
 

 

 

Spatial correlation network structure of carbon productivity from 

the livestock sector in China and its driving factors: a perspective 

of social network analysis 

Ming Li1, Haifeng Xiao1, *, Zichun Pan2 
1China Agricultural University, China 

2Northwest A&F University, China 

* Corresponding email: b20223110816@cau.edu.cn 

Graphical Abstract 

 

Abstract: Exploring the spatial correlation network structure of provincial livestock carbon 

productivity and its driving factors can provide new policy perspectives for realizing the synergy of 

regional pollution and carbon reduction. This study constructs 2006-2021 panel data models by social 

network analysis (SNA) to systematically quantify the spatial correlation network structure of the 

carbon productivity in livestock sector. Then, the quadratic assignment procedure (QAP) is further 

utilized to examine its driving factors. The results demonstrate that: (1) The average carbon 

productivity from the livestock sector in China is rising steadily. (2) The spatial correlation of carbon 

productivity exhibits a multi-linear network structure, with the spatial correlation network becoming 

increasingly complex and the connections within the network growing tighter. It has formed a spatial 

network structure with the eastern coast zone as the core and the north-eastern and north-western 

zones as the edges. (3) The spatial correlation and spatial spillover effects of carbon productivity from 

the livestock sector between the plates are significant. (4) The formation and evolution of the spatial 

correlation network of carbon productivity from the livestock sector is influenced by the urbanization 

level, per capita livestock income, agricultural industrial structure and livestock mechanization level. 
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1. Introduction 

Recently, the issue of global warming caused by greenhouse gas emissions has attracted 

widespread attention, with the issue of carbon emissions being widely discussed in all sectors (He et 

al., 2020; Wang et al., 2021). Since China proposed the  “ dual carbon” goal at the 27th the United 

Nations General Assembly, the strategic deployment of “carbon peaking” and “carbon neutrality” has 

gradually gained prominence on the agenda. The 20th National Congress of the Communist Party of 

China explicitly pointed out the need to “accelerate the green transformation of the economic 

development model” and “actively and steadily promote carbon peaking and carbon neutrality”. The 

Central Document No.1 in 2023 emphasizes the need to “deepen the promotion of agricultural green 

development”. It is evident that carbon emissions have received attention from the Party and the 

government in all industries. China’s carbon emissions are among the highest in the world, posing a 

serious challenge to high-quality domestic economic growth and sustainable development of the 

ecological environment (Xie et al., 2017; Hu et al., 2023). Among them, emissions reduction and 

carbon sequestration in agriculture and rural areas play an important role in the “dual carbon” goals 

and represent great potential (Hansen et al., 2019). The livestock sector is an important component 

of agriculture. While meeting the growing demand for livestock products, it has become a major 

source of global greenhouse gas emissions. (Xu et al., 2021; Jiang et al., 2024). In order to promote 

the green and low-carbon transformation of the livestock sector and to enhance the improvement of 

the rural ecological environment, it is of practical significance to study the issue of livestock carbon 

emission in China. 



 

 

 

The livestock sector is one of the primary sources of agricultural carbon emissions. Existing 

studies indicate that the carbon emissions from livestock and poultry farming in China account for 

over 30% of the total agricultural carbon emissions, surpassing the carbon emissions generated from 

agricultural energy use, input of agricultural materials, and rice cultivation (Jiang et al., 2023; Zhang 

et al., 2023). Currently, the main academic literature covers carbon emission measurement and 

comparison, influencing factors and spatial patterns from the livestock sector (Herrero et al., 2016; 

Qambrani et al., 2017; Xu et al., 2021). In terms of measuring and comparing carbon emissions from 

the livestock sector, the IPCC coefficient method, the life cycle assessment (LCA) and the carbon 

footprint method have been more frequently applied (Ross et al., 2014; Salvador et al., 2017; Horrillo 

et al., 2020). All of the above studies have found that livestock carbon emission reduction is crucial 

for carbon neutrality in China (Barthelmie, 2022). The scale of the study encompasses the national, 

provincial and county levels (Josette et al., 2019; Cai et al., 2019; Zhuang et al., 2019). And the results 

all contribute to the formulation and implementation of national environmental policies on the 

livestock sector (Yan et al., 2023).  

