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Abstract 

In recent days air quality has been very poor in urban society due to a lot of industries, 

vehicles and so on. To overcome poor quality, an air quality prediction is much needed to 

manage an urban area and control pollution. In this article, deep learning (DL) namely a 

Modified Gated Recurrent Unit (GRU) neural network is used to forecast air pollution. Initially, 

a new activation function named Dual-Slope Leaky ReLU (DSL-ReLU) is introduced. The 

DSL-ReLU activation function includes two hyperparameters which control the slopes for 

positive and negative input values to achieve fine-tuned responses for  varying data inputs. 
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Then, the model parameters like learning rate, batch size, and dropout rates are tuned using the 

Spider Wasp Optimization (SWO) algorithm. The SWO algorithm is based on the female spider 

wasp’s hunting and nesting behaviour that is applied to solve the optimization issues. This 

SWO model is used to GRU model parameters and provides robustness in the predictive 

modelling of air quality monitoring. For validation, the Kaggle data set is used whereas the 

proposed optimized GRU model considerably improves the accuracy of air pollution forecasts.  

Keywords: GRU, air quality prediction, deep learning, SWO, optimization 

1 Introduction  

In recent decades, Air pollution has been a serious problem in developed and 

developing countries due to its poor air quality. This low quality of air threatens environmental 

health and also affects the public lifestyle [1][2]. Due to enormous industrial activities, 

vehicular emissions, agricultural practices and residential heating in an urban area are the major 

reasons for pollution. In atmospheric air, there are pollutants like PM10, PM2.5, nitrogen 

oxides (NOx), carbon monoxide (CO), sulphur dioxide (SO2) and ozone (O3) etc are majorly 

presented to cause air pollution [3]. It is clear that air pollution causes environmental 

degradation and affects ecosystems. 

To avoid such poor air quality, air quality prediction is more important to control 

pollution for faster urbanization and industrialization [4]. Accurate forecasting of air pollutant 

levels is to be predicted to take preventive measures and provide harmless health effects 

Moreover, effective prediction models enable governments to apply guidelines and policies to 

control and manage pollution. 

Previously lot of air quality forecast models were developed based on its chemical and 

physical behaviours. However, these models are not successful in capturing the complex and 

non-linear interactions among various pollutants. Meanwhile, it provides limited predictive 

accuracy, especially in dynamic and densely populated urban environments. To predict air 

quality based on historical data and meteorological conditions, most advanced DL models are 

applied for air pollution prediction.  

The DL model performs data preprocessing and feature extraction stages separately for 

prediction. In DL models, time series models of recurrent neural networks (RNNs), Long Short-

Term Memory (LSTM) and GRU models have proven excellent promise in addressing these 

challenges [5][6]. Among these models, the GRU model gives a simplified architecture 



 

compared to LSTMs and RNNs with fewer parameters to optimize. The GRU model is 

computationally efficient with robust predictive performance. 

In this work, a modified GRU model with a novel activation function for predicting air 

pollution. The DSLReLU function introduces two control parameters to control the slopes for 

positive and negative inputs. To optimize the GRU model parameters and the DSLReLU 

activation function, we use the SWO algorithm.  

The paper is organized into the following chapters. Chapter 2 presents a literature 

review of air pollution prediction techniques. Chapter 3 describes the proposed GRU for air 

quality prediction. Chapter 4 presents the results; Chapter 5 presents the conclusions of the 

work. 

2 Related work  

Y. Han, et al [7] developed an air pollution prediction model using the Bayesian DL 

model. The proposed model includes two strategies for accurate prediction. It is based on 

domain specific which learns the statistical relationship between attributes strongly. In addition, 

the self-attention mechanism is used between layers.  

The hybrid PM2.5  prediction model is proposed by C. -Y. Lo et al. [8] Initially, the 

autoencoder is applied for data preprocessing. The LSTM model based on K-means is used for 

PM2.5  prediction.  In their study [9], the authors proposed a DL model for air quality 

prediction. The output from different layers a processed and combined using a fusion layer for 

long-term air quality prediction. Compared to sole models, the fusion-based deep neural model 

shows higher accuracy and minimum error rates. 

