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Abstract: Hydrothermal liquefaction (HTL) is involved in concurrently treating both sewage water and generating biofuels. It 22 

involves the analysis of various operating parameters, such as pressure, catalyst temperature, and reaction time, to determine the 23 
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productivity and physiochemical properties of the resulting bio-oil. The critical assessment of over 100 algal strains, compared on 24 

the basis of their growth kinetics in different wastewater environments and their HTL-based yields, identified Auxenochlorella 25 

pyrenoidosa and Microchaete spirulina strains as the most suitable ones for optimised municipal wastewater treatment. Additionally, 26 

other strains like Chlorella sorokiniana, Tetradesmus obliquus, and Desmodesmus abundance are found to be effective for heavy metal 27 

remediation in municipal wastewater due to their high biosorption capacities. Furthermore, certain microalgal strains, namely 28 

Auxenochlorella pyrenoidosa, Botryococcus braunii, Microchloropsis gaditana, and Microchaete spirulina, were described as promising 29 

microalgae in the production of high crude oil yields through the HTL technique. The current review highlights the integrated 30 

approach of sustainable and economical HTL techniques using the best microalgal strains as a technologically and environmentally 31 

feasible solution selected through a systematic protocol for sewage water treatment and biofuel production. 32 

 33 
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 35 

Abbreviations: 36 

ATP- Adenosine Triphosphate  37 

BOD-Biological Oxygen Demand 38 

COD- Chemical Oxygen Demand 39 

HTC- Hydrothermal carbonization  40 

HTL - Hydrothermal Liquefaction 41 

N- Nitrogen 42 

P-Phosphorus  43 

 44 

1. Introduction 45 

The current circular economic principles demand not only to restrict pollution limits before wastewater release and 46 

reuse, but also focuses on the conventional wastewater treatment (WWTPs), enabling selected waste water reuse, 47 

savings, and cost-effective processes implementation in wastewater recycling [1,2]. Conventional wastewater treatment 48 

increases energy use, greenhouse gas emissions, recyclable resource waste, and solid landfilling. Alternatively, 49 

industrial, agricultural, and home-based effluents wastewater treatment systems that are comprised of low-carbon 50 

origin and high-resource recycling, encouraging biorefinery system and circular economy principles are in demand. 51 

The utilization of microalgal bioremediation in wastewater treatment has the potential to facilitate the growth of 52 

microalgae and effectively mitigate pollutants. According to a recent, study 1 kilogram of microalgal biomass 53 

necessitates the utilization of 1.83 kilograms of carbon dioxide with the potential to facilitate carbon dioxide 54 

sequestration and wastewater treatment [4].  55 

 56 

After the process of microalgal bioremediation of wastewater, it has been observed that the predominant component of 57 

the resulting sludge is microalgae. The activated sludge process typically necessitates an energy consumption of 1 58 

kilowatt-hour per kilogram of biochemical oxygen demand (BOD) to provide oxygen. Cultivating microalgae in 59 

wastewater does not necessitate the presence of oxygen, as anaerobic digestion can generate 1 kilowatt-hour per 60 

kilogram of biochemical oxygen demand. Various energy recovery options for microalgal biomass encompass 61 

gasification, pyrolysis and biochar production, fermentation with hydrothermal liquefaction (HTL) as one of the 62 

technologies to generate bioethanol, bio-butanol, and biological crude [4,5]. The strains of microalgae grow swiftly and 63 

can be cultivated year-round and microalgae, particularly C. vulgaris strains, were reported to cultivate on vinasse 64 

medium and to have a higher oil yield and production of valuable metabolites. They are a potential source of bioenergy 65 

due to their higher growth rates than terrestrial biomass, their ability to reduce carbon dioxide (CO  ) while growing in 66 

solid and liquid media, and the presence of energy-rich compounds, such as lipids, as one of their cellular contents [6, 67 

7]. Cultivation processes of microalgae have also been advantageous because they can grow well on wastewater and 68 

can utilize 𝑁𝐻4
+, 𝑁𝑂3

− or 𝑃𝑂4
3− from the wastewater as their nutrient sources [8]. However, if these nutrients are to be 69 

provided artificially, then the cost of nutrients is very high. The yield of microalgal bio-oil is around ten times greater 70 

than the yield and productivity of terrestrial biomass [9]. Some drawbacks related to microalgal yield & productivity 71 

are its cultivation and harvesting. The cultivation and harvesting processes for microalgae biofuel production are too 72 

expensive and time-consuming. Generally, microalgae cultivation in a closed photobioreactor process is more expensive 73 



 

 

than an open raceway pond at a pilot scale. However, in open raceway ponds, cultivation limitations are contaminations 74 

with undesirable species; variations in light and temperature conditions; CO2 loss; etc. [10]. Harvesting or post- 75 

cultivation microalgae recovery from open raceway ponds is also one of the challenging tasks. 0.02–0.06% solids (dilute 76 

suspension), less than 25 mm microbial size, and negative charge microbial surface are the major factors that make 77 

harvesting difficult [11]. Moreover, microbial concentrations in open raceway ponds after cultivation range from 0.1 to 78 