In terms of the factors influencing carbon emissions from the livestock sector, the effects of 

livestock production efficiency, population growth, urbanization, income level, industrial structure 

and other factors on carbon emissions have been meticulously explored (Li et al., 2017; González et 

al., 2020; Zhang et al., 2020; Rehman et al., 2021; Kumar et al., 2023). And some of these factors can 

spatially contribute to or inhibit the carbon emissions from the livestock sector. Accompanied by the 

progress of spatial analysis methods and spatial measurement techniques, scholars have discussed the 

spatial spillover and spatial convergence of carbon emissions from the livestock sector. (Cai et al., 

2018; Hao et al., 2022; Su et al., 2022). Relevant studies have found that the spatial correlation of 

carbon emissions from the livestock sector has been increasing, and there are characteristics of 

agglomeration and convergence (Willeghems et al., 2016; He et al., 2023). Further, some scholars 

have analyzed the distribution pattern of carbon emissions from the livestock sector. in China based 

on the perspectives of “equity” and “efficiency” (VanderZaag et al., 2014; Albert et al., 2019; Sun et 

al., 2022). They all believe that China has gradually formed a major carbon emission zone for the 

livestock sector extending from northeast region to southwest region, with significant regional 

variations. (Verdi et al., 2024). 

However, it is known that scholars have conducted more studies on carbon emissions from the 

livestock sector, but relatively fewer studies on the efficiency or productivity of carbon emissions in 

the livestock sector (Landholm et al., 2019). Carbon emissions only reflect “environmental benefits”, 

while carbon efficiency or productivity consider both “environmental benefits” and “economic 

benefits”. Focusing only on carbon emissions and neglecting the efficiency or productivity of carbon 

emissions in the livestock sector may lead to a lack of harmony between the livestock economic 

development in some regions and environmental protection. Therefore, this study will focus on the 



 

 

 

carbon productivity in the livestock sector. Furthermore, with the increased coordination of regional 

development in China, the circulation and allocation of factors such as knowledge, technology, and 

capital have accelerated, and the spatial correlation relationships between provinces have been 

enhanced. (Huo et al., 2022). As a result, the spatial correlation of carbon emissions is no longer 

limited to geographical proximity but exhibits complexity and network characteristics in space (Cai 

et al., 2022; Rong et al., 2023). Although some studies have recognized the spatial spillover and 

convergence effects of carbon emissions in the livestock sector, reflecting spatial correlation 

characteristics based on “attribute” data rather than “relationship” data inevitably has certain 

limitations and fails to fully demonstrate its specific internal structural characteristics. While scholars 

have employed social network analysis methods to analyze the overall and individual characteristics 

of spatial correlation networks of carbon emission efficiency in China, involving industries such as 

transportation, agriculture, and tourism, they have not yet delved into the study of carbon emissions 

in the livestock sector (Yang et al., 2014; Chen et al., 2018; Yu et al., 2022; Tang and Li, 2024). 

Therefore, these limitations will pose constraints on the development of carbon emission reduction 

efforts and policy design in the livestock sector. 

Based on the “dual carbon” goal and the context of high-quality development in the livestock 

sector, this study aims to calculate the livestock carbon productivity in China. Furthermore, it employs 

social network analysis and QAP regression analysis to examine the spatial correlation network 

characteristics of livestock carbon productivity in China and identify the driving factors involved. 

Compared with existing studies, the marginal contributions of this study are: (1) By expanding the 

concept of “livestock carbon emissions ” to “livestock carbon productivity”, this study aims to 

provide a more objective assessment of the balance between “emission reduction” and “economic 

development” in the regional livestock sector from the perspectives of both “environmental benefits” 

and “economic benefits. ” (2) By focusing on “relationship” data rather than “attribute” data and 

emphasizing “numerical validity” over “numerical magnitude”, this study aims to delve into the 

internal structural characteristics of the spatial correlation network of carbon productivity from the 

livestock sector in China. (3) This study utilizes the latest data to explore the driving factors of the 

spatial correlation network of carbon productivity from the livestock sector in China. It analyses the 

impact of variables characterizing the livestock industry on the spatial correlation network and 

mitigates the estimation bias that may result from the problem of multicollinearity among variables. 

