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Graphical abstract 

 

Abstract 

Chitosan-doped copper oxide and zinc oxide nanoparticles 
(CuO-CS-ZnO-Chlo NPs) were prepared utilizing a sol-gel 
synthesis route. Chlorophyll was added in the process of 
making NPs to enhance the effects of these NPs. The 
prepared NPs were thoroughly analyzed using advanced 
techniques including X-ray diffraction (XRD), scanning 
electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy, 
Fourier-transform infrared (FTIR) spectroscopy, and 
thermogravimetric analysis (TGA). Structural analysis 
revealed the successful synthesis of irregularly shaped NPs 
with an average crystallite size of 10.7 nm. In optical 
properties, UV-Vis showed the absorption bands associated 
with different absorption centers in the sample and FTIR 
revealed various function groups associated with the 
preparation procedure and chemical used while synthesizing 
these NPs. On the application side, these NPs efficiently resist 
the growth of X. axanopodis pv punicea bacteria within 24-48 
hours of investigation. The same NPs showed effective 
antifungal effects on the Alternaria solani. Finally, these NPs 
were used as food preservative agents whereas tomatoes 
were used as the target fruit. Tomatoes coated with NPs 
exhibited better preservation and a longer shelf life. 

Keywords: Chitosan, chlorophyll, nanoparticles, 
antibacterial, antifungal, food preservation 

 Introduction 

Nanotechnology unlocks new capabilities by utilizing the 
qualities of materials at a very small scale through the use 
of NPs (Ahila et al.; Benettayeb et al. 2023). It has been 
shown that nanomaterials can damage important 
components found within bacterial cells, therefore using 
nano-metal particles to fight germs can be an effective 
approach (Hermanto et al. 2024; Murtaza, Ahmed, et al. 
2024; Said et al. 2024; Salas-Orozco et al. 2024). 
Nanoscale particles come in a variety of shapes and sizes, 
including atomic clusters, nanorods, dots, grains, fibers, 
films, and nanopores, all with large surface areas. These 
materials have better physicochemical properties than 
regular alternatives. They have been extensively explored 
and show promising antibacterial, antiviral, and antifungal 
effects (Nizami et al. 2021). Furthermore, NPs are known 
for their antibacterial characteristics, which inhibit the 
growth of microorganisms. This has resulted in its 
extensive use in dentistry. NPs are used in many dentistry 
sectors because of their potential to prevent infections 
and promote oral health (Dizaj 2015; Khurshid et al. 2015; 
Murtaza et al. 2024; Parnia et al. 2017). NPs, having 
distinct features, are used in the food industry for 
preservation. Their antibacterial activity, mediated by 
processes such as oxygen species and membrane 
disruption, improves food safety. Nanotechnology-based 
packaging provides a better barrier, mechanical strength, 
and biodegradability for longer food preservation (Ghosh 
et al. 2019). NPs offer intriguing possibilities for treating 
fungal infections by increasing medicine delivery. They 
improve medication properties, such as 
pharmacodynamics, resulting in lower toxicity and 
extended effects. Nanotechnology promises novel 
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methods for antifungal treatment and larger uses in 
infectious disorders (Renzi et al. 2021). Metal oxide NPs 
have strong antibacterial properties without affecting 
surrounding tissues, making them useful in textiles, water 
treatment, medicine, and food packaging. Their use 
reduces the toxicity concerns associated with organic 
disinfectants (Hajipour et al. 2012; Naseem and Durrani 
2021; Singh et al. 2008; Tang and Zheng 2018). 

