et al., 2022).  

 

Figure 3. Synthesis of cobalt oxide nanoparticles with Scheme 

2.2. Synthesis of Cobalt oxide/Na-alginate nanocomposite (Co3O4/Na-Alg NC) 

The cobalt oxide/Na-Alginate nanocomposite (Co3O4/Na-Alg NC) was prepared using Helmiyati 

and Wahyuningrum's method (2018) with slight modifications. An aqueous sodium alginate 

solution was formed by dissolving the sodium alginate in distilled water with continuous stirring 



 

 

for four hours at room temperature. In this solution, Co3O4 NPs were added (prepared by the 

above Scheme) and stirred at 500 rpm for one hour, then the solution was set to ultra-sonication 

for 30 min for homogenization. The amount of sodium alginate and Co3O4 NPs in a 1:1 ratio was 

used in the experiment. Finally, the resulting Co3O4/Na-Alg NC was taken out, dried and used 

for further experimental characterization (Figure 4) (Helmiyati and Wahyuningrum 2018).    

 

Figure 4. Synthesis of cobalt oxide/Na-alginate nanocomposite (Co3O4/Na-Alg NC) 

2.3. Characterization of Co3O4 NPs and Co3O4/Na-Alg NC 

The synthesized Co3O4 nanoparticles (Co3O4 NPs) and Co3O4/sodium alginate nanocomposite 

(Co3O4/Na-Alg NC) were characterized by optical, structural and elemental techniques. The 

optical properties were determined by employing U.V.–visible spectroscopy. With an STA-4300 

spectrophotometer operating at room temperature, the Co3O4 nanoparticles' U.V.–visible 

absorption spectra were captured. To create a homogenous suspension, the sample for the UV-

Vis investigations was thoroughly mixed in distilled water using sonication for ten minutes. 

Scanning electron microscopy was used to assess the size and shape of the surface. The structural 

properties were analyzed by employing powder X-ray diffraction. Elemental analysis and 

chemical compositions were examined by Fourier Transform Infrared Spectroscopy (Khalaji et 

al., 2019). The sample was powdered and used for S.E.M., XRD, and FTIR.  

2.4 Decolourization of D.R. 31 dye using Co3O4/Na-Alg NC as photocatalyst 

2.4.1. Determination of λmax for D.R. 31 dye 

For scanning of λmax, a dye solution was made, and a double beam U.V.–vis spectrophotometer was used 

to measure absorbance. 

2.4.2. Experimental Procedure with optimization of reaction variables  



 

 

Firstly, the dye was used, whose 0.01% solution was prepared in water. The dye solution was 

taken in a reaction flask, and pH was adjusted to 5 using 0.1M NaOH/0.05M H2SO4. Then, 4mg 

of cobalt oxide/Na-alginate nanocomposite was added to the reaction flask having D.R. 31 dye 

solution. The reaction flask was kept on a hot plate with a magnetic stirrer at 40 ℃ operating 

under a UV lamp, and the reaction was allowed to let run for 80 minutes. The reaction progress 

was checked by taking out a small amount of reaction aliquot from the reaction mixture after 

each 10 minutes and noting its absorbance value at λmax using the U.V./Vis spectrophotometer 

(STA-4300).    

The D.R. 31 dye level was varied from 0.01-0.06%, concentration of sodium alginate-based 

metal oxide nanocomposite from 1-6 mg, H2O2 from 0.01-0.05 mM, reaction time from 10-70 

min, pH from 5-10 and temperature range from 30 °C - 80 °C (Patra et al., 2022). 

2.4.3. Chemical Analysis 

The following formula was used to determine the efficiency of dye removal:  

Decolorization (%) = (I – F)/I × 100 

Where I denote the dye solution's starting absorbance and F its final absorbance (Kiran et al., 

2020), the UV-Vis spectrophotometer was utilized to check the dye solution's absorption.  

2.4.4. Statistical Analysis 

Three runs of the sample through the device were performed. The findings are produced using 

the average value (Steel et al., 1997).    

2.4.5. Degradation pathway 

By rupturing the older bonds, the dye was broken down into intermediate products and then into 

end products, with the production of new products occurring in different steps, as illustrated in 

Figure 13 (Koli et al., 2018). 

2.5.  Mineralization study 

Water quality metrics such as C.O.D. and T.O.C. were evaluated for both treated and untreated 

wastewater samples.  



