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Graphical Abstract 

 

Abstract 

Key features for the quality assertion of geopolymer composites are the vital strength 

characteristics of geopolymer composites. In this work, an artificial neural network data-

driven model was employed for predicting 28-day vital strength characteristics for 

geopolymer composites incorporated with ingredients such as fly ash, manufactured sand, 

pond ash, bottom ash, coarse aggregate water, sodium hydroxide, and sodium silicate in 

diverse combinations. In this paper, the ANN model was created using investigational data, 

and the developed network was trained to fit inputs and the targeted output. ANN modelling 

was exploited for the prediction of 70 sets of data comprising a training phase of 80%, a 

testing phase of 10%, and a validation phase of the leftover 10%. To create an artificial neural 

network, input six parameters to attain one output. Artificial neural networks best exemplified 

the responses of individual ingredients in composites and established that an artificial neural 

network is a prospective methodology for predicting vital strength characteristics. It also 



 

 

found that the precision of the outcome primarily depends on the erudition matrix, and the 

number of data exploited in the training and testing of the network may have had the highest 

error from -0.0029 to 0.0034 on evaluation. 

Keywords: Geo-polymer composites ANN model, compressive, flexural and split tensile, 

m-sand, pond ash, bottom ash 

 

 

 

 

 

 

 

1. Introduction 

As machine learning turns out to be new and further accessible to the common community, 

academic queries are whirling into critical practical problems. Probably, primarily of the 

majority, appropriate apprehension is the evaluation of our assurance in trusting machine 

learning forecasts. In numerous genuine practical studies, it is of paramount significance to 

evaluate the potential of a machine learning algorithm to generalise, i.e., to afford precise 

forecasts and predictions on undetected data, depending on the distinctiveness of the target 

issue or concern. Experimental outcomes reveal the significance of exploiting the idea of the 

training data in evaluating machine learning generalisation by highlighting the divergence 

among interpolated and extrapolated forecasts and predictions. In addition to numerous 

expected correlations, we detect unpredictably feeble associations among the generalisation 

capability of machine learning mechanisms by employing modelling and the entire set of 

metrics allied to dimensionality. Geo-polymer composites comprising organic materials are 



 

 

produced through the blending of silicon and aluminium atoms. It was established that. Geo-

polymer composites have exemplary properties of mechanical, durability, heat, acid and fire 

resistance, alkali-silica reaction, eco-friendliness, and easily workability [2, 3, 4, 6]. It is in 

vogue for industrial solid waste like fly ash, silica fume, rice husk, metakaolin, and red mud. 

[8, 10, 12, 19, 20], mine waste mud, and slag are materials available that are industrially 

thrown away by products that can be used for making geo-polymer composites. Out of the 

said geopolymeric materials, the primary source is fly ash, reckoned as a foremost resource 

containing alumino-silicate for soaring characteristic strength attainment [20, 23]. It was 

found that enhanced mechanical properties can be attained with geopolymeric gel with a 

normal density. It was established that lofty compressive, flexural, and split tensile 

characteristic strengths were attained for sodium-based activating solutions embedded in fly-

ash-based geopolymer composites. In the fly-ash-based geopolymer composites, due to 

chemical actions occurring in the solution stage, microstructures formed. In this paper, pond 

ash and bottom ash were incorporated as fine aggregate geopolymer composites. [1, 5, 7, 9] 

It is found that diverse factors rely on and influence the compressive, flexural, and split 

tensile characteristics and strength of geo-polymer composites [11, 13, 14]. Owing to the 

complexity of predicting compressive, flexural, and split tensile characteristic strengths, an 

artificial neural network was employed to find a solution to this composite problem. A 

positive tool is cooperating with greatly organized computing rudiments called neurons [15, 

16, 18, 21, 22]. It is to point out that artificial neural networks have the primary benefit of 

prospective learning from the illustrations. It makes a response for unfinished, incomplete, or 

unfinished assignments, and minimal data or information can be redeemed. It is a potential 

mechanism or tool for resolving composite tasks and problems with insufficient data [24, 25, 

26, 27, 28]. It provides a vital approach to training artificial neural network systems from 

experiment data and develops artificial neural network-based models. For evaluating the 



 

 

performance of materials, an artificial neural network will be deemed a competent model 

with appropriate data. This will make a replica of the outcome of experiments or 

investigational data and be capable of making fairly accurate results with its potential [29, 36, 

37]. 

The preceding work of numerous researchers demonstrates that artificial neural network 

utilization for predicting the properties of geopolymer composites is meager. The artificial 

neural network was put into use for predicting compressive, flexural, and split tensile 

characteristic strengths in geopolymer composites and has been conducted by a lot of 

researchers. [15, 22]. At present, we are doing very scanty research with soft-computing tools 

in the prediction of geopolymer composite attributes. This study intends to stretch out 

appropriate models with artificial neural networks to predict the compressive, flexural, and 

split tensile characteristics and strengths of fly ash, pond ash, bottom ash, and manufactured 

sand-integrated geopolymer composites. 

Faezehossadat Khademi and Sayed Mohammadmehdi Jamal (2016) predicted the 

compressive strength of recycled aggregate concrete for 28 days. They considered 14 input 

parameters, both non-dimensional and dimensional. They developed a neural network model, 

and the input parameters were considered in the network to predict the 28-day compressive 

strength. They concluded that the ANN model can be used for the strength prediction of 

concrete with higher accuracy. 

Deshpande et al. (2014) used ANN to predict the 28-day compressive strength of recycled 

aggregate concrete. The input parameters were different proportions of cement, recycled 

aggregates, river sand, coarse aggregates, admixture, and water. They concluded that ANN 

performs superiorly in considering non-dimensional parameters like the sand-aggregate ratio, 

water-total materials ratio, aggregate-cement ratio, water-cement ratio, and replacement ratio 

for the strength prediction of recycled aggregate concrete. 



 

 

Adriana Trocoli Abdon Dantas et al. (2013) developed a model using artificial neural 

networks (ANN) for predicting the compressive strength of concrete containing construction 

and demolition waste after 3, 7, 28, and 90 days of curing. In their study, a total of 1178 data 

points were considered for modeling; 77.76% of the data were considered in the training 

phase; the remaining 22.24% were considered in the testing phase. The results showed the 

use of ANN in predicting the compressive strength of construction and demolition waste-

incorporated concrete after 3, 7, 28, and 90 days of curing was good and effective. 

Duan et al. (2013) carried out a study on predicting the compressive strength of recycled 

aggregate concrete using ANN. They constructed, trained, and tested the ANN model using 

146 available sets of data collected from 16 literature sources. 14 input parameters were 

considered to develop the ANN model. From the test results, they concluded that ANN is 

more effective in predicting the compressive strength of recycled aggregate concrete. 

Akhmad Suryadi et al. (2011) predicted the setting time of self-compacting concrete using 

ANN. A total of 250 different data sets were collected, and the network was trained. They 

considered 120 data sets in the training, and the remaining data’ were considered in the 

testing and validation phases of the network. The results indicated that the predicted results 

using ANN showed a dependable correlation between the input data and the targeted output. 

Nath et al. (2011) developed a model to predict the compressive strength of concrete using a 

neural network. In order to predict the compressive strength of the concrete, they developed 

computer code using MATLAB. They concluded that ANN can be effectively used in the 

prediction of the compressive strength of concrete. 

Vahid Alilou and Mohammad Teshnehlab (2009) predicted the 28-day compressive strength 

using an artificial neural network. They used a multi-input, single-adaptive system to predict 

the compressive strength. Out of 432 specimens, they used 300 samples data’s for training, 

for validation they considered 66 samples data’s and finally for testing they considered 66 



 

 

samples data’s. The simulations were based on real data from the experimentation, which 

indicated the cogency of the proposed tool. 

Lker Bekir Topc & Mustafa Sardemir (2008) developed a model in artificial neural networks 

for predicting the splitting tensile and compressive strengths of recycled aggregate and silica 

fume-added concrete at the ages of 3, 7, 14, 28, 56, and 90 days. Experimental results of 210 

specimens cast with 35 different mix proportions were considered for constructing the model. 