CS, a versatile biopolymer, is made from chitin, a 
structural component present in the exoskeletons of 
crustaceans such as shrimp and crab. Chitin is 
transformed into CS via a process known as deacetylation, 
which alters its chemical structure and increases its 
solubility and usefulness. Due to its qualities, it is useful 
for tissue engineering, medication delivery, and wound 
healing, all of which hold promise for improvements in 
industrial and medical applications (Kou et al. 2021; Wu et 
al. 2023; T. Zhang et al. 2023). CS NPs, made from CS, are 
nanoscale particles with numerous applications. With 
improved qualities such as biocompatibility and specific 
distribution, they show potential in various industries, 
including medicine and agriculture (Fan et al. 2024; 
Fonseca et al. 2024; Jalal et al. 2023). The strong 
antibacterial qualities of CS NPs make them useful in the 
fight against infections and the creation of new 
antimicrobial agents for a range of applications 
(Benettayeb et al. 2023; Jha and Mayanovic 2023; 
Poznanski et al. 2023). 

Similarly, Ag, Cu, CuO, and ZnO are examples of metallic 
materials that have been utilized to create antibacterial 
materials. Bacteria and viruses cell membranes are 
susceptible to the release of cations and reactive oxygen 
species caused by metallic materials. ZnO and CuO are 
two of the most commonly utilized metallic oxides 
because they are inexpensive, simple to produce, and 
have antibacterial qualities that make them useful in 
biological applications (Abdelrazek et al. 2023; Alturki 
2022; Bolaina-Lorenzo et al. 2022; Boshkova et al. 2023; 
Govindasamy et al. 2023; Matyjasik et al. 2022). ZnO NPs 
improve food packaging films made of biopolymers by 
providing better fresh food preservation and minimizing 
zinc migration, which complies with safety standards 
(Chen et al. 2024; Espitia et al. 2012; Kim et al. 2022; Zare 
et al. 2022; W. Zhang et al. 2023). Fruit shelf life is 
extended when CuO NPs are incorporated into CS and 
hydroxypropyl cellulose-based bio-nanocomposites. This 
emphasizes the potential of these materials for active 
food packaging (Gunaki et al. 2024; Nemr et al. 2024; 
Saleem et al. 2024; Shankar et al. 2024). Orange juice 
shelf life is increased with polylactic acid sheets coated 
with polyaniline, ZnO, and CuO, which improves their 
antioxidant and antibacterial properties (Abdolsattari et 
al. 2022; Neethidevan et al. 2023; Serouti et al. 2024). 
Utilizing the qualities of CS and a variety of metal oxides, 
CS metal oxide NPs provide environmentally friendly 
methods of pollution removal for environmental 
remediation applications (Almaieli et al. 2022; Baroudi et 
al. 2023; Jiang et al. 2023; Rajivgandhi et al. 2023). CS-ZnO 
NPs provide a strong defense against microbiological 

challenges in applications related to food safety, 
healthcare, and sanitation by combining the antibacterial 
qualities of CS with the enhanced activity of ZnO (Ibrahim 
et al. 2024; Salama and Aziz 2023). With their strong 
antibacterial, antibiofilm, antioxidant, and anticancer 
properties, CS-CuO NPs are proving to be a versatile agent 
in healthcare with the potential for a wide range of 
medical applications and therapeutic advances (Alturki 
2022; Alvi et al. 2024; Sarfraz et al. 2023) 

Chlorophyll, the green pigment found in plants and algae, 
plays a crucial part in photosynthesis, absorbing light 
energy for converting carbon dioxide and water into 
glucose and oxygen. Its bright color depicts the essence of 
biological life processes (Agathokleous et al. 2020; Ong et 
al. 2024; Zhang et al. 2024). Combining chlorophyll with 
nanoparticles improves drug delivery, imaging, and 
antibacterial efficiency, making it useful in biomedicine 
and food preservation. Mixing chlorophyll with CS 
improves its stability, effectiveness, and antioxidant 
action. CS is a carrier, preventing chlorophyll 
decomposition and increasing absorption, enhancing its 
potential health benefits (Alkahtani et al. 2020; Balusamy 
et al. 2022; Hanafy et al. 2021; Pucci et al. 2021). Mixing 
chlorophyll with CuO NPs enhances its antimicrobial 
properties due to the synergistic effect between 
chlorophyll and Cu ions. This mixture can successfully 
suppress microbial development, which may help with 
several biomedical and food preservation applications 
(Alves Batista de Souza et al. 2024; Gautam et al. 2016; Liu 
et al. 2022; Perreault et al. 2010; Sharma et al. 2019). 
When ZnO and chlorophyll merge, ZnO's antioxidant and 
UV-blocking properties are strengthened. This 
combination offers a strong defense against damaging UV 
rays and oxidative stress, making it a promising candidate 
for use in sunscreen and skin care products (Adil et al. 
2022; Chen et al. 2023; Haghighatzadeh 2021; Siddiqui et 
al. 2019). 