 

 

Calculating the C.O.D. required adding 1.5 mL of the digestion solution (made by dissolving 2.5 

g K2Cr2O7 and 8.3 g of HgSO4 in 40 mL H2SO4 and diluting it to 250 mL with deionized water) 

and 3.5 mL of the catalyst solution (made by dissolving 5 g of Ag2SO4 in 500 mL of conc. 

H2SO4 and storing it for 48 hours). Then, each vial was filled with 2.5 mL of dye solution 

(treated and untreated). The blank sample was prepared using 2.5 mL of deionized water and all 

other components except dye. After that, the vials were heated to 150 °C for 110 minutes. 

Following that, the vials were allowed to cool to room temperature, and the absorbance at 600 

nm was noted (Rahmat et al., 2023). 

In digesting vials, 1.6 mL of concentrated H2SO4, 4 mL dye solutions, and 1 mL (2N) K2Cr2O7 

solution were added and thoroughly mixed in order to determine T.O.C. The blank sample was 

prepared using 2.5 mL of deionized water and all other components except dye. After 90 minutes 

at 110 °C in the oven, the flasks were chilled. The absorbance values were measured at 590 nm. 

The absorbance of a blank sample was subtracted from the sample’s absorbance to get a reliable 

prediction of the sample’s absorbance (Greenberg et al., 1985; Rahmat et al., 2023).  

This formula was used to determine the C.O.D. and T.O.C. values:  

SF × A = TOC∕COD 

Where S.F. denotes the standard factor, and A denotes the absorbance. 

The standard factor's formula is  

Standard factor = Conc. of standard ∕ its absorbance 

3. Results and Discussion 

3.4.  Characterization of Co3O4 NPs and Co3O4/Na-Alg NC 

The characteristic analysis of the Co3O4 NPs and Co3O4/Na-Alg NC was done using S.E.M., 

UV-Visible, XRD, and FTIR techniques. The results of the analysis are described below. 

S.E.M. was used to examine the morphology of Co3O4 NPs and Co3O4/Na-Alg NC. The 

electrographs of the Co3O4 NPs and Co3O4/Na-Alg NC synthesized are shown in Figure 5. 

S.E.M. provides information about the size of nanoparticles and their homogeneity and size 

distribution. The uniform distribution of particles is indicated by the S.E.M. image. The spherical 



 

 

form, small size, and high surface energy of the synthesized N.P.s led to their aggregation and 

form of tiny clusters, as seen in Figure 5a. That’s why it became difficult to calculate the size of 

nanoparticles individually. Using Image J software, the size distribution of these clusters was 

found. The size has varied from 400 nm to 700 nm, as we have seen. The individual particle size 

was calculated using XRD analysis. The results are supported by the literature (Lakra et al., 

2021). 

Co3O4/Na-Alg NC images reveal a pore-filled, rough surface in Figure 5b. Particles in the 

sodium alginate matrix are evenly distributed, as seen by the Co3O4/Na-Alg NC Figure 5b. With 

the formation of Co3O4 nanoparticles on the surface, the morphology of Co3O4/Na-Alg NC 

altered to a more compact surface with wrinkles. This suggests that the polymeric matrix shrinks 

as a result of Co3O4 nanoparticle adsorption and creates a more compact structure. The surface 

morphology of Co3O4/Na-Alg NC changes as a result of the development of Co3O4 nanoparticles 

(Hai et al., 2016). 

 

 

Figure 5. (a) S.E.M. of Co3O4 nanoparticles (b) S.E.M. of Co3O4/Na-Alg nanocomposite. 

The results of UV-visible spectroscopy demonstrated that, as seen in Figure 6, the usual peaks of 

Co3O4 NPs were found in the maximal wavelength range between 200-350 nm and 380-600 nm. 

Figure 6 shows the UV–visible spectrum of the prepared Co3O4 NPs and Co3O4/Na-Alg NC. It is 

clear that Co3O4 NPs have absorption at 200 nm and 400 nm. The 300 nm and 420 nm peaks are 

visible in the Co3O4/Na-Alg NC.  These peaks represented the methods by which Co (II) and Co 

(III) were transferred to oxygen, respectively (Farhadi et al., 2016; Attia and Abdel-Hafez, 

2021). 