2. Methodology and data 

2.1. Methodology for measuring livestock carbon productivity 

Drawing the definition of carbon productivity from Kaya et al. (1999), this study adopts the 

livestock industry output created per unit of carbon emissions as the measurement indicator for carbon 

productivity in the livestock sector. This indicator takes into account both the “environmental benefits” 



 

 

 

and “economic benefits” aspects, providing a comprehensive evaluation of carbon productivity. To 

measure carbon productivity in the livestock sector, it is necessary to calculate the carbon emissions 

from the livestock sector in China. Using the IPCC coefficient method, this study calculates the 

carbon emissions from 10 categories of ruminant and non-ruminant animals from the livestock sector 

in China, including cows, non-dairy cattle, horses, donkeys/mules, camels, goats, sheep, pigs, rabbits, 

and poultry. The specific calculation formula is as follows: 

𝐶𝑡 = 𝐶𝐶𝐻4
+ 𝐶𝑁2𝑂 = 𝜃𝑖 × 𝑊𝐶𝐻4

× ∑ 𝑁𝑖 + 𝛾𝑖 × 𝑊𝑁2𝑂 × ∑ 𝑁𝑖                            (1) 

Here, 𝐶𝑡 is the total carbon emissions from the livestock sector in China; 𝐶𝐶𝐻4
、𝐶𝑁2𝑂 denote the 

equivalent of 𝐶𝑂2 after the conversion of 𝐶𝐻4 and 𝑁2𝑂; 𝜃𝑖、𝛾𝑖 denote the 𝐶𝐻4、𝑁2𝑂 emission 

factors of the livestock species in category i；𝑊𝐶𝐻4
、𝑊𝑁2𝑂 are global warming potentials (GWPs) 

with values of 21 and 310；𝑁𝑖 then denotes the average annual stocking of the livestock species in 

category i. The livestock carbon emissions measured in this study mainly include enteric fermentation 

and manure treatment. Among them, the data on 𝐶𝐻4 emission factors from enteric fermentation of 

10 livestock species were obtained from the United Nations Intergovernmental Panel on Climate 

Change (IPCC). The data on the emission factor of 𝐶𝐻4 from manure treatment were obtained from 

FAO, while the data on the emission factor of 𝑁2𝑂 from manure treatment were obtained from Hu 

et al (2010). 

Based on the available data, different livestock rearing cycles dictate the need to adjust the 

average annual feeding levels for some livestock species. For breeds with a rearing cycle greater than 

or equal to 1 year, the end-of-year stocking is the average annual feeding. For breeds with a rearing 

cycle of less than 1 year, it is necessary to use the rearing cycle of the livestock breed and the end-of-

year stocking conversion to obtain. The specific calculation formula is as follows: 

𝑁𝐴𝐹 = {
LAO，RC ≥ 365

RC ×
N

365
，RC < 365

                                                    (2) 

Here, 𝑁𝐴𝐹 is the average annual feeding; LAO is the end-of-year stocking; RC is the rearing cycle; 

and N is the year-end output. Of the 10 types of livestock species selected for this study, pigs, rabbits 

and poultry have rearing cycles of 200, 105 and 55 days (less than 1 year). Therefore, the average 

annual feeding of the above three types of livestock breeds was converted. 

2.2. Modified gravity model 

Before analyzing the characteristics of the spatial correlation network of carbon productivity 

from the livestock sector in China, it is necessary to construct a spatial correlation matrix of carbon 

productivity in the livestock sector. Drawing on the relevant studies of Cai et al. (2022) and Hao et 

al. (2022), a modified gravity model is constructed by combining the traditional gravity model and 

the carbon productivity of China’s livestock sector by province calculated above. Then a spatial 



 

 

 

correlation matrix of China’s livestock sector carbon productivity is obtained. The modified 

gravitational model is given in the following equation: 

𝑄𝑖𝑗 =
𝐿𝐺𝑖

𝐿𝐺𝑖+𝐿𝐺𝑗
×

𝐿𝐶𝑃𝑖+𝐿𝐶𝑃𝑗

𝐷𝑖𝑗
2

(𝑙𝑔𝑖−𝑙𝑔𝑗)
2

                                                       (3）) 

Here, 𝑄𝑖𝑗  is the gravitational value of livestock carbon productivity between province i and province 

j in China, and the matrix formed by each gravitational value reflects the strength of spatial correlation 

of livestock carbon productivity in China; 𝐿𝐺𝑖  and 𝐿𝐺𝑗  are the Gross Livestock Production (in 

million yuan) of province i and province j in China; 𝐿𝐶𝑃𝑖  and 𝐿𝐶𝑃𝑗  are livestock carbon 

productivity of province i and province j in China; 𝑙𝑔𝑖  and 𝑙𝑔𝑗  are the per capita GDP of the 

livestock sector of province i and province j in China (10,000 yuan); 𝐷𝑖𝑗 is the geographical distance 

of the provincial capitals. Using the aforementioned model to construct the spatial correlation network 

matrix, if the gravity value of each row is greater than its row average, it is assigned a value of 1; 

otherwise it is assigned a value of 0. This matrix is finally converted into a binary (0-1) matrix. 