A convincing aspect of the current investigation is the 
effect of chlorophyll-enriched CuO-CS-ZnO NPs on X. 
axonopodis pv. Punicae bacterial strain. Xanthomonas 
axonopodis pv. punicae primarily attacks pomegranate 
trees, leading to pomegranate bacterial blight. It can also 
infect other plants of the same family, including several 
species of the Punica genus and certain ornamental plants 
from the Lythraceae family. The study also investigates 
the implications of Alternaria solani growth, which is the 
causal agent of diseases affecting tomatoes, eggplants, 
and other vegetable crops. Furthermore, the study 
investigates the effect of CuO-CS-ZnO-Chlo NPs coatings 
on tomato preservation during subsequent storage. 
Furthermore, this study focuses on the optical, thermal, 
and morphological aspects of CuO-CS-ZnO-Chlo NPs. 

 Materials and methods 

2.1 Material needed 

Chitosan powder, acetic acid (CH3COOH, 99.5%), hydrogen 
peroxide (H2O2, 98%), sodium hydroxide (NaOH, 97%), 
ammonia solution (NH3), ethanol (C2H5OH), copper 
acetate monohydrate (Cu (CH3COO)2·H2O, 99%), zinc 
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acetate dihydrate (Zn (CH3COO)2·2H2O, 99%). Chemicals 
were purchased from Sigma-Aldrich. Additionally, spinach 
leaves were used for chlorophyll extraction. 

2.2 Extraction of Chlorophyll from Spinach Leaves 

Spinach leaves were crushed and mixed with ethanol. 
Later, the solution was filtered to get the chlorophyll. 

2.3 Preparation of CuO0.35CS0.3ZnO0.35 -Chlorophyll NPs 

A 1.0% (w/v) CS solution was dissolved in 1% (v/v) acetic 
acid. 17.5 mL of 0.1 M Cu (CH3COO)2·H2O, 99% and 17.5 
mL of 0.1 M Zn (CH3COO)2·2H2O were added to 15 mL of 
CS solution. That solution was combined with the 
chlorophyll solution at a 1:1 ratio (v/v). To reach a pH of 7-
10, the combinations were adjusted with 0.1 M NaOH and 
thoroughly mixed for 4 hours at 100 °C. Finally, 3 hours of 
drying at 120 °C and 4 hours of annealing at 450 °C.  

2.4 Characterization and Instrumentation 

The crystal structure of CuO-Cs-ZnO-Chlo NPs was 
evaluated by XRD. Diffraction patterns from 10° to 55° 
were obtained at 50 kV and 40 mA. Cu-Kα radiation (BTX-
646) was used for the XRD evaluation. By utilizing the 
Shimadzu-1800 UV-Vis spectrometer, the absorbance of 
the produced NPs was measured between 280 and 800 
nm. The Shimadzu FTIR-8400 model was used to perform 
FTIR spectroscopy across a 400–4000 cm⁻¹ range. SEM 
(SU-1500) was used to analyze the structure of NPs. 
Utilizing TGA (STA 449 F3 version), the thermal stability of 
CuO-CS-ZnO-Chlo NPs was evaluated. This was done in air-
environment at temperatures ranging from 60-540 °C, 
with a heating rate of 10 °C/min and a flow rate of 50 
mL/min. The antibacterial assessments focused on the 
Gram-negative bacterium X. axanopodis pv punicea. The 
antibacterial efficacy of the material was evaluated using 
the agar plate method (MIR-154-PE). Additionally, the 
agar well diffusion technique was used to study antifungal 
activities of the synthesized NPs on Alternaria solani. 
Tomatoes went through a series of steps to access food 
protection. They were first cleaned and sanitized with 
colloidal silver solution, then drained to remove any 
remaining water. The tomatoes were then treated by 
immersing them in water, letting them drain and air dry at 
room temperature. An Agrocolor colorimeter was used to 
measure changes in the surface color of the tomatoes. To 
understand the red component (R) and green component 
(G) using the CIE Lab scale [L* (lightness), a* (red-green 
color component)], a white teflon plate was calibrated. 
The texture properties of the tomatoes, including 
hardness and compression load, were assessed using a 
Brookfield CT3 texture meter in piercing and compression 
tests. HI 208 P.H. meter was used to determine the 
tomatoes' pH. Furthermore, a 503 nm wavelength was 
used to generate a lycopene calibration curve using a 
Genesys 10S UV-Vis spectrophotometer. 