Eight various input parameters were considered. Their test results indicated that the ANN 

model has strong potential for predicting the splitting tensile and compressive strengths of 

concrete containing recycled aggregate and silica fume. 

From the above literature, it is understood that the geopolymer composite reveals excellent 

properties in all aspects when compared to ordinary Portland cement concrete. Due to the 

unavailability of large quantities of natural sand, pond ash, bottom ash, and M-sand are 

partially replaced by natural sand. Observing the merits of geopolymer composite over 

ordinary Portland cement concrete from the literature tour, experimental research work has 

been conducted on the partial replacement of M-sand and bottom ash for natural sand for 

producing geopolymer concrete. Furthermore, it is clear from the existing literature 

collections that no such work has been done on pond ash, bottom ash, or M-sand in 

geopolymer composites. This research also makes an attempt at curing specimens at ambient 

temperature. The results of the different tests are presented in the following chapters, and the 

compliance of geopolymer composites in structural applications in the Indian context is 

verified. 

Over fitting is an elementary concern in organised machine learning, which averts from 

absolutely generalising the models to fine-tuning experimental data on training data as well 

as undetected data on testing sets. Due to the limited size of the training set and the difficulty 



 

 

of classifiers, over fitting occurs. To diminish the effect of overfitting, a diverse approach is 

projected to tackle this problem: 

1) It will be addressed by launching an "early-stopping" strategy; thereby, over fitting can be 

prevented by stopping training earlier than the potential or recital ends optimisation; 

2) In the training set, a "network reduction" approach is to be adopted to eliminate the noises 

in the training set; 

3) For complex models, it can be tackled by adopting a “data expansion" approach to perfect 

the hyper-parameters set with a vast quantity of data; 

 

 

 

2. Materials  

2.1. Fly Ash  

Class F-type fly ash shown in Figure 1 was used as binder in this research, which is obtained 

from a thermal power station located in Mettur, Tamil Nadu. Table 1 presents the physical 

and chemical properties of Class F fly ash. 

 

Figure 1: Pictorial representation of fly ash 

Table1: Physical and chemical attributes of fly ash 

Attributes Test results 

Specific Gravity 2.295 

Fineness 437m2/kg 

SiO2 60.39% 



 

 

Al2O3 24.07% 

Fe2O3 4.07% 

SiO2 + Al2O3+ Fe2O3 88.34% 

MgO 1.23% 

CaO 2.47% 

S O3 2.66 

Alkali 2.48% 

LOI 1.22% 

2.2. Pond Ash  

Pond ash used in this work, with the following characteristics, was procured from nearby 

sources: [24,34] Its grading was found in Zone III of IS 383-1970. Attributes of pond ash 

were illustrated in Table 2, and Figure 2 shows the particle size distribution of pond ash. 

 

Figure2: Pictorial representation of pond ash 

         Table2:Physical and chemical attributes of pond ash 

Attributes Test results 

Specific Gravity 2.140 

Water Absorption 0.720 

Fineness Modulus 2.670 

SiO2 48.23 

Al2O3 14.69 

Fe2O3 0.62 

CaO 1.84 

MgO 0.84 

CO2 31.45 

LOI 5.13 

2.3. M -Sand 

M-sands are crushed river sands produced from hard granite stones that are cubical-shaped 

with grounded edges, washed, and graded with consistency to be used as a substitute for river 



 

 

sand. Figure 3 shows the pictorial representation of M-Sand. The properties and grading of 

M-Sand are presented in Tables 3 and 4, respectively. 

 

Figure3: Pictorial representation of M-Sand  

 

Table3 :Physical and chemical attributes of M -Sand 

Sl.No. Attributes Test values 

1. Specific gravity 2.62  

2. Fineness modulus 2.85 

3. Water absorption (%) 0.82 

4. SiO2 67.52 

5. Al2O3 15.33 

6. Fe2O 3 5.48 

7. CaO 3.15 

8. Na2O,K2O  4.11 

9. LOI 3.15 

Table 4: Grading of M-Sand 

IS Sieve 

Weight 

retained 

(gm) 

Cumulative Weight 

retained 

(gm) 

% Cumulative 

Weight retained 

% 

Passing 

Grading 

Limit 

(Zone III) 

4.75 mm 92 92 9.2 90.8 90-100 

2.36 mm 69 161 16.1 83.9 85-100 

1.18 mm 91 252 25.2 74.8 75-100 



 

 

600 micron 194 446 44.6 55.4 60-79 

300 micron 402 848 84.8 15.2 12-40 

150 micron 129 977 97.7 2.3 0-10 

Pan 23 1000 100 0 - 

2.4. Bottom Ash 

The bottom ash used in this research was collected from a thermal power station in Mettur, 

Tamil Nadu. In wet conditions, bottom ash was obtained as coarser in size. Figure 4. shows 

the pictorial representation of bottom ash. 

 

 

 
Figure 4: Pictorial representation of bottom ash 

Bottom ash particles were received from the boilers and possessed a glassy structure and 

shape that was angular. The properties and grading of bottom ash are presented in Tables 5 

and 6, respectively. 

Table 5: Physical and chemical attributes of bottom ash 

Sl.No. Attributes Test values 

1. Specific gravity 2.32  

2. Fineness modulus 2.675 

3. Water absorption (%) 0.82 

4 SiO2  45.62 

5 Al2O3  18.22 



 

 

6 Fe2O  38.70 

7 CaO  8.14 

8 MgO  3.82 

9 SO3  0.46 

10  K2O  2.07 

11 Na2O   0.27 

12 TiO2   0.96 

13 P2O  5.96 

14 SiO2, Al2O3, Fe2O3  92.54 

15 LOI  3.85  

Table 6: Grading of bottom ash  

IS Sieve 

Weight 

retained 

(gm) 

Cumulative 

Weight retained 

(gm) 

% Cumulative 

Weight retained 

% 

Passing 

4.75 mm 108 108 10.8 
89.2 

2.36 mm 114 222 22.2 
77.8 

1.18 mm 176 398 39.8 
60.2 

600 micron 342 740 74 
26 

300 micron 164 904 90.4 
9.6 

150 micron 79 983 98.3 
1.7 

Pan 17 1000 100 0 

2.5. Coarse Aggregate 

Aggregates of 20 mm in size were used as coarse aggregate for the preparation of 

geopolymer composite specimens in this research. Figure 5 shows the coarse aggregate used 

in this research. The fineness modulus, specific gravity, and water absorption of coarse 

aggregate were determined as per IS 2386: 1963 (Part 1) and (Part 3). The tested values are 

shown in Table 7. The sieve analysis test was done as per IS 2386 (Part 1)-1963. The 

gradation value of coarse aggregate is shown in Table 8. 



 

 

 
Figure 5: Pictorial representation of coarse aggregate  

Table 7: Physical and chemical attributes of coarse aggregate 

Sl.No. Attributes Test values 

1. Specific gravity 2.67 

2. Fineness modulus 6.31 

3. Water absorption (%) 0.68 

4. SiO  2 75 

5. Al2O3  15.24 

6. Fe2O3  2.44 

7. MnO  0.09 

8. CaO  0.98 

9. MgO  0.09 

10. Na2O  1.57 

11. K2O  2.49 

12. TiO2  0.03 

13. P2O5  0.23 

Table 8: Grading of coarse aggregate 

IS Sieve 

Weight 

retained 

(gm) 

Cumulative 

Weight 

retained 

(gm) 

% Cumulative 

Weight 

retained 

% Passing 

20 mm 238 238 4.76 95.24 

10 mm 3480 3718 74.36 25.64 

4.75 mm 1172 4890 97.80 2.20 



 

 

2.36 mm 50 4940 98.80 1.20 

1.18 mm 10 4950 99.00 1.0 

600 micron 30 4980 99.60 0.40 

300 micron 10 4990 99.80 0.20 

150 micron 5 4995 99.90 0.10 

Pan 5 5000 100 0 

2.6. Sodium Hydroxide 

Generally, sodium hydroxides are available in a solid state by means of pellets and flakes. In 

this research, sodium hydroxide in pellet form with 97-98% purity, which is commercially 

available, is used. The physical and chemical properties of sodium hydroxide pellets are 

presented in Table 9. Figure 6 shows sodium hydroxide in pellet form. 