2.3. Social Network Analysis (SNA) 

Social network analysis is an interdisciplinary method that focuses on “relationship” data and 

has been widely applied in various fields such as management, sociology, psychology, and economics. 

In this study, the overall network characteristics of the spatial correlation network of carbon 

productivity from the livestock sector in China are described using five indicators: network density, 

network contacts, network connectedness, network hierarchy, and network efficiency. The individual 

network characteristics of the carbon productivity spatial correlation network in the livestock sector 

are analyzed using three indicators: point centrality, closeness centrality, and betweenness centrality. 

Additionally, cluster characteristics of the carbon productivity spatial correlation network in the 

livestock sector are revealed through methods such as block modeling and adjacency matrix analysis. 

The relevant indicators and their formulae were obtained from He et al. (2022) and Rong et al. (2023). 

2.4. Data sources and description 

This study employs provincial panel data from 2006 to 2021, covering 31 provinces in China 

(excluding Hong Kong, Macao, and Taiwan). Data on the number of livestock and poultry at the end 

of each year and the livestock total output value are obtained from the “China Livestock and 

Veterinary Yearbook”. The geographical distance between provincial capitals is calculated using 

ArcGIS software tools, combined with the geographical coordinates of provincial capital cities. Other 

variable data are obtained from sources such as the “China Statistical Yearbook”, “China Livestock 

and Veterinary Yearbook”, and “China Rural Statistical Yearbook”. 

3. Results and analysis 

3.1. Spatiotemporal evolution of livestock carbon productivity  



 

 

 

3.1.1. Characterization of temporal evolution 

On the whole, the average carbon productivity of the livestock sector in China showed a 

fluctuating upward trend during the study period. In 2021, the average carbon productivity of the 

livestock sector in China was 1.54×104 yuan/t. It is approximately 3.05 times higher than the 0.38×

104 yuan/t in 2006. The significant increase of livestock carbon productivity can be attributed to two 

aspects. On the one hand, it is due to the implementation of carbon emission reduction policies at 

different stages of development by the government. These policies impose institutional constraints on 

various production behaviors of breeding entities and providing effective policy support for the green 

and sustainable development of the livestock sector in China. On the other hand, the increasingly 

tight resource and environmental constraints and higher farming efficiency are driving the main 

bodies of farming to learn and adopt advanced green farming techniques. The farming theme has led 

to increased productivity in livestock and poultry farming through enhanced daily farm cleaning and 

management. But there were also instances of a decline in carbon productivity in certain years. This 

suggests that the coordinated economic and environmental development of the livestock sector in 

China may need to be wary of adverse shocks from major external events. Nevertheless, the carbon 

productivity of the livestock sector in China continues to steadily increase. 

According to the division of three major economic zones in China during the “7th Five-Year 

Plan”, the sample provinces are classified into the eastern coastal zone, central zone, and western 

zone to analyze the regional differences in the livestock carbon productivity. Comparatively, the 

average carbon productivity of the livestock sector in the eastern coastal zone has always been higher 

than the national average, with an average annual growth rate of 8.45%. The average carbon 

productivity of the livestock sector in the western zone has consistently been lower than the national 

average, with relatively slower growth rates. The average carbon productivity of the livestock sector 

in the central zone has been roughly in line with the national average, with a progressively clear 

increasing trend in recent years. In summary, the average carbon productivity of the livestock sector 

of different economic zones in China is steadily increasing. This indicates that China is gradually 

achieving its goal of reducing carbon emissions in the livestock sector, and the livestock and poultry 

farming industry is moving towards a green, low-carbon, and sustainable direction. 



 

 

 

 

Fig.1. Temporal evolution of livestock carbon productivity in China, 2006-2021 

3.1.2. Characterization of spatial distribution 

In this study, four representative years (2006, 2011, 2016, and 2021) were selected to analyze the 

spatial distribution pattern of average carbon productivity in the livestock sector among different 

provinces (Table 1). It can be observed that the average carbon productivity of livestock sector of 

different provinces in China has generally increased to varying degrees. Specifically, taking the year 

2021 as an example, the three provinces with the highest average carbon productivity in the livestock 

sector are Fujian, Jiangsu, and Anhui, with values of 2.85×104 yuan/t , 2.75×104 yuan/t, and 2.59×

104 yuan/t. The three provinces with the lowest average carbon productivity in the livestock sector 

are Gansu, Qinghai, and Tibet, with values of 0.43×104 yuan/t, 0.19×104 yuan/t, and 0.11×104 yuan/t. 