 

 

 

Figure 6. UV-visible of Co3O4 NPs and Co3O4/Na-Alg NC. 

XRD was used to examine the crystal structures and compositions of the Co3O4 NPs and 

Co3O4/Na-Alg NC, as seen in Figure 7. The diffraction peaks at 20.0°, 31.2°, 36.5°, 39.6°, 44.0°, 

55.9°, 59.1°, and 65.2° were the present in Co3O4 NPs. These peaks may be correlated with the 

spinel Co3O4 characteristic peaks (JCPDS No. 43– 1003). The crystal planes of spinel Co3O4 are 

represented by the peaks [111], [2 2 0], [3 1 1], [2 2 2], [4 0 0], [4 2 2], [5 1 1], and [4 4 0], in 

that order. After calcination, sharp peaks were seen, suggesting that good crystallization had 

been accomplished and that N.P.s and N.C.s had fully formed.   

Since the material's full width at half-maximum (FWHM) and particle size are correlated, the 

peak corresponding to the [311] plane was selected for study. The FWHM values of the Co3O4 

NPs and Co3O4/Na-Alg NC were determined to be 0.36145° and 0.8782°, respectively, using the 

Gaussian fitting model. The average particle size (D) of a material can be computed using 

Scherrer's equation as follows (Lakra et al., 2021; Samer et al., 2022).  

 

Where θ is the diffraction angle (20.42° for N.P. and 36.48° for N.C.), β is the FWHM (Radian 

system), and l is the X-ray wavelength (0.154 nm). The Co3O4 NP and Co3O4/Na-Alg NC had 



 

 

average particle sizes of 23 and 10 nm, respectively. The particle size decreased when converted 

into nanocomposites.  The literature has findings that are comparable (Fan et al., 2021). 

Figure 7. XRD patterns of Co3O4 Nanoparticles and Co3O4/Na-Alg Nanocomposites 

The FTIR spectrum of Co3O4 NPs was captured in the wavenumber range of 600–4000 cm-1. 

Figure 8 displays the Co3O4 NPs' FTIR spectrum. The stretching vibration mode of the O-H 

group is responsible for the broadband at 3390 cm-1. Molecular water and O.H. are linked to the 

peak at 1727 cm-1 (Xu et al., 2015). The stretching vibration of Cl2-, which is caused by the 

remaining cobalt chloride salt (CoCl2.6H2O), is represented by the peak at 1392 cm-1. The 

distinctive peaks of CO3
2− anions are linked to the band at about 829 cm-1 (Bhargava et al., 

2018). The O-Co-O bond's bridging vibration was identified as the source of the absorption band 

at 657 cm-1.   



 

 

4000 3500 3000 2500 2000 1500 1000 500

20

40

60

80

100

T
ra

n
sm

itt
a
n

ce
 (

T
) 

(%
)

Wavenumber (cm-1)

Stretching vibration

OH group 3390 cm-1

CO3
2− anions

829 cm-1 

Stretching vibration

 Cl2- 1392 cm-1

Bridging vibration 

O-Co-O bond 

657 cm-1

Co3O4 NPs

Molecular water 

and OH

1727 cm-1

4000 3500 3000 2500 2000 1500 1000 500

75

80

85

90

95

100

105

T
ra

n
s
m

it
ta

n
c
e
 (

T
) 

(%
)

Wavenumber (cm-1)

Co3O4/Na-Alg NCs

-OH group vibration

3200-3400 cm-1 

mannuronic acid 

functional group 

884 cm-1

uronic acid 

1028 cm-1

Bridging vibration  

O-Co-O bond 

657 cm-1

Asymmetric

vibration C=O 

1590cm-1

Symmetric

vibration C=O

1410cm-1 1085 cm-1

-CH2 stretching 

2925 cm-1

C-O stretching 

vibration 

1295 cm-1

 

Figure 8. FTIR spectra of Co3O4 NPs and Co3O4/Na-Alg NC. 

The FTIR spectra of Co3O4/Na-Alg NC revealed that the O-Co-O bond's bridging vibration was 

responsible for the absorption band at 657 cm-1. The spectra showed the mannuronic acid 

functional group at wavenumber 884 cm-1 and the uronic acid at wavenumber 1028 cm-1. The C-

C and C.O.C. vibrations are also attributed to the strong and abrupt peak at 1028 cm-1. The 



 

 

following peak, at approximately 1085 cm-1, is linked with stretching vibrations of C–O, C–C, 

and C.O.C. The C-O stretching vibration was identified as the source of the bands at 1295 cm-1. 