 

 

.  

 

Figure 6: Pictorial representation of sodium hydroxide in pellet form 

Table 9: Physical and chemical attributes of sodium hydroxide 

Sl.No. Attributes Value 

1. Colour Colour less 

2. Specific gravity 1.46 

3. pH 13 

4. Sodium Carbonate (Na2CO3) 2% 

5. Chloride (Cl) 0.01% 

6. Sulphate (SO3) 0.05% 



 

 

7 Potassium (K) 0.1% 

8 Silicate (SiO2) 0.05% 

9 Zinc (Zn) 0.02% 

10. Heavy metals (as Pb) 0.002% 

11 Iron (Fe) 0.002% 

12 Minimum Assay 97.0% 

13 Molarity 30 

2.7. Sodium Silicate 

Sodium silicate, also known as water glass or liquid glass, is available in liquid (gel) form. In 

the present investigation, the ratio between Na2SiO3 and SiO2 is used as 2. As per the 

manufacturer, silicate was supplied to the detergent company and textile industry as a 

bonding agent. The same sodium silicate was used for the preparation of an alkaline activator 

solution for producing geopolymer concrete specimens. The chemical properties and the 

physical properties of the silicates are presented in Table 10. Figure 7 shows the sodium 

silicate in jel form used in this research. 

 

Figure 7: Pictorial representation of sodium silicate in jel form 

Table 10: Physical and chemical properties of sodium silicate 

Sl.No. Parameters Test results 

1. Na2O 15.5% 

2. SiO2 31.12% 



 

 

3. H2O 53.08% 

4. Appearance Liquid (Gel) 

5. Colour Light yellow 

6. Boiling Point 101.2oC 

7. Molecular Weight 183.22 g 

8. Specific Gravity 1.65 

The strength characteristics of geo-polymer composites are deemed vital factors for the 

quality assertion of geo-polymer composites. In this research, a data-driven model, i.e., an 

artificial neural network (ANN), was evolved to predict the 28-day compressive, flexural, 

and split tensile strength characteristics of fly ash, M-sand, pond ash, and bottom ash 

integrated geo-polymer composites. 

 

3. Sample preparation and testing 

Diverse ingredients were weighed and taken for sampling. The initially required quantity of 

fly ash, M-sand, pond ash, and bottom ash integrated geo-polymer composites was mixed 

thoroughly. An activating solution comprising sodium hydroxide and sodium silicate, mixed 

one day earlier for casting, was added to the dry ingredients. All the ingredients were 

thoroughly muddled. The ratio between fly ash and alkaline solution was kept at 2.5, and the 

molarity of NaOH used in this investigation was 12 molar. The ratio between fly ash and 

alkaline Solution ratio as 2.5 and molarity of NaOH was used in this investigation was 

12molar.Specimen cubes of size 100mm x 100mm x 100mm, cylinders with a 100mm 

diameter x 300mm, and prisms measuring 100mm x 100mm x 750mm were moulded and 

cured for 28 days at an accustomed temperature. The next day, specimens were kept for 

curing after being removed from mould. By conducting compressive, split tensile, and 

flexural tests, the characteristics of the geopolymer composite were determined. 

3.1. Data collection 



 

 

In this work, acquired data containing the outcomes of various experiments utilized as input 

about geopolymer composites contain various mix proportions for training artificial neural 

network models. It was confirmed that they are resources embedded with silica and alumina 

through the supply of oxygen to formulate geopolymer composites. This paper is uniting as 

much data from 70 sets comprising geopolymer composite ingredients (fly ash, manufactured 

sand, pond ash, and bottom ash) about compressive, flexural, and split tensile characteristic 

strengths in geopolymer composites congregated from the outcomes of various experiments 

for training network models. [23] Data on diverse combinations of fly ash, pond ash, and 

bottom ash-integrated geopolymer composites are illustrated in Table 11. Different 

combinations of mixes were shown with mixes of identity prefixed with D and numbered 

serially as D1, D2, and D3, etc. The most advantageous molarity was ascertained as 12 for 

geopolymer composites. The same was espoused in geopolymer composites with diverse 

ingredients utilized in training artificial neural network models. 

Table 11 shows data on diverse ingredients as inputs for geopolymer composites in 

kg/m3. 

Mix 

ID 

Fly ash  M-sand 

 

Pond 

ash 

 

Bottom 

ash  

 

Coarse 

aggregate  

 

Water  

 

NaOH 

 

Na2SiO3  

D-1 425.25 645.45 0 0 1259.55 36.75 58.95 142.15 

D -2 480.95 583.45 0 0 1118.45 44.65 63.75 163.15 

D -3 480.25 620.55 0 0 1108.45 44.25 63.75 163.15 

D -4 554.75 560.45 0 0 1002.25 14.25 68.85 170.25 

D -5 543.95 535.75 0 0 988.50 28.45 72.45 180.75 

D -6 585.65 535.45 0 0 832.85 28.35 72.25 180.50 

D -7 554.75 450.25 0 0 929.15 14.25 74.95 184.60 

D -8 585.65 576.25 0 0 1018.05 12.75 78.25 200.50 

D -9 552.50 567.50 0 0 987.75 44.35 78.25 190.50 

D -10 555.25 550.85 0 0 957.95 44.25 68.5 171.15 

D -11 638.25 534.25 0 0 929.15 44.25 68.5 171.15 

D -12 510.75 567.15 0 0 882.25 28.35 68.5 171.15 

D -13 585.65 586.25 0 0 907.55 28.35 79.8 204.65 

D -14 483.75 585.45 0 0 1018.5 28.35 70.2 175.50 

D -15 554.75 535.45 0 0 832.85 14.25 73.25 180.30 



 

 