In terms of average annual change rates, the three provinces with the highest average annual growth 

rates in carbon productivity of livestock sector in China are Hainan, Xinjiang, and Guizhou, with 

growth rates of 14.803%, 13.567%, and 13.185%. The three provinces with the lowest average annual 

growth rates in carbon productivity of livestock sector are Beijing, Tianjin, and Shanghai, with growth 

rates of 6.037%, 5.861%, and 5.393%. The above observations indicate that the high-value areas of 

average carbon productivity in the livestock sector are mainly located in the eastern coastal and 

central zones, while the provinces with the largest annual growth rate variations in carbon 

productivity of livestock sector are mostly in the western zone. Therefore, the western zone is 

expected to become a key region for improving carbon productivity from the livestock sector and 

promoting the green transformation and upgrading of livestock sector. 

Table 1 Spatial distribution pattern of livestock carbon productivity in 2006, 2011, 2016, and 2021 
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3.2. Overall characterization of the spatial correlation network  

This study selected four sample years (2006, 2011, 2016, and 2021) to construct the spatial 

correlation network of carbon productivity from the livestock sector in China among provinces using 

the Netdraw module of UCIENT 6 (Fig.2). Overall, the spatial correlation of carbon productivity in 

the livestock sector exhibits a multi-linear network structure, with the spatial correlation network 

becoming increasingly complex and the connections within the network growing tighter. Provinces 

in the eastern coastal zone such as Beijing, Shanghai, and Tianjin are located at the core of the network, 

while provinces like Jiangsu, Zhejiang, and Fujian occupy sub-core positions. It indicates stronger 

connections with other regions in terms of carbon productivity in livestock sector and belonging to 

the core area of the network. Certain provinces in western and central zones in China, such as Inner 

Mongolia and Ningxia, have weaker connections with other regions in terms of carbon productivity 

in livestock sector and are situated on the network’s periphery. 

 

2006 2011 2016 2021 

Average 

annual 

rate(%) 

2006 2011 2016 2021 

Average 

annual 

rate(%) 

Beijing 0.902  1.499  1.412  2.172  6.037  Hubei  0.452  1.021  1.319  2.367  11.675  

Tianjin 0.621  0.828  1.123  1.460  5.861  Hunan  0.409  0.888  1.030  1.600  9.516  

Hebei 0.411  1.040  1.207  1.612  9.540  Hubei  0.552  1.143  1.259  2.534  10.695  

Shanxi 0.199  0.675  0.742  1.034  11.606  Guangxi  0.339  0.848  1.003  1.382  9.830  

Inner 

Mongolia 
0.185  0.394  0.467  0.647  8.710  Hainan 0.321  0.860  1.203  2.543  14.803  

Liaoning 0.526  1.169  1.190  1.569  7.565  Chongqing  0.381  0.767  1.034  1.754  10.722  

Jilin 0.364  1.016  1.169  1.998  12.023  Sichuan  0.391  0.693  0.827  1.146  7.426  

Heilongjiang 0.352  0.865  1.381  1.301  9.112  Guizhou  0.126  0.350  0.670  0.809  13.185  

Shanghai 0.790  1.253  1.475  1.738  5.393  Yunnan  0.184  0.422  0.554  0.942  11.491  

Jiangsu 0.669  1.799  2.101  2.745  9.874  Tibet  0.023  0.040  0.088  0.108  10.681  

Zhejiang 0.740  1.536  1.884  2.406  8.178  Shannxi  0.254  0.989  1.215  1.564  12.872  

Anhui 0.502  1.336  1.546  2.586  11.551  Gansu  0.108  0.168  0.229  0.429  9.595  

Fujian 0.581  1.094  1.549  2.848  11.176  Qinghai 0.054  0.113  0.152  0.187  8.577  

Jiangxi 0.392  0.817  0.811  1.292  8.273  Ningxia  0.161  0.348  0.394  0.530  8.255  

Shandong 0.408  1.042  1.167  2.098  11.528  Xinjiang 0.092  0.294  0.367  0.620  13.567  

Henan 0.309  0.785  0.941  1.666  11.894        
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c.2016 

 

d.2021 

Fig. 2 Evolution of spatial correlation network of livestock carbon productivityin China 

Table 2 presents the overall network structure and evolutionary characteristics of the spatial 

correlation network of carbon productivity from the livestock sector in China. The network density 

increased from 0.139 in 2006 to 0.218 in 2021, indicating a growth of 56.83%. The network contacts 

also increased from 129 connections in 2006 to 203 connections in 2021, showing a growth of 57.36%. 