2 gm/L [12]. Due to this, dewatering this diluted microbial suspension is a challenging task. There are various methods 79 

developed through which microalgae can be harvested to 10 to 45 gm/L concentration [13, 14]. Microalgal growth in 80 

closed and open bioreactor is affected by various culture and operating parameters like pH, light intensity, salinity, 81 

temperature, nutrient concentration, CO2 and dissolved oxygen [15].  82 

More light intensity in the growth medium causes the death of microalgae due to degradation in chlorophyll-II and 83 

causes photo inhibition [16]. In addition, microalgae also excrete various inhibitors or metabolites like dissolved organic 84 

matter (DOM), which is the main reason for negative growth [17]. Therefore, these culture parameters should be 85 

optimized to improve biomass productivity. The slow growth rate further requires to be optimized in terms of light, 86 

carbon fixation and high surface area during its growth phase [18, 19]. Biofuel from microalgae is referred to as 3rd 87 

generation biofuels produced from biomass, which is neither a food material nor cultivated in agricultural areas [20, 88 

21]. Microalgae are potential biomass to remediate various types of wastewaters [14]. Microalgae cultivation offers a 89 

prominent solution to treat secondary and tertiary stages of wastewater treatments due to its potential to utilize 90 

inorganic phosphorus and nitrogen for their growth and multiplication [22]. Microalgae have also been found to be the 91 

potential biomass to remediate heavy metals and some toxic contaminants or organic compounds from wastewater [23, 92 

24]. Moreover, along with a tertiary bio-treatment of wastewater, they produced various valuable bioproducts that can 93 

be further utilized in several applications [25]. For sustainable production of 3rd generation biofuel, studies related to 94 

cultivation methods of microalgae and biofuel production from microalgae are focused. Both these processes need to 95 

be optimized to make the production of 3rd generation biofuel economic and sustainable. However, selecting microalgae 96 

strains appears to be the main task for increasing biomass productivity and lipid content [26–28]. The current study 97 

aims to screen suitable microalgae for large-scale integration of sewage water treatment and hydrothermal liquefaction 98 

process under optimized conditions.   99 

                                                     100 

                                                   2. The Necessity of pretreatment of wastewater 101 

                                                       Wastewater may contain elevated concentrations of various compounds that can hinder 102 

the growth of microorganisms, such as microalgae [25]. Similarly, the cloudiness and acidity level (pH) of wastewater 103 

can also impede the growth of microalgae [26]. Treating wastewater with physicochemical processes can create more 104 

favorable conditions for microalgal growth and reduce the strength of the wastewater [27,28]. While ammonium is the 105 

preferred nitrogen source for microalgae, some strains can tolerate ammonium levels as high as 1000 μmol NH4-N L−1 106 

[20]. To facilitate microalgal growth, pretreatment methods are necessary to lower the ammonium concentration in 107 

wastewater or dilute it to a level where the chosen strain can thrive efficiently [19] 108 

In various types of wastewaters, including those from metal, mining, paper, oil, and grease industries, 109 

electrocoagulation has been employed as a pretreatment step. This method effectively removes different chemical 110 

additives, cloudiness, and pathogens [29]. Cultivating microalgal biomass in pretreated wastewater can further reduce 111 

remaining nutrients and cloudiness in the treated water. Treating wastewater with a low nitrogen-to-organic carbon 112 

ratio (C/N) presents challenges. In such cases, organic supplements are often added to improve the efficiency of bacterial 113 

nutrient removal as an energy source. In contrast, microalgae can harness sunlight, soluble inorganic carbon dioxide, 114 

nitrogen, and other nutrients to increase their cell numbers while treating wastewater. The cellular nitrogen content of 115 

microalgae can vary from 3% to 10%, depending on the strain [30]. Microalgal and cyanobacterial strains can assimilate 116 

various forms of nitrogen, both inorganic (such as ammonium, nitrate, nitrite, atmospheric nitrogen) and organic (like 117 

urea, glycine, etc.), although the efficiency may differ among strains and growth conditions.  118 

From a cost perspective, using microalgae to remove phosphorus from wastewater may be a preferable option 119 

compared to chemical precipitation and engineered wetland-based phosphorus removal methods [31]. Additionally, 120 

microalgae can selectively consume nitro and amino groups from different aromatic compounds (e.g., 121 

aminonaphthalenes and nitrobenzonates) as a nitrogen source, thereby reducing the toxicity of the original pollutants 122 

[31]. High concentrations of heavy metals in wastewater can inhibit microalgal photosynthesis [32]. Nevertheless, 123 



 

 

microalgae can efficiently accumulate metal pollutants both internally and externally and can be utilized for the removal 124 

of metals from wastewater.  125 

 126 

 127 

3. Microalgal harvesting system 128 

Separation of microalgae from treated water in the open raceway pond is critical. Several methods are used for 129 

separating microalgae from the treated water. However, the process adopted for harvesting depends on the strain of 130 

microalgae, the application of algal biomass and the final desirable product [29–31]. Various chemical, physical, and 131 

biological methods are used to collect microalgal biomass from treated water, including sedimentation, flocculation, 132 

filtration, flotation and centrifugation [32]. A combination of these two or more processes is used to increase the 133 

harvesting efficiency [33]. From the literature, it was found that a sedimentation time of 10 minutes was the optimum 134 

time to recover over 90% of chlorella vulgaris from the culture medium [34]. Microalgae strains are big enough for the 135 

sedimentation process, like Scenedesmus and Chlorella sp., to sediment easily from the growth medium without an 136 

agitator. 137 

Harvesting of Chlorella vulgaris was compared using natural flocculant (chitosan) and traditional flocculant (aluminium 138 

sulfate). Both chitosan and aluminium sulfate recovered more than 90% microalgal biomass [34]. Five different strains 139 

of microalgae (Chlorella vulgaris, Choricystis minor, Neochloris sp., Cylindrotheca fusiformis and Nannochloropsis salina) were 140 

harvested by flocculation by using ferric chloride and aluminium sulfate as flocculants [35]. Aluminium sulphate and 141 