D -16 583.75 535.45 0 0 882.25 14.25 73.25 180.30 

D -17 564.75 543.25 0 0 832.85 14.25 73.85 185.60 

D -18 585.65 515.25 0 0 902.25 14.25 73.85 185.65 

D -19 584.75 535.25 0 0 798.25 28.35 80.85 204.25 

D -20 585.65 534.65 0 0 883.25 12.75 80.85 204.25 

D -21 570.85 535.25 0 0 883.25 28.35 78.24 195.65 

D -22 547.25 567.15 0 0 957.95 44.25 68.50 171.15 

D -23 585.65 535.45 0 0 832.85 12.75 82.25 210.50 

D -24 564.75 535.45 0 0 832.8 28.35 82.25 205.50 

D -25 519.75 613.25 0 0 964.25 44.25 68.50 171.15 

D -26 585.25 550.85 0 0 907.50 14.25 82.85 210.65 

D -27 585.25 585.45 0 0 1018.15 28.35 82.85 210.65 

D -28 585.25 567.15 0 0 957.95 14.25 83.25 207.35 

D -29 638.25 545.0 0 0 882.25 12.75 68.5 171.15 

D -30 485.65 613.0 0 0 1218.25 58.50 65.25 167.35 

D -31 455.25 608.17 613.25 0 1249.5 58.85 145.25 145.25 

D -32 480.75 610.25 608.15 0 1118.15 63.50 163.15 163.15 

D -33 480.25 589.97 610.25 0 1108.15 63.50 163.15 163.15 

D -34 554.75 615.67 589.95 0 1002.25 68.80 170.25 170.25 

D -35 543.75 572.27 615.65 0 987.50 72.25 180.50 180.55 

D -36 585.65 613.25 572.25 0 832.85 72.25 180.50 180.50 

D -37 554.75 670.87 613.5 0 929.15 74.85 184.65 184.65 

D -38 585.65 589.95 670.85 0 1018.55 78.25 200.50 200.50 

D -39 552.65 572.27 589.95 0 987.55 78.25 190.50 190.50 

D 40 555.25 615.67 572.25 0 957.95 68.50 171.15 171.15 

D -41 638.25 652.17 615.65 0 929.15 68.50 171.15 171.15 

D -42 510.75 670.85 652.15 0 882.25 68.50 171.15 171.15 

D -43 585.65 572.27 670.85 0 907.55 79.80 204.6 204.65 

D -44 483.75 613.25 572.25 0 1018.5 70.25 175.5 175.50 

D -45 554.75 615.67 613.25 0 832.85 73.25 180.3 180.35 

D -46 583.75 652.17 652.1 0 882.25 73.25 180.3 180.35 

D -47 564.75 670.85 615.6 0 832.85 73.85 185.6 185.65 

D -48 585.65 572.27 589.9 0 902.25 73.85 185.6 185.65 

D -49 584.75 613.25 572.2 0 798.25 80.85 204.6 204.25 

D -50 585.65 652.17 670.8 0 883.25 80.85 204.6 204.25 

D -51 570.85 615.68 572.2 0 883.25 78.24 195.6 195.50 

D -52 547.55 589.94 608.1 0 957.95 68.55 171.1 171.25 

D -53 585.65 572.27 615.6 0 832.85 82.25 210.5 210.25 

D -54 564.75 670.87 615.6 0 832.85 82.15 205.5 205.25 

D -55 519.77 572.28 625.7 0 964.25 68.55 171.1 171.50 

D -56 585.25 608.17 572.2 0 907.55 82.85 210.6 210.75 

D -57 585.40 615.67 550.1 0 1018.5 82.85 210.6 210.75 

D -58 585.40 615.65 572.2 0 957.95 83.25 207.3 207.35 

D -59 638.25 625.74 613 0 882.25 68.55 171.1 171.15 

D -60 485.65 572.24 713.25 0 1218.25 65 167.3 167.35 

D -61 405.25 0 136.65 0 1218.25 108.35 72.88 72.88 

D -62 405.25 0 273.35 0 1218.25 108.35 72.88 72.88 

D -63 405.25 0 409.95 0 1218.25 108.35 72.88 72.88 



 

 

D 64 405.25 0 546.50 0 1218.25 108.35 72.88 72.88 

D -65 40.25 0 683.15 0 1218.25 108.35 72.88 72.88 

D -66 405.25 0 0 68.35 1218.25 108.35 72.88 72.88 

D -67 405.25 0 0 136.65 1218.25 108.35 72.88 72.88 

D -68 405.25 0 0 204.97 1218.25 108.35 7288 72.88 

D -69 405.25 0 0 273.25 1218.25 108.35 72.88 72.88 

D -70 405.25 0 0 341.55 1218.25 108.35 72.88 72.88 

3.2. Compressive strength characteristics test 

The compressive strength of fly ash, M-sand, pond ash, and bottom ash integrated geo-

polymer composites is deemed the prime factor for quality assurance. A compression 

strength test was carried out as per IS 516-1959 to find out the compressive strength of geo-

polymer composites incorporated with fly ash, M-sand, pond ash, and bottom ash integrated 

appropriately. The compressive characteristics and strength of geo-polymer composites 

were tested at the ages of 7 and 28. Figure 8 shows the test setup for the compression 

strength test. 

 
Figure 8: Compression strength characteristics test on geopolymer concrete cubes 

3.3. Split tensile strength characteristics test 

Split tensile testing of fly ash, M-sand, pond ash, and bottom ash integrated geo-polymer 

composites was carried out as per the test procedure specified in IS 516-1959. After 7 and 28 

days of curing, the split tensile strength of geopolymer concrete was determined. Figure 9 

shows the test setup for the split tensile strength test. 



 

 

 
Figure 9: Split tensile strength characteristics test on geopolymer composite cylinder 

3.4. Flexural strength characteristics test 

 A flexural strength test was performed as per IS 516-1959 to find out the flexural strength of 

fly ash, M-sand, pond ash, and bottom ash integrated geo-polymer composites. The system of 

loading used to determine the flexural strength was central point loading. Figure 10 shows the 

test setup for the flexural strength test. 

 
Figure 10: Flexural strength characteristics tests on geopolymer concrete prisms 

 

4. Neural network modelling. 

At present, we have various neural network modelling architectures; hence, it is vital to keep 

the appended concepts in mind when choosing an appropriate neural network. Figure 11 

shows the flow chart of the Levenberg-Marquardt algorithm used in this research. Figure 12 

shows the flow chart of the artificial neural network used in this research. 



 

 

 
Figure 11: A flow chart of the Levenberg-Marquardt algorithm 

 
Figure 12: A flow chart of an artificial neural network 

The compressive, flexural, and split tensile strength characteristics of geopolymer composites 

integrated with fly ash, M-sand, pond ash, and bottom ash were evolved as outputs for the 

respective neural network models. The results attained in the training, testing, and validation 

phases steadily demonstrate the potential use of ANN to predict the compressive, split tensile, 



 

 

and flexural strength characteristics of geopolymer composites integrated with fly ash, M-

sand, pond ash, and bottom ash. 

❖ The input nodes of the neural network model are chosen from a comprehensive number of 

free-spirited factors. 

❖ 80% of input nodes are fixed as the base for hidden node numbers. 

❖ Hidden layers were reduced to evade the training period with a longer duration. 

❖ To avoid overstating, the number of neurons was fixed adequately. 

❖ Input data sets of the first 30 (1–30) with ingredients of fly ash, manufactured sand, 

sodium hydroxide, sodium chloride, coarse aggregate, and water 

❖ Input data sets of the next 30 (31–60) with ingredients of fly ash, pond ash, manufactured 

sand, sodium hydroxide, sodium chloride, coarse aggregate, and water. 

❖ Input data sets of the next  5 (61-65) with ingredients of fly ash, pond ash, sodium 

hydroxide, sodium chloride, coarse aggregate, and water. 

❖ Input data sets of the last 5 (66–70) with ingredients of fly ash, bottom ash, sodium 

hydroxide, sodium chloride, coarse aggregate, and water. 

❖ Compressive, flexural, and split tensile strength characteristics for all 70 sets of output 

data. 

At present, we are using MATLAB software, which is a widespread technique for training 

neural networks. As MATLAB is a user-friendly method, we prefer it. For training neural 

networks, Levenberg-Marquardt, the most common algorithm in vogue, was adopted. Here, 

the potential outcome was evaluated based on the coefficient and determination of the mean 

absolute percentage deviation [MAPD] [25].  

Typically, neural networks consist of three layers: the input layer, or initial data for the neural 

network; hidden layers, or intermediate layers, between the input and output layers and the 

place where all the computation is done; and the output layer, which produces the result for 



 

 

given inputs. In this work, we are relating the hidden layer to other layers using the notions of 

weights, bias, and activation tasks. Every layer comprises abundant neurons. The dataset 

provides input for every neuron. Output can be predicted by activating weighed inputs and 

processing them together. The development of a neural network using MATLAB has been 

illustrated in Figure 13. 

 
Figure 13: ANN model configurations  

The various steps involved in developing the ANN model for predicting the 28-day 

compressive, flexural, and split tensile strength characteristics of fly ash, M-sand, pond ash, 

and bottom ash integrated geopolymer composites are explained as follows: Large data sets 

were utilized in this model; therefore, a neural fitting tool was used in analogous function 

approximation. MATLAB 9.1 software was utilised to develop the ANN model. 

 

5. Training and testing of neural networks 

In this paper, artificial neural network models were evaluated with several inputs comprising 

6 as the input layer, several nodes comprising 12 as the hidden layer, and several outputs 

comprising 1 node as the output layer. Generally, only one hidden layer was chosen in 

artificial neural network models in many accomplishments. Hit-and-miss or repetition 



 

 

techniques adopted in the process of prediction for perpetual and meticulousness in creating 

neural networks Experiments with hidden nodes six, eight, nine, and ten were attempted in 

artificial neural network models. On assessment, the best recital was attained with hidden 

nodes having twenty-four coupled with a mean absolute percentage deviation [MAPD]. 