Asymmetric and symmetric C=O vibrations make up C.O.O.- stretching. At 1590 cm-1 for the 

first one and 1410 cm-1 for the second one. CH2 stretching occurs at wavenumber 2928 cm–1 and 

O.H. functional group at wavenumber 3200-3400 cm–1 (Nastaj et al., 2016). 

3.5.  Determination of λmax for D.R. 31 dye  

The percentage and rate of degradation were calculated using the λmax value. The absorbance of 

D.R. 31 dye (0.01%) was measured at 10 nm intervals from 340 to 750 nm in order to determine 

the wavelength with the highest absorption. λmax was found to be 520 nm (Figure 9). The 

outcome is consistent with previous research (Abd El-Aziz et al., 2024).  
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Figure 9. Scanning of λmax for Direct Red 31 dye. 

3.6.  Optimization of experimental factors for photodegradation of D.R. 31 dye using 

Co3O4/Na-Alg NC  

The experimental factors affecting D.R. 31 dye's rate of decolourization are the concentration of 

D.R. 31 dye (0.01–0.06%), the concentration of the nanoparticles (1–6 mg), H2O2 (0.01-0.05 %), 

pH (4–8), temperature (40–80 °C) etc. 

3.6.4. Effect of D.R. 31 dye different concentrations 

The concentration of a dye is a significant factor in this treatment using an appropriate catalyst as 

it is directly linked with proficiency in the reaction.  By adjusting the concentration within the 



 

 

range of 0.01% to 0.06%, the impact of D.R. 31 dye concentration on photodegradation was 

investigated. In these experiments, an initial catalyst dose of 4mg was added, the pH was 

adjusted to 5.0, and the temperature was set to 40 °C for the 80-minute duration of the reaction. 

The findings showed, in Figure 10a, that from 0.01 to 0.02 % dye concentration, photocatalytic 

degradation of D.R. 31 dye was increased to 56.73% and that when the concentration of D.R. 31 

dye increased from 0.02 to 0.06%, rate of dye decomposition reduced. D.R. 31 dye was therefore 

optimized at a concentration of 0.02%. This could be explained by the fact that at greater dye 

concentrations, less light reaches the photocatalyst surface, which lowers the concentration of 

reactive radicals produced by light and, ultimately, lowers the photocatalytic activity at higher 

starting dye concentrations (Elashery et al., 2023; Kiran et al., 2018). Moreover, self-association 

and clumping can occur when more dye particles are present, preventing dye particles from 

accessing the available catalytic region. Thus, the excess dye molecules and intermediates 

poisoned the photocatalysts active sites at high dye concentrations, reducing the efficacy of dye 

removal. The conclusions are consistent with the literature (Gola et al., 2021; Ghaffar et 

al., 2021).    

3.6.5. Effect of photocatalyst Co3O4/Na-Alg NC different concentrations  

It studied how different catalyst concentrations, ranging from 1 mgL-1 to 6 mgL-1, affected the 

decolourization of D.R. 31 dye. The percentage of decolourization was used to optimize the 

amount of catalyst. Since the optimized concentration of D.R. 31 dye was 0.02 %, these 

parameters were used in the studies: pH at 5.0 and the temperature at 40 °C was adjusted for the 

80 minutes of reaction. When the catalyst concentration was changed from 1 mgL-1 to 3 mgL-1, a 

degradation percentage of 59.64% was recorded. As the concentration increased from 4 mgL-1 to 

6 mgL-1, the catalyst's efficiency reduced. According to these experimental findings, three mgL-1 

catalyst is the ideal reaction condition (optimal dose) for D.R. 31 dye in order to maximize 

efficiency. The catalyst quantity was adjusted while maintaining a constant dye concentration, 

and the resulting degradation plot is shown in Figure 10b. Hydroxyl radicals (O.H.) and reactive 

oxygen species (R.O.S.) are created in greater quantities when the number of catalytic species 

grows, and this causes the formation of electron-hole pairs to occur at a higher magnitude. That’s 

why dye degradation is typically increased (Shokoohi et al., 2021). The improved efficiency of 

the nanocomposite for the dye up to 3 mgL-1 was visible in the current study. As shown in Figure 

https://link.springer.com/article/10.1007/s13201-023-02000-6#ref-CR19
https://link.springer.com/article/10.1007/s13201-023-02000-6#ref-CR26
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10b, raising the amount of the photo-catalyst from 4 mgL-1 to 6 mgL-1 does not significantly 

increase dye adsorption. This indicates that additional loading of the catalyst does not increase 

the photo-degradation efficacy because of increased suspension turbidity, inadequate light 

penetration, increased light scattering, or the adsorption and sedimentation of nanocomposites 