Polyaluminium chloride were used to harvest Microchloropsis gaditana with a settling time of 15 minutes [36].  Ecotan 142 

and Tanfloc, as the natural flocculants, were used to harvest microalgae from wastewater treatment ponds and found a 143 

settling time of 6- 10 minutes [37].  144 

Filtration of microalgae is a physical process which achieves 100% microalgal cell recovery [38]. Filtration requires a 145 

semipermeable membrane that can retain microalgal cells and allow the water to pass through them [39]. However, 146 

filtration creates fouling and clogging, requiring a change in the filter or semipermeable membrane, increasing its 147 

processing cost [40]. Polyacrylonitrile-based filter membrane was designed with different properties and applied for 148 

eight microalgae species. This membrane can harvest microalgae based on properties like shape, size, presence of cell 149 

wall, etc [41].  150 

Flotation attaches microalgae cells with tiny bubbles to promote the floating of microalgae on the top of the culture 151 

media in the floatation tank for easy and quick harvesting [42, 43]. However, generating micro-size bubbles (10–100μm) 152 

is energy-intensive [44, 45]. Centrifugation harvests microalgae from the water based on density, particle size and shape 153 

using centrifugal force [46, 47]. This process is time-consuming and requires a particular centrifuge chamber to harvest 154 

microalgal cells, which is also energy-intensive [48, 49]. A Comparison of these microalgae harvesting processes is given 155 

in Table 1.  156 

Table 1. Comparison of microalgae harvesting processes 157 

Process  Advantages Disadvantages Referen

ces 

Sedimentation The process is easy and 

Low cost 

Slow process; Less Recovery; 

Applicable for large-size cells 

[50] 

Flocculation Low cost; 

No Equipment Demand 

Require particular flocculant; 

Recovery of flocculant is 

difficult 

[35] 

Filtration High Recovery; Low 

Energy Demand 

Discontinuous; Clogging and 

fouling; 

[38, 51]  

 

Flotation Quick harvesting; High capital cost; Require 

flotation tank 

[44] 

Centrifugation Continuous Process; 

100 % Recovery; 

Applicable only for small-

scale harvesting; 

[52] 



 

 

Efficient for the large 

scale 

Require centrifuge chamber; 

High capital cost 

 From the comparison mentioned earlier, shown in Table 4 for microalgae harvesting, the flocculation process is the 158 

only process that does not require any equipment, and the energy demand is also less compared to other harvesting 159 

processes. Moreover, the flocculant can be reused further for flocculation after recovery from treated water. Therefore, 160 

flocculation is the most effective process for microalgae separation due to its quick harvesting with low cost, reusable 161 

and without equipment demand.  162 

 163 

4. Microalgae as potential biomass for energy production: 164 

Microalgae have long been considered a potential biomass applicable to produce various value-added energy products 165 

like biodiesel/bio-oil, bioethanol, and biogas [53–56]. Apart from on production of value-added products from 166 

microalgae and its high growth rates, it can also grow in wastewaters (industrial, municipal and agriculture waste 167 

waters), and it can efficiently remove their primary nutrients like phosphorus, carbon, nitrogen, micro-pollutants & 168 

heavy metals [57–59]. The production of renewable products can be integrated with wastewater treatment, CO2 169 

mitigation, medicinal value products, bio-fertilizer, bioplastics, and animal food [60–63]. From these renewable 170 

products, biodiesel is one of the most common products produced by the transesterification process of algal lipids [64– 171 

66]. Gouveia and Oliveira selected six different strains of microalgae which include C. vulgaris, Nannochloropsis sp., 172 

Spirulina maxima, S. obliquus, Neochloris oleoabundans and Dunaliella tertiolecta for biodiesel production. Among these 173 

strains, Nannochloropsis sp. (marine microalgae) and N. oleoabundans (freshwater microalgae) were found to be more 174 

suitable biomass for the production of biofuel with a high oil content of 29.0% and 28.7% [67]. However, biodiesel 175 

production through algal lipids needs microalgae drying, which is cost-ineffective and time-consuming [68]. Other 176 

strains as Nannochloropsis spp., were reported to produce the enzymes for commercial preparations to improve lipid 177 

recovery, influencing the efficiency of the treatment mentioned above. So, the alternative to biodiesel is bio-oil which 178 

can be produced by hydrothermal liquefaction of wet algal biomass [69, 70]. A key benefit of hydrothermal liquefaction 179 

over conventional methods of dry biomass is that hydrothermal liquefaction can process wet biomass of 5-20% solids 180 

without involving energy consuming drying step. [71–73]. Minowa et al. investigated bio-oil production using D. 181 