These findings reflect the increasing interconnectedness of the spatial correlation network in the 

livestock sector carbon productivity, with a strengthening of spatial spillover effects. 

The largest increases in network density and contacts occurred in 2020-2021, possibly due to the 

government’s issuance of the ‘Opinions on Promoting High-Quality Development of Livestock 

Sector’ in 2020. The implementation of this policy has facilitated communication and cooperation in 

the development of livestock sector among provinces and cities, promoted the circulation of factors 

and the dissemination of breeding technologies, thereby strengthening internal connections among 

provinces nationwide. However, the maximum number of network contacts at this stage is 211, which 

is less than 1/3 of the maximum number of possible relationships of 930. It implies that the spatial 

correlation network relationship of carbon productivity in the livestock sector needs to be further 

improved. It is worth noting that while the network density is increasing, excessive growth in network 

density may lead to network redundancy. Therefore, it is necessary to increase the number of network 

connections on one hand, and gradually enhance network density on the other hand to reduce the 

interference caused by network redundancy in the circulation of factors related to carbon productivity 

in livestock sector among provinces. 

The network connectedness of the spatial correlation network of carbon productivity in the 

livestock sector remains at 1, indicating that there are no unreachable pairs of nodes within the 

network. This suggests that the carbon productivity relationships among provinces in the livestock 



 

 

 

sector are relatively close, and each network node can be connected and spillover within the network. 

In other words, the spatial correlation network of carbon productivity in the livestock sector has good 

robustness. 

Although the network hierarchy showed an upward trend in 2011, 2016, and 2019, it generally 

exhibited a downward trajectory. It fluctuated from 0.820 in 2006 to 0.237 in 2021. This indicates 

that the internal structure of the spatial correlation network of carbon productivity in the livestock 

sector is gradually moving towards diversification, with a decrease in the number of nodes occupying 

an absolute dominant position and a weakening of their ‘radiation’ effect on other nodes within the 

network.  

The overall network efficiency has shown a downward trend, decreasing from 0.814 in 2006 to 0.726 

in 2021. This indicates that the number of correlation lines between provinces in the spatial correlation 

network of carbon productivity in the livestock sector has increased, and mutual interactions have 

continued to strengthen, with network connections becoming increasingly close. However, since 2019, 

network efficiency has slightly increased, indicating that while strengthening internal connections 

and interactions within the network, it is necessary to avoid adverse impacts on network stability 

caused by external events. 

Table 2 Overall structural characteristic indicators of the spatial correlation network of livestock 

carbon productivity, 2006-2021 

Year 
Network 

density 

Network  

contacts 

Network 

connectedness 

Network 

hierarchy 

Network 

efficiency 

2006 0.139 129 1 0.820  0.814  

2007 0.167 155 1 0.768  0.759  

2008 0.176 164 1 0.581  0.747  

2009 0.184 171 1 0.579  0.731  

2010 0.172 160 1 0.575  0.756  

2011 0.165 153 1 0.806  0.759  

2012 0.198 185 1 0.626  0.710  

2013 0.216 201 1 0.463  0.692  

2014 0.216 201 1 0.463  0.694  

2015 0.227 211 1 0.459  0.683  

2016 0.218 203 1 0.503  0.685  

2017 0.215 200 1 0.422  0.692  

2018 0.209 194 1 0.420  0.690  

2019 0.178 166 1 0.614  0.740  

2020 0.178 166 1 0.571  0.747  

2021 0.218 203 1 0.237  0.726  

3.3. Individual characterization of spatial correlation networks 

To explore the individual-level status and role of different provinces in the spatial correlation 

network of carbon productivity in the livestock sector, four time cross-sections were selected for 



 

 

 

analysis, namely 2006, 2011, 2016, and 2021. Three centrality indicators were used to calculate the 

individual network characteristics of the spatial network of carbon productivity in the livestock sector 

(Fig.3). It can be observed that the spatial correlation network of carbon productivity from 

thelivestock sector forms a network structure with the eastern coastal region as the core and the 

northeastern and northwestern regions as the periphery. With the increase in the livestock sector 

output value and the continuous implementation of policies promoting high-quality development in 

the livestock sector, the status of central and western regions in the spatial correlation network of 

carbon productivity in the livestock sector has become increasingly prominent. 

3.3.1. Point centrality 

In 2006, 2011, 2016, and 2021, the average point centrality values of each province were 7.16, 

8.71, 10.77, and 9.61, showing an overall increasing trend. This indicates that the spatial correlation 

between the carbon productivity of the livestock sector in different provinces has been continuously 

increasing, leading to a closer network connection between provinces. In terms of regions, provinces 

such as Beijing, Shanghai, Tianjin, Jiangsu, and Zhejiang consistently held high positions in point 

centrality throughout the study period, positioning them at the core of the network.  