 Results and discussion 

3.1 Structural analysis 

XRD analysis is critical for understanding the structure of 
the synthesized material and ensuring that the 
nanocomposites are successfully created. The XRD pattern 

in Figure 1(a) shows a detailed structural composition 
with distinct crystal peaks and noticeable amorphous 
characteristics. The provided sample reveals trichotomous 
structures. It highlights the intricate essence of CS and 
illustrates its trichotomous character by embodying 
amorphous, crystalline, and transitional properties. The 
inset of Figure 1(a) distinctly illustrates XRD peaks located 
at 12.5°, 16.6°, and 17.8°, corresponding to the (101), 
(002), and (121) crystallographic planes, respectively. 
These crystallographic planes are characteristic of CS, with 
an orthorhombic structure and lattice parameters a = 8.2, 
b = 16.4, and c = 10.3 in concordance with the JCPDS card: 
00-039-1894. The three discernible XRD peaks at 37°, 40°, 
and 42.5° are related to ZnO, which have been allocated 
to the (101), (103), and (112) crystallographic planes, 
respectively. These results confirm ZnO's hexagonal 
wurtzite structure, consistent with previous investigations 
(Zaman et al. 2022). The crystallographic planes (200) and 
(111) of CuO are represented by prominent XRD peaks at 
41.5° and 45° respectively. These findings support 
previous studies that found that CuO has a cubic crystal 
structure (Magesh et al. 2018; Thakar et al. 2022). The 
results are also consistent with the information on JCPDS 
card 01-078-2076. The detection of three distinct phases 
in the XRD pattern signifies the accomplished synthesis of 
CuO-CS-ZnO-Chlo NPs. Utilizing the Scherrer formula, the 
crystallite size of the NPs was calculated (Collins et al. 
2012; Kawsar et al. 2024). The average crystallite size of 
~10.7 nm was found. SEM images of the NPs are depicted 
in figure 1(c&d). At a given magnification, it is clear that 
the particles are not separated. Particle clustering 
exhibiting clear agglomeration and further showing the 
existence of voids within the material. Figure 1(b) shows 
the grain size distribution of the prepared NPs. These 
results are consistent with earlier research (Alharbi et al. 
2023; Benazir et al. 2011).  

 

Figure 1. XRD pattern (a) size distribution (b) SEM image at 100 

µm (c), and SEM image at 50 µm (d) of CuO-CS-ZnO-Chlo NPs 

3.2 Optical analysis 

Figure 2(a) shows the UV-Vis absorption spectrum of CuO-
CS-ZnO-Chlo NPs. Sample absorption ceases around 450 
nm. On zooming in the initial part of the absorption 