(Karim et al., 2021). This is consistent with the body of previously published research (Akhter et 

al., 2023).  

3.6.6. Effect of H2O2 different concentrations on Photo-degradation 

The transformation process of organic toxic effluents into non-toxic compounds is mainly linked 

with reactive oxidant species (R.O.S.). The impact of H2O2 on dye degradation was examined 

while holding all other parameters constant, such as the dye concentration at 0.02%, the catalyst 

concentration (nanocomposite) at 3 mgL-1, and the pH at 5 for a reaction duration of 80 minutes. 

The degradation (%) of the D.R. 31 dye solution in the U.V. irradiation system was evaluated, as 

shown in Figure 10c, at various H2O2 concentrations ranging from 0.01 mM to 0.05 mM. Figure 

10c shows that the photodegradation efficiency of D.R. 31 dye increases somewhat up to 60.74 

% by increasing the concentration of H2O2 from 0.01 to 0.03 mM (optimal dose) with the 

addition of H2O2. Given that the H2O2 concentration is closely correlated with the quantity of 

OH• radicals produced during the photo-assisted catalytic process, this result suggests that the 

H2O2 content may be crucial in increasing the degradation percentage of D.R. 31 dye (Harun et 

al., 2020). A similar observation for the use of H2O2 as a photocatalyst in the degradation of 

other organic pollutants has been documented in the literature previously (Chen and Liu, 2007). 

When the H2O2 concentration rises from 0.03 mM to 0.05 mM, the photodegradation efficiency 

does, however, decrease. The results are consistent with the literature (Zha et al., 2022). At 

increasing H2O2 concentrations, the surplus H2O2 molecules scavenge the beneficial • O.H. 

produced by the direct photolysis of H2O2 and form a much weaker oxidant of HO•2 (Equation 1) 

(Chen and Liu, 2007). Furthermore, increased H2O2 concentrations may absorb and lessen 

incident U.V. radiation that is needed for photocatalysis (Halbus et al., 2013). As a result, the 

system's overall oxidation capacities are decreased (equation 2), and the following equations 

show the deceleration of the deterioration rates: 

H2O2 +  •OH  → HO2•  + H2O           (1) 



 

 

HO2•  +  •OH   →  H2O  + O2                   (2) 

As a result, in the current study, the optimal concentration of H2O2 for photocatalytic 

decomposition of D.R. 31 dye under U.V. irradiation is 0.03 mM.  Equation (3) indicates that 

when a potent peroxide agent, like hydrogen peroxide (H2O2), is present, the photolysis process 

might increase the generation of • O.H. At greater concentrations, H2O2 is known to prevent 

electron-hole recombination in addition to producing hydroxyl radicals when an electron is 

abstracted from the conduction band (Ruiz-López et al., 2021).  

H2O2 +  hv(<385nm)  → 2•OH           (3) 

3.6.7. Effect of different pH levels on Photo-degradation  

In the study of photo-catalysis, pH is one of the most important parameters regulating the rate of 

decomposition of particular organic molecules. It is also a critical operational variable in 

wastewater treatment (Moradi and Ganjali, 2019). The D.R. 31 dye degradation was studied at 

different pH values ranging from 5 to 10. Low pH decolorization was effective, and the rate 

constant was in the order of 5>6>7>8>9>10. Plotting of the degradation (%) at different pH 

levels is shown in Figure 10d. It has been noted that D.R. 31's photodegradation effectiveness is 

enhanced by an acidic pH. D.R. 31 has a pH of about eight by nature. Dhas et al. (2015) stated 

that the acidic nature of the dye solution causes the increased rate of ionization of two sulfuric 

groups, and more dye anions could be adsorbed on the catalyst surface due to electrostatic 

attraction. Thus, the D.R. anion's positive surface charge could be readily oxidized to O2- present 

in the Co3O4/Na-Alg NC catalyst surface. Though the -O.H. ion radical is unstable at higher pH 

values, the decreased production of this radical may be the cause of the poor photo-degradation 

seen in alkaline media (Dhas et al., 2015; Rahmat et al., 2023). 