Possible reasons for this include their developed economic levels, advantageous geographical 

locations, rapid urbanization rates, and efficient resource utilization, resulting in more frequent flows 

of factors and resources with neighboring regions. In some years, provinces in central and western 

regions such as Chongqing, Guizhou, Shanxi, and Xinjiang had point centrality values higher than 

the average. Xinjiang may rely on its abundant grassland resources and the support of the Western 

Development Strategy to establish spatial network connections with other regions. Provinces in the 

northwest region like Inner Mongolia, Qinghai, Gansu, and those in the northeast region like Jilin and 

Heilongjiang generally had lower point centrality values in most years. This can be attributed to 

factors such as their remote geographical locations, relatively underdeveloped economic levels, and 

inefficient energy utilization structures, placing these regions at the periphery of the spatial correlation 

network. 

3.3.2. Closeness centrality 

In 2006, 2011, 2016, and 2021, the average closeness centrality values of each province were 

58.16, 59.47, 61.75, and 59.86, showing an overall increasing trend, with a convergence range in 

closeness centrality values. This indicates that the spatial correlation network of carbon productivity 

in the livestock sector exhibits more pronounced agglomeration characteristics. In terms of regions, 

provinces such as Beijing, Shanghai, Tianjin, Jiangsu, and Zhejiang had closeness centrality values 

far above the average. This suggests that these provinces play a central role in the spatial correlation 

network of livestock carbon productivity in China, enabling them to establish more connections with 

other provinces in the spatial correlation network. As a result, they are better positioned to acquire 

and distribute relevant factors and influence the carbon productivity of the livestock sector in 



 

 

 

neighboring or other provinces. Additionally, provinces like Fujian, Liaoning, and Shanxi had 

closeness centrality values higher than the average in most years, indicating a trend of catching up 

with the central actors. Provinces in the northwest region such as Gansu, Ningxia, Qinghai, and those 

in the northeast region like Jilin and Heilongjiang had closeness centrality values lower than or equal 

to the average in most years. This highlights the role of these regions as peripheral actors in the spatial 

correlation network of livestock carbon productivity in China. 

3.3.3. Betweenness centrality 

In 2006, 2011, 2016, and 2021, the average betweenness centrality values of each province were 

1.067, 1.00, 2.98, and 3.22, showing an overall upward trend, with an expanding range in betweenness 

centrality values. This indicates signs of local differentiation expansion in the spatial correlation 

network, reflecting the need to further enhance the degree of balance in the spatial network structure 

of livestock carbon productivity in China. In terms of different regions, provinces such as Fujian, 

Jiangsu, and Tianjin had betweenness centrality values higher than the average, showing an increasing 

trend. This implies that these provinces have a significant influence on the carbon productivity of the 

livestock sector in various regions within the spatial correlation network. These provinces can 

promote the green and low-carbon transformation of the livestock production in other regions through 

the dissemination of breeding technologies, funding, and labor. Additionally, provinces like 

Guangdong, Jilin, Shanxi, and Chongqing experienced rapid growth in betweenness centrality. This 

is mainly attributed to the introduction of provincial policies promoting green and low-carbon 

development in the livestock sector and their geographical accessibility. Provinces in the northwest 

such as Qinghai, Tibet, Inner Mongolia, and in the northeast like Heilongjiang had betweenness 

centrality values mostly lower than the average. This indicates that these regions occupy marginal 

positions in the spatial correlation network, making it challenging for them to influence and control 

the carbon productivity of the livestock sector in other regions. 

 

a. Point centrality 



 

 

 

 

b. Closeness centrality 

 

c. Betweenness centrality 

Fig.3 Individual structural characteristic indicators of spatial correlation network of livestock 

carbon productivity in 2006, 2011, 2016, and 2021 

3.4. Block model analysis 

With the CORNOR operation tool of UCINET software, 31 provinces in China were divided 

into four segments for spatial clustering with the criteria of maximum depth of 2 and concentration 

degree of 0.2 to clarify the internal structure of the spatial correlation network of carbon productivity 

in China’s livestock sector (Table 3). The spatial correlation network of carbon productivity in China’s 

livestock sector consists of a total of 203 relationships, including 38 within-board relationships and 

165 between-board relationships. This indicates that the spatial correlation and spillover effects of 

carbon productivity in the livestock sector between different regions are significant. 