In this research, 12 neurons were assigned to the hidden layer to train the model. The training 

ratio was assigned as 80%, and the test ratio was assigned as 10%. The remaining 10% was 

assigned as a validity ratio. The structure of the ANN model used to predict the compressive 

strength is shown in Figure 14. 

 
Figure 14: Structure of the ANN model for compressive strength characteristics 

prediction 
An ANN model was developed to predict the flexural strength characteristics of  

Fly ash, M-sand, pond ash, and bottom ash are integrated geopolymer composites. The basic 

approach to developing ANN-based models is to train ANN systems with data obtained from 

trials. If appropriate information is acquired, then the trained ANN systems will be deemed a 

qualified model to weigh the behaviour of materials. Such systems are not only able to 

imitate the investigational outcome, but they can also fairly accurately predict the outcome of 

other investigations through their capabilities. 

In order to predict the flexural strength characteristics, a total of 24 neurons were assigned to 

the hidden layer to train the model. The training ratio was assigned as 80%, and the test ratio 

was assigned as 10%. The remaining 10% was assigned as a validity ratio. The structure of 

the ANN model used to predict the flexural strength characteristics is shown in Figure 15. 



 

 

 
Figure 15: Structure of the ANN model for flexural strength characteristics 

prediction  
An ANN model was developed to predict the split tensile strength characteristics of  

Fly ash, M-sand, pond ash, and bottom ash are integrated geopolymer composites. Totally, 24 

neurons were assigned to the hidden layer to train the model. The training ratio was assigned 

as 80%, and the test ratio was assigned as 10%. The remaining 10% was assigned as a 

validity ratio. The structure of the ANN model used to predict the split tensile strength 

characteristics is shown in Figure 16.  

 
Figure16: Structure of the ANN model for split strength characteristics 

prediction  

In neural networks, inputs were trained aimed at output. On the other hand, if conception 

increases, the resulting network training comes to an end. It will be optimal and augmented 

while attaining the mean absolute percentage deviation [MAPD]. It is also termed a mean 

squared error. The root mean square deviation will be premeditated with the average sum of 

the squared deviation between the actual value and the forecasted or estimated value 

characterised by the regression model. [26] This is represented mathematically: 



 

 

The overall status of the network for compressive strength is shown in figure17, with a lower 

MSE and R value indicating the best performance of the neural network model. Several trials 

were carried out with varying numbers of neurons, and the best result was obtained at the 7th 

epoch, which contained a single hidden layer with 12 neurons. Figure 17 illustrates the 

network's overall status. To attain an artificial neural network model with an optimal result, 

the outcome was signified by the minimum mean absolute percentage deviation [MAPD] and 

coefficient of error. Innumerable evaluations with diverse neurons were made to get the 

optimal recital outcome, which could be at epochs having one hidden layer and 12 neurons at 

the seventh epoch. The overall network status is illustrated in Figure 17. 

 

Overall status of the network for compressive strength 



 

 

 

Overall status of the network for flexural strength 

 
Overall status of the network for split tensile strength 

Figure 17: Network overall status 



 

 

Training, testing, and validation regression plots developed with MATLAB are illustrated in 

Figure 18. It was tried with a lot of iterations to make the coefficient of error reach the 

minimum value of zero, and the coefficient of error was premeditated. If the value of the 

coefficient of error is 1, that implies that the aimed input and output were very close in 

correction in the fitting of neurons. In this task, 10% of the data was deemed for testing, and 

the coefficient of error in testing was obtained as 0.998.  

The developed network was trained to fit inputs and the targeted output. Training was done 

based on the train-back propagation algorithm. The network automatically stops training if 

generalisation stops improving. This is indicated by an increase in the mean squared error 

(MSE) value.  

 

Compressive strength characterises 



 

 

 
Flexure strength characterises 

 
Split tensile strength characterises   

Figure 18: Training, testing , validation and  regression plots 

 



 

 

The mean squared error (R) is the average squared difference between the input and the 

targeted output. The R value shows the correlation between output and targets; if the R value 

is zero, there is no error. If the value of R = 1, then the relationship between targeted output 

and output obtained by the neural fitting tool is very close. 10% of the samples were 

considered for testing, and an R value of 0.989 was obtained for testing. An R value of 0.946 

was obtained for validation. The regression plot of the network for training, testing, and 

validation is shown in Figure 18. 

Figure 18 shows the regression plot of the training network for split tensile strength. 10% of 

the samples were considered for testing to predict the split tensile strength. An R value of 

0.977 was obtained for testing. An R value of 0.959 was obtained for validation. From the 

outputs obtained, the model showed a higher coefficient of determination (> 0.9). The 

developed network was trained to fit inputs and the targeted output. Training was done based 

on the train-back propagation algorithm. The network automatically stops training if 

generalisation stops improving. This is indicated by an increase in the mean squared error 

(MSE) value.  

6. Artificial neural network model validation 

 

Artificial neural network models developed authoritative corroboration with the 

investigational outcome of results of diverse proportions of ingredients in geopolymer 

composites.  

The mean absolute percentage deviation is calculated from the following Equation  

.  

The potential of the ANN model was evaluated with the potential parameters Root Mean 

Square Error (RMSE) and correction coefficient (R2) between the experimental results and 

the predicted results.                                 



 

 

The compressive, flexural, and split tensile characteristic strengths of fly ash, M-sand, pond 

ash, and bottom ash as integrated geopolymer composites over 28 days were investigated, 

and the trial outcomes attained were evaluated and corroborated with ANN outcome 

prediction. Artificial neural network model predictions were compared with trial outcomes of 

experimental results, and deviations in percentage as percentage error are illustrated in Table 

12. 

Table 12 

 

Data of percentage error showing experimental result and ANN predicted result using 

ANN model 
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Split tensile  
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outcome 

ANN 

outcome 

prediction  

trial 

outcome 

ANN 

outcome 

predictio

n  

trial 

outcome 

ANN 

outcom

e 

predicti

on  

D-1 16.38 18.180      0.901  4.42 4.224 0.933 2.84 2.644 1.075 

D -2 19.70 20.717      0.951  4.57 4.408 0.941 3.26 3.306 0.986 

D -3 19.89 21.880      0.909  4.43 4.224 0.930 3.41 3.426 0.996 

D -4 19.43 22.514      0.863  4.53 4.337 0.934 3.26 3.366 0.968 

D -5 21.28 23.571      0.903  4.02 3.845 0.933 3.41 3.205 1.064 

D -6 18.50 20.717      0.893  3.72 3.404 0.892 3.18 3.306 0.961 

D -7 21.28 22.937      0.928  4.50 4.521 0.980 3.48 3.566 0.976 

D -8 23.13 25.685      0.900  4.37 4.214 0.941 3.41 3.125 1.091 

D -9 20.35 22.937      0.887  3.85 3.557 0.900 3.33 3.105 1.072 

D -10 21.28 23.677      0.899  4.02 3.814 0.926 3.41 3.526 0.967 

D -11 21.28 24.628      0.864  4.02 3.814 0.926 3.41 3.165 1.077 

D -12 22.20 24.100      0.921  4.45 4.275 0.937 3.48 3.306 1.053 

D -13 22.20 24.945      0.890  4.19 4.009 0.933 3.48 3.306 1.053 

D -14 21.28 22.937      0.928  3.97 3.742 0.920 3.41 3.246 1.051 

D -15 21.74 25.474      0.853  4.07 3.916 0.939 3.41 3.246 1.051 

D -16 30.53 34.141      0.894  4.05 3.906 0.941 4.08 3.847 1.061 

D -17 27.75 30.970      0.896  3.74 3.393 0.885 3.89 3.706 1.049 

D -18 30.53 33.190      0.920  4.04 3.814 0.921 4.08 3.867 1.055 

D -19 27.75 31.393      0.884  3.73 3.404 0.890 3.89 3.726 1.043 

D -20 32.38 35.621      0.909  4.35 4.019 0.902 4.20 4.307 0.976 



 