tertiolecta by thermochemical liquefaction. They concluded that liquefaction could also contribute to the bioenergy 182 

production system and its potential to mitigate global warming [74]. Bio-oil production through hydrothermal 183 

liquefaction of different microalgae strains is given in Table 1.  184 

Moreover, the separation of bio-oil from water is relatively easy, making hydrothermal liquefaction an attractive 185 

alternative for transforming energy from wet biomass, including microalgae [75, 76].  Presently, bioethanol is the most 186 

widely used biofuel, primarily produced from corn and sugarcane sugars. However, the technology is shifting towards 187 

using algal carbohydrates as potential raw materials for bioethanol production [77,78,79]. Global bioethanol production 188 

has seen a significant surge, increasing from 1 billion to 39 billion liters in just a few years, and is projected to reach 100 189 

billion liters in the near future [80]. Microalgae are rich in various carbohydrates, including glycogen, starch, agar, and 190 

cellulose, which can be readily converted into fermentable sugars for bioethanol production [81, 82]. Although 191 

bioethanol production from microalgae represents a promising step towards sustainable biofuels, there are still 192 

challenges related to scaling up production and commercialization of this clean biofuel. Key areas in the development 193 

of algal bioethanol technology that require optimization for commercialization include the selection of suitable algal 194 

biomass, pretreatment processes, and efficient fermentation methods. Increasing both the biomass and carbohydrate 195 

productivity of algal cells is essential for economically viable bioethanol production [83, 84]. Certain carbohydrate-rich 196 

microalgae, such as Chlamydomonas reinhardtii and Chlorella vulgaris, are being considered for techno-economic 197 

analysis (TEA) in the context of bioethanol production [85]. TEA assesses the feasibility of commercial bioethanol 198 

production from microalgae by evaluating factors like total investment, overall cost, and net profit [86, 87]. 199 

The applications of microalgae are summarized in Figure 1.  200 



 

 

 201 

Figure 1. Applications of microalgae in industry, environment, and agriculture  202 

5. An integrated approach: 203 

In recent times, microalgae have evolved beyond being utilized solely as single-cell proteins, and they are now 204 

envisioned as living-cell factories for the treatment of sewage, heavy metal removal and production of biofuels and a 205 

diverse range of beneficial biochemicals used in industries such as food, aquaculture, poultry, and pharmaceuticals. 206 

5.1. Bio-oil production from microalgae 207 

Over the last few decades, work has been motivated by optimizing microalgae cultivation methods and processing 208 

microalgae for biofuels or energy production.  Microalgae have rapid growth potential, and most microalgae strains 209 

have bio-oil content in the range of 20-60% dry weight of biomass [88]. The growth phase of microalgae has a double 210 

rate of 3.5 h, and catalytic processes have shown their contribution through HTL and pyrolysis [89–91]. Biofuel from 211 

microalgae can be produced in wet or dry forms. The processes of biofuel production from microalgae in dry and wet 212 

form are represented in Figure 2.     213 

 214 

Figure 2. Block diagram on the two different routes for Biofuel production from algal biomass (Dry and Wet) 215 

For the sustainable production of biofuel, the balance between cost efficiency and drying efficiency should be made to 216 

optimize the net energy output of biofuels [92]. Biofuel production from dry algal biomass includes Torrefaction, 217 

pyrolysis and gasification. The pyrolysis of microalgae is a promising technique that converts dry algal biomass into 218 

bio-oil at a considerable temperature range of 400-700°C under inert conditions. Different chemicals are present in bio- 219 

oil extracted through the pyrolytic process, including hydrocarbons, alkanes, phenol derivatives, aromatics, ketones, 220 

esters, ethers, etc [93]. Moreover, the thermal breakdown of microalgae during the pyrolysis reaction degrades 221 

carbohydrates, lipids and proteins present in algal biomass. The characteristics of the pyrolysis reaction of microalgae 222 

in each component have been examined through TGA (thermogravimetric analysis) [94]. During the pyrolysis reaction 223 

of microalgae, gas is produced due to the thermal degradation and decomposition of components in algal biomass. The 224 

composition of the pyrolysis gas was identified using FTIR (Fourier transform infrared spectroscopy), composed of CO2, 225 

H2, CO and CH4 [95]. However, the extracted bio-oil exhibits disadvantages like low thermal and chemical stability, 226 

high water and oxygen concentration, and strong acidity that limits the bioenergy applications of the algal pyrolysis 227 

process. 228 



 

 

Torrefaction is a thermochemical technique generally performed with dry biomass for solid fuel production. However, 229 

wet Torrefaction or hydrothermal Torrefaction is another technique which takes place at a temperature range of 180– 230 

260°C in an inert environment [96]. Bach et al. performed wet Torrefaction of Chlorella vulgaris at different temperatures 231 

(160-180℃) and time duration (5-30 min), resulting in low solid yield [97]. Moreover, cleaning the flue gases after 232 

Torrefaction and feedstock sensitivity are some challenges faced during Torrefaction. 233 

The cost of the processes for drying microalgae is an important parameter that must be considered during the 234 

production of biofuels from algal biomass [68]. Algae having a more significant mass fraction of water (80-90%) [18], 235 

cannot economically undergo any thermochemical processes like gasification and pyrolysis  [98, 99]. In such cases, more 236 

energy and time are required to dry the microalgal biomass, making the process unsustainable [98, 100].  237 