B. Liu et al[10] explored a weighted GRU model for PM2.5  forecasting. The time 

series of features of a data set is learned using data clustering. For each cluster, the GRU model 

is applied with different weights for forecasting. Graph Neural Networks (GNNs) have 

developed as powerful tools for learning from sequential data. Hierarchical Graph Neural 

Networks (HGNNs) extend this advantage by incorporating hierarchical structures into the 

learning process. This HGNN-based model is proposed by J. Han et al [11] for air quality 

prediction. This model converts spatial features of air quality data into spatial temporal features 

for learning correlations among features accurately. In [12], the authors analyse the 

performance of multi-layer LSTM for air pollution prediction. The historical data is pre-



 

processed by using autoencoders. By the construction of multi-layers in LSTM, the model 

effectively learns spatiotemporal patterns in data. 

Echo State Networks (ESNs) model is based on the concept of reservoir. This reservoir 

transforms the input signals into a high-dimensional dynamic state space. This transformation 

is best suitable for time-series prediction. M. Xu, et al [13] introduce an ESN-based prediction 

model for air quality. The performance of the model is analysed in terms of mean square error 

rates.  

The hybrid model which integrates both Convolutional Neural Networks and Bi-

directional LSTM (Bi-LSTM) model for air quality prediction is developed by S. Du et al [14]. 

Initially, NN involves the extraction of spatial features. Then, this model is applied to learning 

spatial-temporal features. Likewise, the authors [15] presented a DL model called multiple 

nested LSTM networks (MTMC-NLSTM) for PM2.5 prediction. Similarly, M. Singh et al [16] 

presented an LSTM for the prediction of CO2 emissions in the environment.  

  Adversarial Meta-Learning is an advanced model that combines adversarial training 

and meta-learning. Z. Wu et al [17] introduce a pollution prediction models using combined 

adversarial meta-learning. It involves Bayesian meta-learning to learn the hidden features.  

To handle accurate short-term forecasting, a hybrid model is developed by Q. Tao et al 

[18]. This model combines convolutional neural networks and bidirectional GRU for handling 

both spatial and temporal features.  Compared to other models, the bidirectional GRU 

effectively process the data in both directions and reduces prediction accuracy considerably.  

B. Liu et al [19] analysed the performance of different air pollution prediction models. 

In addition, proposed a new recurrent model based on the attention mechanism. The 

AutoRegressive Integrated Moving Average also called the ARIMA model is a popular model 

for time-series forecasting. It processes the data based on three operations autoregression, 

differencing and moving average for accurate prediction. The modified ARIMA-based PM2.5 

prediction model is proposed by U. A. Bhatti et al [20]. In [21], a new optimized LSTM-based 

prediction model is proposed. Likewise, the modified LSTM model which integrates a 

Bayesian neural network for the prediction of PM2.5 is proposed [22]. 

H. Chen, et al [23] proposed a fusion technique for meteorological forecasting. There 

are two types of LSTM models used for feature learning.  In the fusion model, the output from 

LSTM models is combined and the final prediction is done by using XGBoosting models.  



 

In their study, Y. Huang et al [24] proposed an optimized back propagation neural 

network for predicting air quality index. The weight of the neural network is tuned using an 

improved particle swarm optimization algorithm. In improved swarm optimization, the 

mutation strategy is applied to avoid local minima issues.  

C. Liu, et al [25] proposed an extreme learning model for air quality forecasting. The 

evolutionary algorithm of genetic optimization is integrated to optimize the activation functions 

and dropout rates in the extreme learning model. A transfer learning-based hybrid model is 

proposed by J. Yang et al [26] for PM2.5 prediction. This model uses LSTM and residual neural 

units to capture long-term dependencies between pollution parameters.  

M. H. Nguyen et al [27] address the limits of existing air pollution prediction models. 

Further, proposed an LSTM combined encoder and decoder model for the accurate PM2.5 

prediction. Results shows that the encoder model shows more accurate predictions than those 

of existing models. 

K. Gu [28] et al presented a temporal support vector regressor model for air quality 

prediction. The temporal Support Vector Regressor model is an extension of the traditional 

Support Vector Regression (SVR) that is specifically adapted to handle time-series data. It finds 

a function that deviates from the target values by a value no greater than a specified margin 

while being as flat as possible. Y. Cong et al [29]  introduce a self-attention-based feature-aware 

LSTM model to forecast air pollutants gas concentration. In the self-attention mechanism, the 

weight of the model is adjusted based on feature importance.  

Natarajan, S.K., et al [30] Grey wolf optimization-based machine learning model used 

to predict the air quality index.  The machine learning algorithm of the decision tree is 

optimized to reach a higher accuracy.  In their study, the authors [31] used an image processing 

technique to predict the air quality. The deep learning models of CNN are applied to extract 

features from the images.  