 

D -21 30.53 33.930      0.900  4.04 4.234 1.023 4.08 4.247 0.961 

D -22 30.53 36.044      0.847  4.07 3.906 0.936 4.08 4.287 0.952 

D -23 31.45 35.515      0.886  4.18 4.019 0.937 4.20 4.307 0.976 

D -24 32.38 36.255      0.893  4.51 4.429 0.958 4.20 4.247 0.989 

D -25 
33.30 37.101      0.898  4.42 4.224 0.933 4.26 4.367 0.976 

D -26 34.23 38.263      0.894  4.57 4.337 0.925 4.32 4.327 0.999 

D -27 34.23 37.841      0.904  4.56 4.337 0.927 4.38 4.107 1.068 

D -28 36.08 40.483      0.891  4.74 4.460 0.919 4.38 4.267 1.028 

D -29 35.15 38.792      0.906  4.63 4.562 0.961 2.93 3.105 0.945 

D -30 16.65 18.180      0.916  3.30 3.598 1.063 3.65 3.526 1.036 

D -31 16.65 19.660      0.847  3.52 3.393 0.941 3.01 3.105 0.971 

D -32 21.28 25.474      0.835  4.07 3.814 0.914 3.25 3.306 0.983 

D -33 21.28 22.937      0.928  3.78 4.019 1.036 3.28 3.105 1.056 

D -34 20.35 22.831      0.891  3.81 4.019 1.028 3.15 3.406 0.924 

D -35 19.43 20.823      0.933  3.61 3.527 0.953 3.11 3.205 0.969 

D -36 18.50 22.514      0.822  3.51 3.199 0.890 3.02 3.105 0.974 

D -37 20.35 22.091      0.921  3.82 4.050 1.033 3.23 3.306 0.976 

D -38 22.66 25.157      0.901  3.85 4.039 1.022 3.38 3.466 0.975 

D -39 23.13 25.474      0.908  4.31 4.429 1.003 3.35 3.406 0.983 

D 40 26.83 29.913      0.897  4.75 4.839 0.995 3.83 3.646 1.049 

D -41 26.83 29.279      0.916  4.66 4.583 0.958 3.76 3.626 1.036 

D -42 23.13 26.002      0.889  4.32 4.531 1.024 3.48 3.606 0.965 

D -43 23.13 27.165      0.851  3.82 4.019 1.025 3.62 3.406 1.064 

D -44 24.05 26.214      0.917  3.71 3.547 0.932 3.62 3.366 1.077 

D -45 24.05 26.742      0.899  4.25 4.429 1.016 3.55 3.306 1.075 

D -46 27.75 30.653      0.905  4.01 3.814 0.928 3.89 3.766 1.032 

D -47 28.68 31.287      0.917  4.11 4.224 1.002 3.96 3.686 1.074 

D -48 29.60 32.450      0.912  4.25 4.429 1.016 4.02 3.766 1.067 

D -49 27.75 30.759      0.902  4.01 3.834 0.933 3.89 3.726 1.043 

D -50 29.60 32.450      0.912  4.26 4.449 1.018 4.02 3.806 1.056 

D -51 24.05 26.954      0.892  3.71 3.547 0.932 3.22 3.306 0.973 

D -52 24.05 26.319      0.914  3.82 3.711 0.947 3.62 3.466 1.045 

D -53 35.15 40.483      0.868  5.05 4.941 0.954 4.38 4.107 1.068 

D -54 33.30 38.581      0.863  4.79 4.531 0.923 4.26 4.468 0.954 

D -55 34.23 38.369      0.892  4.95 4.757 0.937 4.32 4.107 1.053 

D -56 33.30 36.889      0.903  4.81 4.654 0.944 4.26 4.428 0.963 

D -57 36.08 40.060      0.901  5.21 5.064 0.949 4.44 4.267 1.039 

D -58 34.23 38.369      0.892  4.94 4.859 0.959 4.28 4.107 1.043 

D -59 
35.15 41.223      0.853  5.05 4.962 0.958 4.18 4.307 0.971 

D -60 16.65 19.660      0.847  3.50 3.404 0.950 3.01 3.105 0.971 



 

 

D -61 33.24 38.263      0.869  5.03 4.962 0.962 2.81 2.905 0.968 

D -62 34.65 40.166      0.863  4.84 4.972 1.002 2.53 2.624 0.963 

D -63 31.11 35.304      0.881  4.98 4.839 0.948 2.93 2.705 1.085 

D 64 29.51 34.458      0.856  4.46 4.224 0.924 2.60 2.644 0.983 

D -65 25.22 30.125      0.837  3.51 3.393 0.944 2.39 2.604 0.916 

D -66 32.13 37.206      0.863  2.79 2.901 1.015 1.95 2.104 0.926 

D -67 32.93 37.101      0.888  4.24 4.429 1.018 2.23 2.364 0.945 

D -68 33.49 36.678      0.913  4.35 4.234 0.950 2.31 2.304 1.004 

D -69 33.95 39.426      0.861  4.57 4.736 1.011 2.44 2.464 0.989 

D -70 
31.91 35.832      0.891  4.74 4.552 0.938 2.52 2.644 0.952 

 

7. Results and Discussions 

 

The number of neurons plays a vital role in the potential of the projected neural network, 

considering strength characterizes predictive replication, and it is crucial to choose the 

appropriate number of neurons for optimizing the recital level. Different statistics of neurons 

were used to appraise the effectiveness level of the projected network. The evaluation of the 

recital of the neural network with diverse numbers of neurons was prepared in terms of mean 

square error (MSE). 

The data attained from the investigational test outcome was deemed the output for the 

artificial neural network model predictions, and the aimed output was explicit as 

compressive, flexural, and split tensile characteristic strengths in geopolymer composites 

attained from investigational corroboration. [36,37] 

Each discrete compressive, flexural, and split tensile characteristic strength of characteristics 

of fly ash, M-sand, pond ash, and bottom ash are integrated geopolymer composites 

investigation outcome result using the ANN model was predicted. The outcome of predicted 

flexural characteristic strength was correlated with authentic investigation outcome results, 

and the paramount curve athletic equation was evolved and illustrated in Figure 16. The 

prediction has been made for each and every individual compressive strength test result using 

the ANN model. The best curve fit equation has been developed between the predicted 



 

 

strength obtained from the ANN model and the actual compressive strength, as illustrated in 

Figure 16. The values obtained from experimentation and the values predicted from the ANN 

model were considered, and a regression plot was developed. The prediction was made for 

each and every individual flexural strength test result using the ANN model. The best curve 

fit equation was developed between the predicted characteristic strength obtained from the 

ANN model and the actual flexural characteristic strength, as illustrated in Figure 19. It is 

worth mentioning that all these models are constructed to investigate the efficiency of each 

individual input parameter on the output value. Overall, the developed ANN model is more 

satisfactory in predicting the 28-day compressive, flexural, and split tensile characteristic 

strengths of fly ash, M-sand, pond ash, and bottom ash as integrated geopolymer composites. 
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Predicted flexural strength by ANN vs actual flexural strength 

 
Predicted flexural strength by ANN vs actual split tensile strength      

Figure 19: Discrete Strength Characteristic Strength Vs Outcome By ANN 

Characteristic Strength   



 

 

In the paramount curve, an athletic equation evolved with a correlation coefficient of 0.982, 

with outcome results using the ANN model predicted and compressive, flexural, and split 

tensile characteristic strength investigation outcome results. It is shown that the coefficient 

determined to establish strength inference is within a close range of the ANN values found 

with the experimental outcome. Though plenty of expertise is available for predicting the 

compressive, flexural, and split tensile characteristic strengths of geopolymer composites, the 

most effective device is artificial neural network model prediction. Figure 19 illustrates the 

best validation performance of the neural network for flexural strength. 