Thermochemical conversion of wet microalgal biomass, such as hydrothermal liquefaction, hydrothermal gasification 238 

and hydrothermal carbonization, were the most suitable for biofuel production [69, 101]. In these processes, whole 239 

microalgae in wet form are pyrolyzed and converted into bio-oil under hot compressed water [102]. The bio-oil is 240 

obtained as the final product along with aqueous (water-soluble hydrocarbon), gaseous and solid (biochar) as by- 241 

products [100, 103]. Hydrothermal carbonization (HTC) of microalgae has received much attention over the past five 242 

years. HTC is a process in which mild temperature (about 200 °C), pressure (<2 MPa) and time (<1 h) conditions are 243 

employed to convert microalgae into a solid residue called hydrochar along with water-soluble products [104]. 244 

Experiments on several microalgae strains like Chlamydomonas reinhardtii, Synechocystis sp., Aphanizomenon flosaquae, 245 

Spirulina sp., Chlorella sp. and Dunaliella salina at different temperatures and reaction times (190-213℃ and 0.5-3 h) were 246 

performed [105]. The authors concluded that a mild temperature range of around 200ºC and a reaction time of around 247 

30 minutes are substantial for appropriate carbonization of the algal biomass. However, the low yield of hydrochar and 248 

its high nitrogen content awaits research in the field of HTC. In addition, the aqueous phase products obtained as HTC 249 

by-products have high chemical oxygen demand (COD) and thus require further treatment [106].  250 

Hydrothermal liquefaction is a microalgae-to-bio-oil conversion process carried out in wet form at temperatures of 280- 251 

370℃ and pressures of 10-25MPa [107, 108]. Several publications were found related to Hydrothermal liquefaction of 252 

microalgae. The research findings of hydrothermal liquefaction report that it is challenging due to the different Strains 253 

of microalgae used, the reaction conditions, initial pressure, solvent, use of purging gas and catalysts used. A 254 

comparison of microalgae hydrothermal liquefaction experimental review, microalgae strain used, bio-oil yield 255 

reported, and experimental parameters are represented in Table 2. 256 

Table 2. Review of comparison on microalgal strains and bio-oil productivity through hydrothermal liquefaction. 257 

Microalgae 

Strain  

Temper

ature 

(℃) 

Holding 

time 

(min) 

Pressure 

(MPa) 

Catalyst Bio-Crude 

Oil Yield* 

(Wt. %)  

Refere

nces 

Auxenochlorella 

pyrenoidosa  
280 120 - - 39.4 [109] 

Auxenochlorella 

pyrenoidosa 
280 120 - - 39.4 [109] 

Auxenochlorella 

pyrenoidosa 
280 120 0.69 - 57.3 [110] 

Auxenochlorella 

pyrenoidosa 
240 30 1.03 

Raney-

Ni; 

HZSM-5 

72 [110] 

Auxenochlorella 

pyrenoidosa 
240 30 1.03 - 70.8 [110] 

Botryococcus 

braunii 
300 60 3 

Na2CO3  

(5%)  
64 [111] 



 

 

Botryococcus 

braunii  
310 15 - - >60 [112] 

Coelastrum 350 3 15 - 41.7 [113] 

Coelastrum 280 30 - 
Porous 

Silica 
32.5 [108] 

Coelastrum sp 360 120 20 - 30 [114] 

Dunaliella 

tertiolecta 
300 60 3 - 42 [74] 

Dunaliella 

tertiolecta 
360 50 - Na2CO3 25.8 [115] 

Microchaete 

spirulina 
350 60 5 

Fe(CO)5-

S 
66.9 [116] 

Microchaete 

spirulina platensis 
350 60 - - 41 [100] 

Nannochloropsis 300 30 8 Ni/TiO2 48.23 [117] 

Microchloropsis 

gaditana 
350 15 - - 54,8 [118] 

Nannochloropsis 

Sp. 
350 60 - - 43 [119] 

Nannochloropsis 

Sp. 
350 60 0.06 - 39 [120] 

Scenedesmus sp. 350 30 - - 36 [121] 

Hydrothermal conditions such as pressure, temperature, time and catalyst can significantly affect the yield and 258 

characteristics of crude oil. Table 2 summarizes the yields of crude oil reported in the literature at different conditions 259 

of the hydrothermal liquefaction process using different strains of microalgae. Temperature 240-280℃, reaction 260 

pressure 5 MPa, and 30-60 minutes were favourable conditions for hydrothermal liquefaction of microalgae [122, 123]. 261 