3.6.8. Effect of different temperature levels on Photo-degradation 

Similarly, it was also studied how temperature affected the percentage of D.R. 31 dye 

decolorization using Co3O4/Na-Alg NC as a photocatalyst. The temperature effect on the 

decolorization of D.R. 31 was calculated at 40–80 °C by taking other parameters with their 

optimal values as dye concentration 0.02 %, catalyst concentration 3mgL-1 and pH 5. The 

experiments were left to run for 80 min. As shown in Figure 10e, the percentage of dye 



 

 

decolorization increased up to 68.24% at 70 °C (optimal value) with a temperature increase from 

40 to 70 °C. Generally, increasing the temperature can increase the kinetic energy of molecules, 

including the dye molecules and the adsorbent surface. This higher kinetic energy may cause the 

dye molecules and the adsorbent surface to clash more strongly, initially enhancing the 

adsorption capacity.  

Temperature-related changes in the physical properties of the adsorbent material, such as 

variations in porosity or surface area, may also have an effect on adsorption capacity. When 

subjected to temperatures over their optimal level, catalyst efficiency may be reduced. Higher 

temperatures reduce the adsorption capacity of Co3O4/Na-Alg NC (Kiran et al. 2021; Rafique et 

al. 2023), which is likely due to the sintering and temperature increase procedure. That results in 

a reduction in the surface area of the catalyst for alteration in the catalyst's three-dimensional 

shape, which may hinder the active binding of substrate, resulting in a decrease in reaction rate 

(Khalil et al., 2021). It could be because the sintering process at higher temperatures reduces the 

catalytic surface, reducing the catalyst's ability to adsorb chemicals (Mohammad et al., 2016; 

Kishore et al., 2023).  Moreover, at higher temperatures, competitive reactions like desorption or 

disintegration of adsorbed molecules may occur. Approaching equilibrium may lead to a decline 

in the system's total adsorption capacity (Jaina et al., 2023). 



 

 

 

Figure 11. Effect of (a) dye concentration (b) Co3O4/Na-Alg nanocomposite level (c) H2O2 dose 

(d) pH (e) different levels of temperature on decolorization of Direct Red 31 dye using 

Co3O4/Na-Alg Nanocomposites as a catalyst. 

3.7.  Kinetics study 

The decolorization of dye is studied kinetically by applying a linear data-fitting model. Dye 

degradation by Co3O4/Na-Alg Nanocomposites catalyst is studied kinetically with respect to 

time. The experimental data for D.R. 31 dye is obtained from the spectrometric analysis, and 

data is treated to find the order of the Dye degradation reaction. It is observed from Figure 11a 

that data is plotted between dye concentration and time for dye decolorization. It is clearly 

observed that data for D.R. 31 dye decolorization does not follow a zero-order reaction. Then, 

data is plotted between ln[dye] and degradation time, as shown in Figure 11b, using spectrometer 

data to study the 1st-order reaction kinetics. Furthermore, the graph is plotted between ln1/[dye] 

and time for study second order kinetics using Co3O4/Na-Alg nanocomposites. The slope R2 



 

 

values for zero, first and second order are measured as 0.9663, 0.9897 and 0.9815, respectively. 

The R2 value is found to be highest for 1st order reaction. Figure 11b represents R2's highest value 

for first order exhibited that dye decolorization reaction follows first order reaction kinetics. 

First-order kinetics depicts an instance where the degree of dye degradation through 

nanocomposite is proportional to the dye concentration at any given moment. This suggests that 

the dye's rate of degradation will fall proportionally as its level does (Haritha et al., 2016; 

Fardood et al., 2019).  

 

Figure 11. Kinetic of D.R. 31 dye degradation reaction using Co3O4/Na-Alg nanocomposites. 

3.8.  Mineralization Study 

Both C.O.D. and T.O.C. tests are used to monitor the efficiency of wastewater treatment 

processes. By measuring the organic load before and after treatment, operators can evaluate how 

well the treatment process is removing organic pollutants. The mineralization efficiency of D.R. 