The correlation coefficient of 0.982 was obtained for the best  

A curve fit equation is plotted between the predicted strength characteristics obtained from  

ANN model and the actual compressive strength characteristics. The coefficient  

of determination shows the strength characteristics prediction is very close to the  

actual values obtained from the test results. Among the numerous techniques available   

to predict the strength characteristics of geopolymer composites, ANN is considered the most 

effective tool. Figure 19 shows the best validation performance of the network and the best validation 

performance of the neural network for flexural strength characteristics. 10% of the samples were 

considered for testing to predict the flexural strength characteristics. An R value of 0.999 was 

obtained for testing. An R value of 0.984 was obtained for validation. Figure 20 shows the best 

validation performance of the neural network for flexural strength characteristics. 10% of the samples 

were considered for testing to predict the flexural strength characteristics. An R value of 0.999 was 

obtained for testing. An R value of 0.984 was obtained for validation. Figure 20 illustrates the best 

validation performance of a neural network for split tensile strength characteristics. The correlation 

coefficient of 0.928 was obtained for the best curve fit equation plotted between the predicted strength 

characteristics obtained from the ANN model and the actual split tensile strength. The coefficient of 

determination shows the strength prediction was very close to the actual values obtained from the test 

results. The best curve fit equation has been developed between the predicted strength characteristics 



 

 

obtained from the ANN model and the actual split tensile strength characteristics, as illustrated in 

Figure 20. 

 
 The best validation performance of the neural network for compressive strength 

 
 The best validation performance of the neural network for flexural strength 

 



 

 

 
The best validation performance of the neural network for split tensile strength 

Figure 20:The best validation performance of the neural network  

In this work, artificial neural network modelling was done for a geopolymer composite 

incorporating fly ash, pond ash, manufactured sand, and bottom ash. In this paper, for the 

prediction of the outcome of compressive, flexural, and split tensile characteristic strength 

characteristics, 70 trial values were put into use. The outputs obtainable are appreciably 

precise, and error is diminished. 

8. Conclusion 

By exploiting Levenberg-Marquardt algorithms, an artificial neural network model was 

evolved to predict the compressive, split tensile, and flexural strength potentials of 

geopolymer composites by applying experimentation data. By exploiting the data 

obtained by carrying out experiments and assessments, input and output models were 

trained. Being Levenberg-Marquardtalgorithm more precise output obtained were better 

reliable , correct very closer to the investigational data with tiny errors strength 

potentials  of geopolymer composite. ANNs were employed in this study to predict the 

compressive strength of geocomposite, and the prediction accuracy was validated. 



 

 

Hence, strength characteristics can be predicted with artificial neural networks without 

carrying out any testing. It may have had the highest error from -0.0029 to 0.0034 when 

evaluating the assessment achieved from the testing. These values of RMSE and R2 

corroborate that the employment of ANN for the prediction of strength characteristics is 

an excellent option due to its tremendous correlation with the investigational outcome 

.The geopolymer composite is produced by blending fly ash, pond ash, manufactured 

sand, and bottom ash as diverse ingredient factors affecting its strength. The geopolymer 

composite, with its optimized parameters, provides sufficient strength. Geopolymer 

composite is superfluous, ecologically pleasurable, and has the ability to replace standard 

cement concrete in plenty of projects that contain precast gadgets. Hence, it is applicable 

as a composite in construction works by exploiting industrial byproducts. This study 

suggests that ANNs are an effective tool in strength prediction of geocomposites, 

reducing further the experimental cost and time. 

.Declarations 

Funding declaration. Funding is “not applicable” since funding was received. 

Conflicts of interest or competing interests: The authors declare that they have no known 

competing financial interests or personal relationships that could have appeared to influence 

the work reported in this paper. 

”no conflicts of interest.” 

Author contribution declaration:  

Conceptualization: RajagopalShanmugam Methodology: Rajendran Selvapriya 

Formal analysis and investigation: Rajendran Selvapriya, Paramasivam Tamilchelvan, 

Murugesan Gopinath Writing: original draft preparation: ParamasivamTamilchelvan, 

Writing, review, and editing: Murugesan Gopinath Funding Acquisition: NA 



 

 

Resources: Rajagopal Shanmugam, Rajendran Selvapriya, Paramasivam Tamilchelvan, 

Murugesan Gopinath Supervision: RajagopalShanmugam 

All authors have read and agreed to the published version of the manuscript. 

Data availability  

Data is available on request from the authors. 

Acknowledgement :NIL 

10. References 

[1] Adesanya E, Aladejare A, Adediran A, Lawal A, Illikainen M. Predicting shrinkage of 

alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement 

and Concrete Composites. 2021 Nov 1;124:104265. 

[2]Anuradha, R., V. Sreevidya, R. Venkatasubramani, and B. Vijaya Rangan. "Modified 

guidelines for geopolymer concrete mix design using Indian standard." (2012): 357-368. 

[3]Ahmed HU, Abdalla AA, Mohammed AS, Mohammed AA, Mosavi A. Statistical 

methods for modeling the compressive strength of geopolymer mortar. Materials. 2022 Mar 

2;15(5):1868. 

[4] Ahmed HU, Mohammed AS, Mohammed AA. Proposing Several Model Techniques 

Including ANN and M5P-tree to Forecast the Stress at the Failure of Geopolymer Concrete 

Mixtures Incorporated Nano-silica. 

 [5] Alakara EH, Nacar S, Sevim O, Korkmaz S, Demir I. Determination of compressive 

strength of perlite-containing slag-based geopolymers and its prediction using artificial 

neural network and regression-based methods. Construction and Building Materials. 2022 

Dec 12;359:129518.. 

[6]Bhogayata A, Kakadiya S, Makwana R. Neural Network for Mixture Design 

Optimization of Geopolymer Concrete. ACI Materials Journal. 2021 Jul 1;118(4). 



 

 

[7]Barbuta M, Diaconescu RM, Harja M. Using neural networks for prediction of properties 

of polymer concrete with fly ash. Journal of Materials in Civil Engineering. 2012 May 

1;24(5):523-8. 

[8]Cong P, Cheng Y. Advances in geopolymer materials: A comprehensive review Journal 

of Traffic and Transportation Engineering (English Edition). 2021 Jun 1;8(3):283-314. 

 [9]Durga ml, reddy pn, sumanth ts, devi ay, kumar bs, kumar ms. Predicting the strength of 

ggbs based geopolymer concrete by using artificial neural networks 

[10]Emami S, Kamalloo A. Enhancing mechanical strength of inorganic geopolymer by 

using phenol resin. International Journal of Engineering. 2012 Nov 1;25(4):325-8. 

[11]Gupta P, Gupta N, Saxena KK, Goyal S. Multilayer perceptron modelling of 

geopolymer composite incorporating fly ash and GGBS for prediction of compressive 

strength. Advances in Materials and Processing Technologies. 2022 Oct 31;8(sup3):1441-

55. 

[12]Gunasekara C, Atzarakis P, Lokuge W, Law DW, Setunge S. Novel analytical method 

for mix design and performance prediction of high calcium fly ash geopolymer concrete. 

Polymers. 2021 Mar 15;13(6):900. 

[13]Lau CK, Lee H, Vimonsatit V, Huen WY, Chindaprasirt P. Abrasion resistance 

behaviour of fly ash based geopolymer using nanoindentation and artificial neural network. 

Construction and Building Materials. 2019 Jul 10;212:635-44. 

[14]Karimipour A, Abad JM, Fasihihour N. Predicting the load-carrying capacity of GFRP-

reinforced concrete columns using ANN and evolutionary strategy. Composite Structures. 