 

3 Proposed model  

In this work, a modified GRU model with a novel DSL-ReLU activation function is 

proposed for air quality forecast. This model is constructed to effectively capture the temporal 

dependencies in air pollution data and adapt to the varying magnitudes of pollutant 

concentrations. The steps involved in the proposed prediction are given in Figure 1. In the first 



 

step, the data set is collected and normalized. The SWO component processes to find the 

appropriate hyperparameters for the GRU model.  The GRU model is trained with SWO. 

The error values are used as a fitness function for SWO. 

 

 

 

 

 

 

 

 

Figure 1: Overall workflow 

3.1 GRU model 

 The GRU is a type of RNN architecture developed to address challenges associated 

with vanishing gradients in traditional RNNs [32-35]. The architecture of GRU is given in 

Figure 2. The key components of GRU models are gates to process the pollution data. There 

are two important gates: Update Gate (zt) and the Reset Gate (rt). The Update Gate determines 

how much past data should be carried over to the present. The Reset Gate decide how much 

past data should be forgotten. The Current Memory Content represents new information that 

will be added to the memory, and the Hidden State Update combines the old and new 

information to produce the updated hidden state. This architecture allows the GRU to 

effectively capture long-term dependencies in pollution data. The use of gating mechanisms 

enables the models to selectively process the air pollution data and to identify the correlations 

between pollutants effectively.  
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Figure 2: GRU Architecture 

The GRU is characterized by its gating mechanisms which control the flow of 

information through the network that is given in the following equation (1-4).  

zt = σ(Wz ⋅ [ht − 1, xt])    (1) 

rt = σ(Wr ⋅ [ht − 1, xt])    (2) 

h′t = tanh(W ⋅ [rt ⊙ ht − 1, xt])   (3) 

ht = (1 − zt) ⊙ ht − 1 + zt ⊙ h′t   (4) 

where xt is the input at time t, Wz,Wr, and W are the weight matrices for the 

corresponding gates, respectively. h’t and ht are current memory content and hidden state 

updates.  σ denotes the sigmoid activation function, tanh denotes the hyperbolic tangent 

activation function and ⊙⊙ represents element-wise multiplication 5. 

3.2 DSL-ReLu Model 

The proposed model is named as DSL-ReLu which is an advanced variant of the 

traditional ReLu activation function. This function has additional two learnable parameters of 

𝛼𝑝and 𝛼𝑛 in it. These parameters control the functional slopes for both positive and negative 

input values. Based on this process, it carries a higher flexibility in shaping the activation 

function to improve data fitting and improve the neural network’s learning capacity. The DSL-

ReLU function is defined as follows: 



 

{
𝛼𝑝. 𝑥 𝑖𝑓 𝑥 > 0

𝛼𝑛 . 𝑥 𝑖𝑓 𝑥 <= 0
    (5) 

Where x is the input to the activation function.𝛼𝑝 is the learnable factor that controls 

the slope for positive input values.𝛼𝑛 is the learnable factor that controls the slope for negative 

input values. 

3.3 SWO Algorithm 

The SWO model is based on female spider wasps' behaviour of hunting, nesting and 

mating activities [36]. This model has a unique strategy of prey searching, nest securing and 

reproduction to identify an optimal solution in a search space. The SWO model carries several 

phases as follows. 

 Initialization phase 

   Initialization is used to create a various set of potential solutions across the search 

space. Each spider wasp in the population signifies a possible solution vector in a D-

dimensional space. It also initialises the positions of these wasps that are generated randomly 

within the defined bounds that are expressed as follows:  

SWi = [x1, x2 … . . xD]    (6) 

The population can be randomly produced as follows: 

𝑆𝑊𝑖,𝑡 = 𝐿 + 𝑟 × (𝐻 − 𝐿) (7) 

Where, 𝑟 is a vector of random numbers. The random initialization helps in covering 

various regions of the search space and making the algorithm robust against local minima.  

 Searching Phase (Exploration) 

It mimics the random exploration spider wasp’s behaviour of prey searching. It 

explored the search space thoroughly to recognize precise areas for further exploitation.  Wasps 

explore randomly or around a dropped prey for random exploration and localized search that 

is given in the following equation. 

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊𝑖,𝑡 + 𝜇1 × (𝑆𝑊𝑎,𝑡 − 𝑆𝑊𝑏,𝑡) (8) 

𝜇1 = 𝑟𝑛 × 𝑟1(9) 

For local search: 



 

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊𝑐,𝑡 + 𝜇2 × (𝐿 + 𝑟2 × (𝐻 − 𝐿)) (10) 

𝜇2 = 𝐵 × cos (2𝜋𝑙) (11) , 

𝐵 =
1

1+𝑒𝑙(12) 

Where, 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 is a random index. 