 

 

31 dye samples treated with Co3O4/Na-Alg nanocomposites as a catalyst was determined by 

analyzing quality assurance parameters for water, such as C.O.D. and T.O.C. C.O.D. and T.O.C. 

measurements were performed on the treated D.R. 31 dye solution. It indicated a gradual 

improvement in mineralization with a rise in reaction time and a gradual increase in elimination 

(%) of both C.O.D. and T.O.C. The percentage reduction (%) in C.O.D. and T.O.C. after 

catalytic treatment was 66.7% and 65.2%, respectively (Figure 12). Thus, it can be concluded 

that Co3O4/Na-Alg nanocomposites ensure the degradation of the targeted dye by reducing the 

C.O.D. and T.O.C. of the solution in addition to removing the dye. The current study's findings 

are consistent with previous research (Islam et al., 2019; Ahmed et al., 2022). 

 

Figure 12. Effect of catalytic process contact time on per cent reduction of chemical oxygen 

demand (C.O.D.) and total organic carbon (T.O.C.) 

3.9.  Photocatalytic pathway for degradation of Direct Red 31 dye  

Electrons are excited and migrate to the catalyst conduction band when light with an energy 

equal to or greater than the photo catalyst's (Co3O4/Na-Alg NC) band gap energy shines on it. As 

a result, holes in the valance band (V.B.) and electrons in the conduction band (C.B.) are created, 

which initiate the photo-degradation process of DR31 dye by taking part in redox reactions (Koli 

et al., 2018). Strong oxidants such as hydroxyl radicals (• O.H.) help destroy dye. It is created by 
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a number of processes, such as the breakdown of hydrogen peroxide and the interaction of photo-

generated holes with hydroxide anion and water molecules. Degradation of dyes can occur 

quickly due to the potent and non-selective oxidative power of hydroxyl radicals. The chemical 

processes lead to dye degradation, as discussed in Figure 13. 

 

Figure 13. Photo-degradation pathway of Direct Red 31 dye. 

Photo-generated pairs combine and release the stored energy instantaneously when no electron 

scavengers are present. Materials such as molecular oxygen stop electron and hole 

recombination. Oxygen is one of the electron acceptors that photo-generated electrons can react 

with to produce the superoxide anion radical (Tahir and Saad, 2021). The Co3O4/Na-Alg NC was 

employed as a photocatalyst for the first time; the D.R. 31 dye was successfully decomposed by 

following the mechanism explained in Figure 13. The Co3O4/Na-Alg NC photocatalyst shows 

efficient degradation like other nanocomposites of cobalt oxide (Bankole et al., 2020; Mohamed 

et al., 2022). 

4. Conclusion 



 

 

The first time ever prepared the Co3O4/Na-Alg nanocomposites demonstrated to be successful in 

textile wastewater treatment. The synthesis of Co3O4/Na-Alg nanocomposites was carried out 

using a chemical method. Optical (U.V.–Visible), S.E.M. (morphological), structural (X-ray 

diffraction), and elemental (FTIR) methods were used to characterize the produced Co3O4 

nanoparticles (Co3O4 NPs) and Co3O4/sodium alginate nanocomposite (Co3O4/Na-Alg NC). 

Dyes can be efficiently destroyed by photocatalysis in the presence of Co3O4/Na-Alg 

nanocomposites. Co3O4/Na-Alg NCs' photo-catalytic behaviour has been evaluated in an 

aqueous phase using D.R. 31 dye, guaranteeing a degradation efficiency of about 67.24% under 

visible light. The activities of Co3O4/Na-Alg photocatalysts are influenced by a number of 

operating parameters. Using three mg/L conc. Of Co3O4/Na-Alg NC produced the greatest photo 

degradation efficiency. Under U.V. irradiation, the values of D.R. 31 degrading with Co3O4/Na-

Alg nanocomposites were measured to be 67.24%. The maximum degradation was achieved at 

0.02% dye concentration and three mg/L concentration of Co3O4/Na-Alg NC, 0.03mM H2O2, pH 

5, 70°C during 80 minutes of reaction. The percentage reduction in C.O.D. and T.O.C. was 

65.2% and 66.7%, respectively, which has shown the effectiveness of the current method of 

study.  
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