4  KHAN et al. 

spectrum, three different absorption bands can be seen. 
Initial strong absorption could be associated with the 
absorption of glass material used as the substrate for NPs. 
Additional absorption bands in the range between 283-
300 nm are associated with CuO-CS-ZnO-Chlo NPs. 
(Alshammari 2022; Arab-Bafrani et al. 2021; Gupta et al. 
2015; Keabadile et al. 2020; Khazaal et al. 2020; Muiz et 
al. 2022; Nandiyanto et al. 2019; Rilda et al. 2022). FTIR 
spectrum of CuO-CS-ZnO-Chlo NPs is depicted in figure 2 
(b). Functional groups associated with the formation of 
NPs are observed in FTIR. The transmittance peak at 500 
cm-1 indicates the presence of metal ions, Cu or Zn, that 
are linked to the oxygen atoms. The presence of hydroxyl 
(-OH) groups is indicated at 1380 cm-1. This is compatible 
with the hydrophilic nature of metal oxides and the -OH 
groups in the chlorophyll molecule. The stretching 
vibrations of carbon-carbon double bonds (C=C) 
correspond to the band around 1650 cm-1. This signal 
shows the presence of unsaturated organic molecules, 
possibly chlorophyll with conjugated double bonds. The 
intense peak at 2920 cm-1 corresponds to the stretching 
vibrations of carbon-hydrogen (C-H) bonds. This is typical 
of organic compounds and further suggests the presence 
of CS and possibly other organic components. The 
presence of amino (-NH) groups is shown by the broad 
and strong band around 3460 cm-1. This also suggests the 
presence of CS that includes amino groups (Asgari-Targhi 
et al. 2021; Kayani et al. 2015; Magesh et al. 2018; 
Rathore et al. 2020; Sankar et al. 2014; Seydi et al. 2019; 
Zhang et al. 2008).  

 

Figure 2. UV-vis absorption curve. The inset shows the magnified 

curve (a) and FTIR pattern (b) of CuO-CS-ZnO-Chlo NPs with the 

inclusion of chlorophyll 

 

Figure 3. TGA-DTG patterns of CuO-CS-ZnO-Chlo NPs  

3.3 Thermal evaluation 

Figure 3 shows how the TGA-DTG results profoundly 
reveal the temperature-dependent effects of CuO-CS-
ZnO-Chlo NPs. These NPs show initial weight gain that an 

oxidation process might have caused. Later, with small 
fluctuations, the weight of the materials stays constant 
throughout the measured temperature range. The 
material's enhanced thermal stability results from the 
synergistic co-doping of CS with ZnO and CuO. Minimal 
weight loss and modest changes imply thermal stability, 
the absence of volatile components, or effective 
decomposition resistance. Research shows strong bonding 
and high-purity materials exhibit such patterns, indicating 
their suitability for high-temperature applications. 
(Jayaramudu et al. 2019; Karpuraranjith and Thambidurai 
2017; Kumar et al. 2019; Ltaief et al. 2021; Valiollahi et al. 
2019; Wang et al. 2012).  

3.4 Tomato preservation using CuO-CS-ZnO NPs 

Tomatoes' color, which is important for market 
acceptance, varies as they ripen because of variations in 
their lycopene and chlorophyll contents. This change is 
quantified by parameters like L* and a*, where L* stands 
for lightness and a* for the ripeness indicator—the move 
from green to red. CuO-CS-ZnO-Chlo NPs-treated 
tomatoes postpone ripening-associated color changes by 
maintaining constant L* levels (33-41) and less variable a* 
values (31-44) over the course of a 15-day testing session. 
CuO-CS-ZnO-Chlo NPs prevent softening by preserving cell 
wall structure and turgor pressure, which also helps to 
retain firmness. Taste is impacted by the pH rising from 
3.5 to 4 while being stored. Tomatoes that have been 
treated exhibit longer color retention and a reduced 
lycopene concentration over time. Through the 
modulation of membrane features during refrigeration at 
12–16 °C, NPs have a good impact on quality parameters, 
contributing to practical preservation and increasing shelf 
life (Anthon and Barrett 2012; Belović et al. 2015; Del 
Real-López et al.; Esserti et al. 2024; Gopinath et al. 2024; 
Murtaza, Rizwan, et al. 2024; Murtaza, Usman, Iqbal, 
Tahir, et al. 2024; Pinheiro et al. 2013; Saei et al. 2011).  