Following and Escaping Phase (Exploration and Exploitation) 

It balances exploration and exploitation by pretending the chasing dynamic behaviors 

and adjusting the search direction. The wasps chase prey (exploitation) or manage their path 

when prey escapes (exploration) using adaptive equations that are given below. 

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊𝑖,𝑡 + 𝑐 × 2 × 𝑟5 × (𝑆𝑊𝑎,𝑡 − 𝑆𝑊𝑖,𝑡) (13) 

𝐶 = 2 −
2×𝑡

𝑡𝑚𝑎𝑥
× 𝑟6(14) 

Where 𝑐 is a distance-controlling coefficient. 

The escaping behaviour of the wasps can be expressed as follows : 

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊𝑖,𝑡 × 𝑣𝑐  ,  𝑣𝑐~𝑁(𝑘, 𝑘) (15) 

𝑘 = 1 −
𝑡

𝑡𝑚𝑎𝑥
× 𝑟6(16) 

Nesting Behavior (Exploitation) 

This stage exploits promising areas identified during the search by mimicking the 

nesting behavior of spider wasps which secure and optimize their nests. The wasps focus on 

pulling prey to a suitable nesting region and avoid overlap in nesting locations using specific 

equations. The strategy of pulling to a suitable nesting region can be expressed as follows:  

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊∗ + cos (2𝜋𝑙) × ((𝑆𝑊∗ − 𝑆𝑊𝑖,𝑡)) (17) 

The behaviour of avoiding the same nest location  can be stated as follows : 

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊𝑎,𝑡 + 𝑟3 × 𝛾 × (𝑆𝑊𝑎,𝑡 − 𝑆𝑊𝑖,𝑡) + (1 − 𝑟3) × 𝑈 × (𝑆𝑊𝑏,𝑡 − 𝑆𝑊𝑐,𝑡)(18) 

Where 𝛾 is the levy flight distribution and U is a binary vector: 

𝑈 = {
1 𝑖𝑓𝑟4 > 𝑟5

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(19) 



 

 Mating Behavior 

   This stage simulates the reproductive process, generating new solutions (offspring) 

from existing ones to introduce diversity and improve solution quality. New solutions are 

generated through crossover and mutation operations, reflecting the mating and gender 

determination behaviours of spider wasps. 

𝑆𝑊𝑖,𝑡+1 = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑆𝑊𝑖,𝑡 , 𝑆𝑊𝑚,𝑡, 𝐶𝑅) (20) 

𝑆𝑊𝑖,𝑡+1 = 𝑆𝑊𝑖,𝑡+𝑒𝑡 × 𝛽 × 𝑣1⃗⃗⃗⃗⃗   + (1 − 𝑒𝑡) × 𝛽1 × 𝑊𝑚,𝑡 , 𝑣2⃗⃗⃗⃗⃗(21) 

Where. 𝛽 and 𝛽1 are normally distributed, and: 

𝑣1⃗⃗⃗⃗⃗  = {
𝑥𝑎⃗⃗⃗⃗⃗ − 𝑥𝑖⃗⃗⃗ ⃗  𝑖𝑓𝑥𝑎⃗⃗⃗⃗⃗ < 𝑓(𝑥𝑖⃗⃗⃗ ⃗)

𝑥𝑖⃗⃗⃗ ⃗ − 𝑥𝑎⃗⃗⃗⃗⃗  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(21) 

𝑣2⃗⃗⃗⃗⃗  = {
𝑥𝑏⃗⃗⃗⃗⃗ − 𝑥𝑐⃗⃗ ⃗⃗   𝑖𝑓𝑥𝑏⃗⃗⃗⃗⃗ < 𝑓(𝑥𝑐⃗⃗ ⃗⃗ )

𝑥𝑐⃗⃗ ⃗⃗ − 𝑥𝑏⃗⃗⃗⃗⃗  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(22) 

3.4 GRU parameter tuning using SWO 

  Initially, population size and mutation rates are initialized key parameters. The population of 

potential solutions is represented as a vector in a multidimensional space. The exploration 

phase begins with random exploration. Wasps explore both randomly and around potential 

targets to examine the search space to identify the exact area. It is expressed through equations 

that guide the wasps' movements and decision-making processes. 

Also, the SWO algorithm delicate balance between exploration and exploitation. By 

dragging prey to suitable nesting areas and evading nesting overlaps, the algorithm maximizes 

its effectiveness in locating optimal solutions within the search space. 