Catalysts can improve the yield of crude oil and help in the reduction of oxygen and nitrogen contents in bio-oil and 262 

consequently increase its heating value [124]. Table 2 also summarizes different microalgae strains, which are 263 

considered potential sources for crude oil production through hydrothermal liquefaction. From Table 1, the most 264 

suitable temperature, time and operating pressure for the hydrothermal liquefaction process of microalgae were found 265 

to be 240℃, 30 minutes and 1 MPa. Whereas Auxenochlorella pyrenoidosa, Botryococcus braunii, Microchloropsis gaditana 266 

and Microchaete spirulina were identified as having high crude oil yield even without the involvement of catalyst as they 267 

have high lipid content.  268 

5.2. Microalgae for sewage-water treatment 269 

The Microalgae water treatment system is an environmentally friendly biotechnological process. Microalgae have a fast 270 

growth rate biological source that can grow well in wastewater containing nutrients by absorbing organic nutrients, 271 

carbonaceous phosphorus and nitrogenous material [125–127]. All kinds of wastewater can be used for the commercial 272 

production of microalgae, including municipal, agricultural, paper, refinery, and other industrial effluents, along with 273 

varying efficiencies in treatment performance and microalgae growth. The various microalgae strains possess immense 274 

potential in removing nitrogen, phosphorus, and heavy metals from industrial wastewater through biosorption and 275 

adsorption processes at the surface of algal cells using industrial wastewater as their growth medium [128–131]. 276 

Microalgae are not yet used on a large scale in wastewater treatment. However, notable examples of commercial systems 277 



 

 

exist.  Microalgae shows better growth in municipal wastewater after settling of sludge because of the presence of higher 278 

nutrients in sewage water [132, 133, 134]. Municipal wastewater after the primary treatment unit (sedimentation tank) 279 

can be used to cultivate microalgae on a large scale to produce 3rd generation biofuels [135, 136]. The critical factors that 280 

need to be studied for the screening of a microalgae strain for wastewater treatment are microalgae growth rate, 281 

environmental conditions, nutrient source, the ease of harvesting from water, doubling time and level of nutrient 282 

reduction. The screening of microalgal strains for the biological removal of these materials from wastewater effluents 283 

has been investigated by several studies.  Microalgae Chlorella sp. has proven the capability of reducing phosphorus, 284 

nitrogen and COD with different retention times ranging from 10 h to 42 days [132].  285 

In the context of wastewater treatment using microalgae, studies primarily focus on removing nitrogen, phosphorous 286 

and organic contaminants. A symbiotic relationship between microalgae and bacteria occurs in wastewater treatment 287 

systems. Thus, co-culturing microalgae with heterotrophic microorganisms enhances wastewater treatment efficiency 288 

and increases biomass productivity. A mixed consortium of microalgae and bacteria was used in a study to treat 289 

municipal wastewater in photo-sequencing batch reactors [137]. The authors concluded that the hydraulic retention 290 

time (HRT) for pollutant removal was reduced considerably, achieving high removal efficiencies for COD and TKN 291 

(Total Kjeldahl Nitrogen). COD of sewage water is measured for testing water quality which is calculated not only to 292 

determine the concentration of biologically active compounds like bacteria but also to determine the biologically 293 

inactive organic substances in water. The treated municipal wastewater can be reused in waterbodies to mitigate the 294 

freshwater shortage. Boelee et al. investigated that microalgae-based biofilms are also used for simultaneously removing 295 

N and P from municipal wastewater [138]. Gai et al. studied that the presence of iron and magnesium ions in wastewater 296 

can enhance phosphorous removal efficiency by microalgae [139]. In a recent study, Chlorella vulgaris was cultivated in 297 

a 50 L open tank containing sewage water for bioremediation as well as bioenergy generation [140]. The results showed 298 

that nitrates, COD, and BOD (Biochemical Oxygen Demand) were reduced to 93%, 95% and 92%, respectively. The 299 

treated sewage water was utilized as a biofertilizer to grow tomato plants. Wu et al. studied the importance of light 300 

given, exploring the removal effects using an algae-bacteria system grown in municipal wastewater [141]. The results 301 

revealed that illumination of 60μmol m−2s−1 removed more than 90% of the insecticide Imidacloprid and about 82.3% of 302 

nitrogen. A similar study was conducted to check the influence of solar irradiance on municipal wastewater treatment 303 

by microalgae-bacteria agglomerates in an 80 L outdoor pond [142]. The authors concluded that low irradiance levels, 304 

i.e., less than 3800Wh m− 2d− 1, promoted high removal efficiencies for total nitrogen (60 ± 5%), COD (89 ± 3%) and 305 

phosphates (28 ± 7%).  306 

The removal performances of microalgae-based treatment systems are influenced by environmental (nutrient 307 

concentration, pH, temperature, N:P ratio, illumination, etc.) and operational factors (initial biomass concentration, 308 

HRT, mixing, type of reactor, etc.) [143]. Thus, control over these technological parameters provides the most reliable 309 

results. Biosorption, biodegradation and bioaccumulation are the three mechanisms involved in environmental 310 

remediation using microalgae [144]. Different forms of nitrogen, such as NH4+, NO3-, urea, etc., are directly synthesized 311 

to form amino acids and proteins. In the same way, phosphates are converted to ATP and phospholipids [145]. The 312 

applicability of microalgae for bioremediation of nutrients from wastewater has been extensively analyzed in 313 

laboratories. Chlorella and Scenedesmus species members are widely studied due to their dominance in freshwater 314 

ecosystems [146]. However, cyanobacteria, diatoms and other Chlorophyceae species are not widely investigated for 315 

wastewater treatment application and await further research. Conventional algae-based wastewater systems must be 316 

integrated with more advanced technologies for commercial sustainability. Hence, the multifaceted role of microalgae 317 

provides green solutions to implement a sustainable economy. The comparison of different microalgal strains for the 318 

reduction of nitrogen, Phosphorus and COD based on literature is represented in Table 3.   319 