2021 Nov 1;275:114470. 

[14]Khan K, Iqbal M, Salami BA, Amin MN, Ahamd I, Alabdullah AA, Arab AM, Jalal 

FE.Estimating Flexural Strength of FRP Reinforced Beam Using Artificial Neural Network 

and Random Forest Prediction Models. Polymers. 2022 Jun 2;14(11):2270 



 

 

.[15]Kuppusamy Y, Jayaseelan R, Pandulu G, Sathish Kumar V, Murali G, Dixit S, Vatin 

NI. Artificial Neural Network with a Cross-Validation Technique to Predict the Material 

Design of Eco-Friendly Engineered Geopolymer Composites. Materials 2022, 15, 3443. 

[16]Kong YK, Kurumisawa K. Prediction of the drying shrinkage of alkali-activated 

materials using artificial neural networks. Case Studies in Construction Materials. 2022 Dec 

1;17:e01166. 

[17]Manikandan P, Vasugi V. The potential use of waste glass powder in slag-based 

geopolymer concrete-an environmental friendly material. International Journal of 

Environment and Waste Management. 2023;31(3):291-307. 

[18]Nagajothi S, Elavenil S. Influence of aluminosilicate for the prediction of mechanical 

properties of geopolymer concrete–artificial neural network. Silicon. 2020 May;12(5):1011-

21. 

[19]Pratap B, Shubham K, Mondal S, Rao BH. Exploring the potential of neural network in 

assessing mechanical properties of geopolymer concrete incorporating fly ash and 

phosphogypsum in pavement applications. Asian Journal of Civil Engineering. 2023 May 

30:1-5. 

[20]Peng Zhang a b, Zhen Gao a, Juan Wang a, Jinjun Guo a b, Tingya Wang a Influencing 

factors analysis and optimized prediction model for rheology and flowability of nano-

SiO2 and PVA fiber reinforced alkali-activated composites Journal of Cleaner Production 

Volume 366, 15 September 2022, 132988 

[21Rehman F, Khokhar SA, Khushnood RA. ANN based predictive mimicker for mechanical 

and rheological properties of eco-friendly geopolymer concrete. Case Studies in Construction 

Materials. 2022 Dec 1;17:e01536. 

https://www.sciencedirect.com/journal/journal-of-cleaner-production
https://www.sciencedirect.com/journal/journal-of-cleaner-production/vol/366/suppl/C


 

 

[22]Sharma U, Gupta N, Verma M. Prediction of the compressive strength of Flyash and 

GGBS incorporated geopolymer concrete using artificial neural network. Asian Journal of 

Civil Engineering. 2023 May 1:1-4. 

[23]Sakthieswaran N, Dhanaraj R, Suresh P. copper slag-silica fume blended fibre concrete–

an eco-friendly healthy alternative for conventional cement concrete. revista romana de 

materiale. 2020;50(1):81-9. 

[24]Ting-Yu LiuPeng ZhangJuan WangYi-Feng Ling Compressive Strength Prediction of 

PVA Fiber-Reinforced Cementitious Composites Containing Nano-SiO2 Using BP Neural 

Network Materials 2020 

[25]Tingyu Liu a, Peng Zhang a, Guo Cui b, Xiaodong Yue b Fracture performance 

prediction of polyvinyl alcohol fiber-reinforced cementitious composites containing nano-

SiO2 using least-squares support vector machine optimized with quantum-behaved particle 

swarm optimization algorithm Theoretical and Applied Fracture Mechanics Volume 

115, October 2021, 103074 

[26]Upreti K, Verma M. Prediction of Compressive Strength of Geopolymer Concrete using 

Artificial Neural Network. 

[27] Wang Q, Ahmad W, Ahmad A, Aslam F, Mohamed A, Vatin NI. Application of soft 

computing techniques to predict the strength of geopolymer composites. Polymers. 2022 Mar 

8;14(6):1074. 

[28]Yadollahi MM, Benli A, Demirboğa R. Prediction of compressive strength of 

geopolymer composites using an artificial neural network. Materials Research Innovations. 

2015 Sep 19;19(6):453-8. 

[29]Yaswanth KK, Revathy J, Gajalakshmi P. Soft computing techniques for the prediction 

and analysis of compressive strength of alkali-activated Alumino-silicate based strain-

hardening Geopolymer composites. Silicon. 2022 Apr:1-24. 

https://www.sciencedirect.com/journal/theoretical-and-applied-fracture-mechanics
https://www.sciencedirect.com/journal/theoretical-and-applied-fracture-mechanics/vol/115/suppl/C
https://www.sciencedirect.com/journal/theoretical-and-applied-fracture-mechanics/vol/115/suppl/C


 

 

[30]Zhang B, Zhu H, Feng P, Zhang P. A review on shrinkage-reducing methods and 

mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives. Journal of 

Building Engineering. 2022 May 15;49: 104056. 

[31]W.L. Zhong, H. Ding, X. Zhao, L.F. Fan Mechanical properties prediction of geopolymer 

concrete subjected to high temperature by BP neural network Construction and Building 

Materials Volume 409, 15 December 2023, 

[32]W.L. Zhong, B. Qiu, Y.H. Zhang, X. Zhao, L.F. FanMesoscopic damage characteristics 

of hydrophobicity-modified geopolymer composites under freezing-thawing cycles based on 

CT scanningComposite StructuresVolume 326, 15 December 2023, 117637 

 

[33]W.L. Zhong, L.F. Fan, Y.H. ZhangExperimental research on the dynamic compressive 

properties of lightweight slag based geopolymer Ceramics International Volume 48, Issue 

14, 15 July 2022, Pages 20426-20437 

[34]W.L. Zhong, Y.H. Zhang, L.F. Fan High-ductile engineered geopolymer composites 

(EGC) prepared by calcined natural clay Journal of Building EngineeringVolume 63, Part 

A, 1 January 2023,  

[35]W.L. Zhong, Y.H. Zhang, L.F. Fan, P.F. Li Effect of PDMS content on waterproofing 

and mechanical properties of geopolymer composites Ceramics International Volume 48, 

Issue 18, 15 September 2022, Pages 26248-26257 

 [36]W.L. Zhong, Y.H. Sun, X. Zhao, L.F. Fan Study on synthesis and water stability of 

geopolymer pavement base material using waste sludge Journal of Cleaner Production 

Volume 445, 15 March 2024, 141331 

[37]Zhang P, Wang K, Wang J, Guo J, Hu S, Ling Y. Mechanical properties and prediction 

of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and 

nano-SiO2. Ceramics International. 2020 Aug 15; 46(12):20027-37. 

[38] Zhen Gao, Peng Zhang, Jinjun Guo, Kexun Wang Bonding behavior of concrete matrix 

and alkali-activated mortar incorporating nano-SiO2 and polyvinyl alcohol fiber: Theoretical 

https://www.sciencedirect.com/journal/construction-and-building-materials
https://www.sciencedirect.com/journal/construction-and-building-materials
https://www.sciencedirect.com/journal/construction-and-building-materials/vol/409/suppl/C
https://www.sciencedirect.com/journal/composite-structures
https://www.sciencedirect.com/journal/composite-structures/vol/326/suppl/C
https://www.sciencedirect.com/journal/ceramics-international
https://www.sciencedirect.com/journal/ceramics-international/vol/48/issue/14
https://www.sciencedirect.com/journal/ceramics-international/vol/48/issue/14
https://www.sciencedirect.com/journal/journal-of-building-engineering
https://www.sciencedirect.com/journal/journal-of-building-engineering/vol/63/part/PA
https://www.sciencedirect.com/journal/journal-of-building-engineering/vol/63/part/PA
https://www.sciencedirect.com/journal/ceramics-international
https://www.sciencedirect.com/journal/ceramics-international/vol/48/issue/18
https://www.sciencedirect.com/journal/ceramics-international/vol/48/issue/18
https://www.sciencedirect.com/journal/journal-of-cleaner-production
https://www.sciencedirect.com/journal/journal-of-cleaner-production/vol/445/suppl/C


 

 

analysis and prediction model Ceramics International Volume 47, Issue 22, 15 November 

2021, Pages 31638-31649 

 

https://www.sciencedirect.com/journal/ceramics-international
https://www.sciencedirect.com/journal/ceramics-international/vol/47/issue/22