Finally, mating behaviour simulates the reproductive process. Through crossover and 

mutation operations, new solutions are generated from existing ones. The pseudocode of SWO-

based parameter tuning is given in Algorithm 1.  

Algorithm 1: SWO Algorithm 

Initialize parameters such as population size, mutation rates, and other relevant variables 

Initialize population P with randomly generated solutions 

Evaluate fitness for each solution in P 

Sort population P based on fitness 



 

Repeat until convergence criteria are met: 

    FOR each solution in P: 

        Conduct random exploration 

                FOR each solution in P: 

        Perform local search 

    FOR each solution in P: 

        Simulate chasing and escaping behavior 

            FOR each solution in P: 

        Mimic nesting behavior 

                FOR each solution in P: 

        Simulate mating behavior 

    Replace solutions in P with the new solutions. 

    Sort population P based on fitness. 

Perform tuning for the GRU model. 

END Spider Wasp Optimization (SWO) Algorithm 

4 Results and discussion 

The proposed GRU model is trained using a historical dataset obtained from the Kaggle 

website (Open-source). This dataset consists of hourly time-series data from various 

monitoring stations in India, covering the period from 2017 to 2020. It includes hourly 

measurements for multiple pollutants such as PM2.5, PM10, CO, NOx, O3 SO2 etc. For the 

training and testing of the model, the four pollutants are selected: PM2.5, PM10, CO, and NOx. 

The dataset was split into two parts: 75% of the data is allocated for training the model and the 

remaining 25% is used for testing purposes. The proposed GRU model is evaluated using 

RMSE, MAE, and MSE metrics, as defined in equations 23-25. These metrics evaluate the 

variance between the predicted and actual values.  

𝑀𝑆𝐸 =
1

𝑛
∑ (�̅� − 𝑦)2𝑛

𝑖=1            (23)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̅� − 𝑦)2𝑛

𝑖=1            (24) 

𝑀𝐴𝐸 =
1

𝑛
∑ |�̅� − 𝑦|𝑛

𝑖=1            (25) 

Initially, a GRU model is configured with the following hyperparameters: 50 units per 

layer, 2 layers, a learning rate of 0.001, a batch size of 32 and a dropout rate of 0.2 with 100 



 

epochs. After optimization, through iterative adjustments, the hyperparameters are refined, 

resulting in a model with 120 units per layer, 3 layers, a learning rate of 0.0005, a batch size of 

64, and a dropout rate of 0.3. Figure 3 displays the learning curve, depicting the gradual 

decrease of the loss function over epochs. Also, the graph observed that the loss drops very 

suddenly due to the proportions of the training data. This indicates that the GRU model is 

effective in forecasting air pollution. Figure 4 is the visualization of predicted and actual values 

of pollutants. 

 

Figure 3 :  Model learning curve 

 



 

 

Figure 4:  The real versus predicted values of Pollutants 

The average obtained values of RMSE, MAE, and MSE are given in Table 1. This 

proposed GRU model achieved the lowest MSE of 113.13 which denotes low prediction errors 

compared to other models. Its RMSE and MAE values are also relatively low, showing good 

predictive performance. The RMSE and MAE of the Bi-GRU model are quite good when 

compared to other models. Next, the CNN-LSTM model achieved 420.8, 20.52 and 14.3 MSE, 

RMSE and MAE rates respectively. The SVR model attains the highest MSE among all models 

which indicates relatively higher prediction errors compared to other models. The results are 

graphically shown in Figure 5. 



 

 

Figure 5 :  Error rate analysis 

Table 1: Performance analysis 

Method  MSE RMSE MAE 

Proposed GRU 113.13 10.63 20.4 

Bi-LSTM   549.68 23.43 18.3 

Bi-GRU 221.41 14.87 4.35 

SVR 1837.61 42.86 28.5 

CNN-LSTM 420.8 20.52 14.3 

5 Conclusion 

A new GRU model for the accurate prediction of air pollution is proposed. The major problem 

of the GRU model is the optimum selection of hyperparameters. The successful solution for 

identifying this hyperparameter is achieved through the use of the Spider Wasp Optimization 

(SWO) algorithm. By integrating the GRU model with the Dual-Slope Leaky ReLU 

(DSLReLU) activation function, the model exploits the adaptive capabilities of the activation 

function to better handle the different ranges of pollutant data. The inclusion of the SWO 

algorithm for fine-tuning the GRU model parameters and the slopes of the DSLReLU function 

ensures an optimized and robust performance. In future, both data mining and remote sensing 

imaging techniques applied to improve the prediction accuracy further. 
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