Table 3. Comparison of physical factors and their reduction in using different microalgal strains for bioremediation of municipal 320 
wastewater  321 

Microalgae Species  
% Reduction  

References 
Nitrogen Phosphorus COD 

Auxenochlorella pyrenoidosa 93.9 80 - [132] 

C. sorokiniana 71 72.8 46 [147] 

C. sorokiniana 62 47 - [148] 



 

 

Chlorella sp. 89.1 80.9 90.8 [149] 

Chlorella sp. 93 86 24.8 [80] 

Chlorella sp., Scenedesmus sp. 92.94 82.85 85.44 [150] 

Chlorella vulgaris 84.81 36.12 82.3 [151] 

Chlorella vulgaris - - 97 [152] 

Chlorella vulgaris - 94.1 76.3 [153] 

Microchaete spirulina 

platensis 
85.5 91 98.7 [154] 

Tetradesmus obliquus - 91.3 75.9 [153] 

From the abovementioned comparison of different microalgae strains, Chlorella and spirulina were the most effective for 322 

municipal wastewater treatment as they caused maximum percentage reduction of nitrogen, phosphorus and COD, 323 

respectively.  324 

5.3. Heavy metal remediation  325 

Due to anthropogenetic activities, the concentration of various heavy metals has significantly increased in the 326 

environment over the past years. This increase in the concentration has led to increased exposure to heavy metals which 327 

finally leads to an increase in heavy metal-associated disorders. The heavy metals which are most problematic include 328 

copper (Cu), chromium (Cr), Cadmium (Cd), magnesium (Mn), zinc (Zn), iron (Fe), lead (Pb) and mercury (Hg). These 329 

heavy metals are toxic in low or trace concentrations [155]. Waste water produced from industries like agriculture, 330 

mining, battery manufacturing etc., is often polluted due to containing vast quantities of heavy metals. Various 331 

conventional adsorbents synthesized, including activated carbons, clays and zeolites, and various nanostructures were 332 

found to be effective for reducing these heavy metals from wastewater [24]. Moreover, various biosorbents like plant 333 

material, fungi and microalgae were also used to remove these heavy metals from industrial and municipal wastewater 334 

[23]. 335 

The concentration of the heavy metals in wastewater of Bindal pul, Dehradun, Uttarakhand is Pb 0.88 mg/l, Cu 0.45 336 

mg/l, Zn 0.83 mg/l, Ni 0.94 mg/l, Cd 0.13 mg/l and Cr 0.58 mg/l). They found the maximum bioaccumulation of heavy 337 

metals of Cu (36.75 ± 6.19 mg/kg), Pb (196.91 ± 8.13 mg/kg), Ni (125.48 ± 5.97 mg/kg), Zn (305.54 ± 14.30 mg/kg), Cr (93.06 338 

± 3.25 mg/kg) and Cd (29.58 ± 4.26 mg/kg), in agricultural wastewater by using Beta vulgaris, Spinacea oleracea, Brassica 339 

oleracea and Phaseolus vulgaris [156]. Both microalgae and macroalgae have the potential of biosorbents for heavy metals 340 

from wastewater [34, 157, 158]. Microalgae, Parachlorella, Kessler were inoculated as a biosorbent for heavy metals 341 

reduction from synthetic wastewater. The biosorption efficiency of Parachlorella kessleri for lead (II) was 99.54% in 9 days, 342 

and remediate of each heavy metal was in the order of Pb(II) > Co(II) > Cu(II) > Cd(II) > Cr(II) [159]. Microalgae, F. 343 

vesiculosus, was found to remediate 70.1 ± 1.9 nickel, 143.2 ± 7.5 cadmium and 516.3 ± 12.5 lead (mg/g), respectively 344 

[160]. Similarly, Khajavian et al. observed the bioremediation ability of brown algae Cystoseria indicant by 345 

remediating 55.34 mg/g cadmium and 18.17 mg/g Nickel [161]. Anbaena spharica was also reported to remediate 346 

121.95 mg/g lead and 111.1 mg/g Cadmium using fresh water aqueous medium [162].  347 

Chlorella sorokiniana was found to be a strong microalga which can tolerate high concentrations of heavy metals from 348 

wastewater even in different ranges of temperature, pH and other environmental conditions [163–165]. Similarly, 349 

Chlorella sorokiniana successfully tolerated upto 250μM Cadmium from the wastewater, the most carcinogenic and 350 

mutagenic heavy metal in municipal wastewater [166, 167].  351 

Microalgae, Scenedesmus and Chlorella species were reported to be the most used microalgae for the reduction of heavy 352 

metals. These species were found to have high biosorption capabilities [168]. The microalgae genus Chlorella is a single- 353 

celled and spherical microalgae with a diameter of 2-10μm. Moreover, Chlorella is also currently the most cultivated 354 

microalgae strain worldwide due to its fast growth rate and high photosynthetic efficiency with substantial nutritional 355 

value [169]. Chlorella cells contain 70% protein (dry biomass), which is also very valuable biomass in the food industry 356 

[170]. Chlorella vulgaris is the most reported strain of Chlorella species with high heavy metal reduction. 357 



 

 