 

Figure 4. Preservation of tomatoes by utilizing CuO-CS-ZnO-Chlo 

NPs 

3.5 Antibacterial effects 

Figures 5 (a, b, c & d) display how well CuO-CS-ZnO-Chlo 
NPs stopped the growth of harmful bacteria. When more 
NPs were used, they worked better against X. axanopodis 
pv punicea bacteria after 24 and 48 hours. These NPs 
showed significant antibacterial effects and hence could 
be used to cure seeds and leaves suffering from bacterial 
diseases. In previous investigations, these NPs were found 
to exhibit substantial antibacterial activities against a wide 
range of diseases, demonstrating their efficiency in 
limiting microbial development. The NPs have 
demonstrated exceptional stability and biocompatibility, 
making them appropriate for a variety of applications, 
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including medical and agricultural industries. After 24 
hours the inhibition zone was 26 mm for 25%, 28 mm for 
50%, and 29 mm for 75% of NPs. Later, the same 
observation was done after 48 our and the results were: 
30 mm for 25%, 33 mm for 50%, and 35 mm for 75% of 
NPs in addition, chlorophyll also played a possible role in 
the enhancement of antibacterial effects. The treated 
seeds and plants exhibited reduced infection symptoms, 
highlighting the importance of these NPs in protecting 
against harmful bacteria, and contributing to healthier 
crops (Sibiya and Sumbwanyambe 2019). The interaction 
between nano-Zn and nano-Cu and bacteria is initiated by 
Cu and Zn adhesion to the cell membrane. This results in 
morphological changes, membrane depolarization, and 
intracellular leakage, which ultimately leads to cell death 
(Fayaz et al. 2010; Roy et al. 2019).  

 

Figure 5. Antibacterial activity of CuO-CS-ZnO-Chlo NPs with the 

inclusion of chlorophyll against X. axanopodis pv punicea. Discs 

showed (a) 25% (b) 50% (c) 75% of NPs concentrations and (d) a 

bar chart depicting the inhibition zone after 24 and 48 hours at 

three different concentrations 

 

Figure 6. (a) Discs used for determining antifungal activity at 

different NPs concentration (b) antifungal activity of CuO-CS-

ZnO-Chlo NPs against Alternaria solani 

3.6 Antifungal effects 

CuO-CS-ZnO-Chlo NPs were used in this study as a 
biocontrol agent against the Alternaria solani fungus. 
Significant antifungal efficacy was demonstrated by agar 
well diffusion analysis, shown in figure 6 (a), which 
showed a discernible decrease in Alternaria solani growth 
with increasing CuO-CS-ZnO-Chlo NPs concentrations. The 
computed observed growth rates at 0 mg/mL, 250 mg/mL, 
500 mg/mL, and 750 mg/mL concentrations of CuO-CS-

ZnO-Chlo NPs are shown in figure 6 (b). The corresponding 
measurements are 43 mm, 32 mm, 30 mm, and 33 mm. 
This demonstrates the promising effect of CuO-CS-ZnO-
Chlo NPs on fighting the targeted fungus, especially when 
combined with chlorophyll. These NPs were very effective 
in inhibiting the fungus, even at low concentrations and 
beneficial for the health of plants (Mohamed A. Mosa and 
Sozan E. El-Abeid 2023; M. A. Mosa and S. E. El-Abeid 
2023) 

 Conclusions 

CuO-CS-ZnO NPs containing chlorophyll were synthesized 
by utilizing the sol-gel method. Structural and optical 
analysis confirmed the effective synthesis of NPs with an 
average crystallite size of 10.7 nm. Thermal analysis 
revealed the stability of the prepared CuO-CS-ZnO-Chlo 
NPs. CuO-CS-ZnO-Chlo NPs showed good antibacterial 
activity against X. axanopodis pv punicea bacteria and 
modest antifungal properties for Alternaria solani. 
Elevated NP concentrations boosted both antibacterial 
and antifungal activities. The use of these NPs has the 
potential to improve preservation quality, particularly by 
extending the shelf life of tomatoes.  
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