Microalgae genus Scenedesmus was also found to be the most commonly freshwater-based microalgae which are 358 

commonly used for various applications such as wastewater treatment and oil production [171]. A very dense cell wall 359 

in the Scenedesmus species makes it more digestion-resistant. 360 

Microalgae consortia with other bacteria like cyanobacterial species, Clostridium needles and Chlamydomonas salina were 361 

prepared for the reduction of arsenic heavy metal. This was adsorbed by the cell wall of microalgae consortia with 362 

bacteria through various functional groups like carbonyl, hydroxyl and thiol present on the surface of their cell wall 363 

[172]. The maximum remediation rate of arsenic was reported by Gao et al., where consortia of Aspergillus oryzae and 364 

Chlorella vulgaris biomass at pH 7, 140 rpm with five g/L concentration of glucose [173]. Bodin et al. also reported the 365 

remediation of Cadmium through the bio pellets synthesis from microalgae Chlorella vulgaris and fungi Aspergillus 366 

niger and found to be more in consortia from 40% to 56% when it is compared to Chlorella vulgaris alone [174]. 367 

Microalgae, Desmodesmus abundans in living and nonliving form act as a biosorbent for the remediation of Cadmium 368 

and copper from water [175]. Moreover, the other microalgal species like Chlamydomonas reinhardtii, Microchaete spirulina 369 

platensis, Auxenochlorella pyrenoidosa, Planothidium lanceolatum, Pleurococcus miniatus, efficiently remediate the heavy 370 

metals from wastewater [176–180, 184].  371 

Table 4: Microalagal strains in the removal of heavy metals from various waste wasters through HTL processing 372 

technology [181]. 373 

 374 

 375 

Microalgae Strains Heavy metals Type of 

wastewater 

% of 

removal 

after 

HTL 

Nanochloropsis Iron, Aluminium 

Municipal and 

wastewater 

with high salt 

concentration 

95 

Nannochloropsis oculata Copper 
Mines 

wastewater 

99.92 _ 

0.04% 

Pavlova lutheri Iron, Aluminium 

Municipal and 

wastewater 

with high salt 

concentration 

95 

Tetraselmis chuii  Iron, Aluminium 

Municipal and 

wastewater 

with high salt 

concentration 

95 

Chaetoceros muelleri Iron, Aluminium 

Municipal and 

wastewater 

with high salt 

concentration 

95 

Scenedesmus incrassatulus 
Chromium, Copper, 

Cadmium 

Artificial 

wastewater 
25–78% 

Scenedesmus sp. Zinc and Iron 
Acid mine 

wastewater  

Zinc: 

84.14% 

Iron 

65.76% 



 

 

Chlorella vulgaris  Copper and molybdenum Metal mine 

tailings 

wastewater 

Cu: 

64.7%,  

Mo: 

99.9% 
Scenedesmus spinosus Copper and molybdenum 

 376 

 377 

6. Conclusion          378 

Integrating a 3rd generation biofuel production and sewage water treatment system using microalgae must be optimized 379 

to make it technically and economically more feasible [182; 183; 184]. A detailed study is required to select appropriate 380 

strains from the abundant varieties of algal species and their wastewater treatment efficiency in a large-scale open 381 

system, along with their potential to produce biofuel. More than 100 microalgae strains were identified and compared 382 

for integrating sewage wastewater and HTL. Microalgae, Auxenochlorella pyrenoidosa, Botryococcus braunii, 383 

Microchloropsis gaditana and Microchaete spirulina can produce high crude oil yield even without a catalyst. From these 384 

strains, Auxenochlorella pyrenoidosa and Microchaete spirulina sp. were also identified and used for municipal wastewater. 385 

Other microalgal strains like Chlorella sorokiniana, Tetradesmus obliquus and Desmodesmus abundans were identified and 386 

used for heavy metals remediation from municipal wastewater. These microalgae can also be the source for bio-oil 387 

production through hydrothermal liquefaction, as only a little literature work has been identified related to these strains. 388 

Harvesting processes by self-flocculation and sedimentation were most suitable for economically separating microalgal 389 

biomass from water. Natural fiber-Chitosan and Chemical flocculant- Aluminum Sulfate are identified as suitable 390 

reagents for feasible harvesting of microalgal biomass. 391 

 392 

7. Future perspectives 393 

Microalgae can remove various pollutants from effluent and several novel technologies has been implemented in 394 

harvesting of microalgal cells . They can efficiently assimilate and metabolize organic compounds, nitrogen, 395 

phosphorus, and other nutrients present in wastewater.  They also could purify heavy metal-contaminated water. Toxic 396 

contaminants, including Cadmium, lead, mercury, and chromium, threaten human and environmental health. In 397 

addition, because of their high lipid content, they are used to produce bio-oil that can be used in neat or blended form 398 

as an alternative to conventional fuels. Moreover, the aqueous phase hydrocarbon obtained as a by-product of HTL can 399 

be the source of microalgae cultivation. So, significant contributions are made by microalgae to wastewater remediation, 400 

heavy metal removal, and bio-oil production. Their adaptability, nutrient-removal capabilities, heavy metal-binding 401 

properties, and lipid-rich composition make them a promising tool for addressing environmental issues and 402 

investigating sustainable energy alternatives. 403 
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