Table 3 Segmentation of spatial correlation network of livestock carbon productivity 

Plate 

Relationships 

received 
Number 

of 

provinces 

Inflow 

external 

relationships  

Outflow 

external 

relationships 

Expected 

internal 

Actual 

internal 
Role 

I II III IV 



 

 

 

relationship 

ratio(%) 

relationship 

ratio(%) 

I 17 5 58 3 14 20 66 43.333  20.482  Main outflow 

II 0 17 36 15 9 28 51 26.667  25.000  Main outflow 

III 17 6 4 2 5 97 25 13.333  13.793  Main inflow 

IV 3 17 3 0 3 20 23 6.667  0.000  Agent 

Note: Calculated and collated by the authors. 

Sectors I and II belong to the ‘main outflow’ sectors within the spatial correlation network of 

livestock carbon productivity in China. Both sectors have a higher expected internal relationship ratio 

than the actual internal relationship ratio, and the number of outflow external relationships is 

significantly greater than the number of inflow external relationships. Regions belonging to this sector 

type are mostly provinces in the central and western regions where there is abundant grassland 

resources and large energy reserves. In recent years, the orderly advancement of the Western 

Development Strategy and the Rise of Central China Strategy has strengthened the flow and 

allocation of resources and factors between different regions, resulting in a main outflow status for 

these regions. Sector III includes Beijing, Tianjin, Zhejiang, Ningxia, and Fujian. These regions have 

a much higher number of inflow external relationships than outflow external relationships, and the 

actual internal relationship ratio is essentially in line with the expected internal relationship ratio, 

making them ‘main inflow’ sectors. Beijing, Tianjin, and Zhejiang may be able to effectively attract 

resources and factors from other regions due to their superior geographical location and relatively 

high level of economic development, forming a rational pattern of resource allocation. Fujian may 

benefit from the ripple effects of the Yangtze River Economic Belt development strategy and 

gradually align with Zhejiang in various aspects, thus creating a certain attractiveness. Ningxia, 

located in the Hexi Corridor, may have overcome local economic development difficulties through 

its factor endowment advantages, attracting factors from surrounding areas and becoming a main 

inflow. Sector IV includes Henan, Guangdong, and Hunan, where the number of inflow and outflow 

external relationships is relatively balanced, but the actual internal relationship ratio is lower than the 

expected internal relationship ratio. Therefore, these provinces belong to the ‘agent’ sector within the 

spatial correlation network of livestock carbon productivity in China, primarily playing a ‘linking’ 

role. 

The density of the spatial correlation network of carbon productivity in the livestock sector is 

0.218. The matrix composed of sector densities is transformed into an image matrix (Table 4). In 

summary, while each sector emits spatial overflow to other sectors, they also receive spatial overflow 

from other sectors. Sector I receives spatial overflow from Sectors III and IV while emitting overflow 

to Sectors II, III, and IV. Sector II receives spatial overflow from Sectors I, III, and IV while emitting 

overflow to Sectors III and IV. Due to the significantly lower number of receiving relationships 

compared to emitting relationships, Sectors I and III are both classified as ‘main outflow’ sectors. 



 

 

 

Sector III experiences mutual spatial overflow effects with the other three sectors but its outflow to 

inflow ratio is much lower, placing it in the ‘main inflow’ category. The relationships from Sectors I 

and II dominate the total overflow relationships in the three sectors. Similarly to Sector III, Sector IV 

also exhibits mutual spatial overflow effects with the other three sectors, but its outflow to inflow 

ratio is very close, categorizing it as a ‘agent’' sector within the spatial correlation network of 

livestock carbon productivity in China. 

Table 4 Density matrix and image matrix of spatially correlated segments of livestock carbon 

productivity  

Plate 
Density matrix Image matrix 

I II III IV I II IIII IV 

I 0.093 0.04 0.829 0.071 0 0 1 0 

II 0.000  0.236 0.8 0.556 0 1 1 1 

III 0.243 0.133 0.2 0.133 1 0 0 0 

IV 0.071 0.63 0.2 0.000  0 1 0 0 

3.5. Drivers of the spatial correlation network of livestock carbon productivity 

3.5.1. Model Configuration and Variable Selection 

According to the block model analysis, there exists a mutual overflow correlation of carbon 

productivity in the livestock sector between different sectors. Based on relevant theories in economics 

and geography, combined with previous research, it is known that carbon productivity is closely 

related to factors such as geographical proximity, urbanization level, income level, industrial structure, 

industry scale, and technological level. Geographical proximity facilitates the geographic 

agglomeration of resources and factors, thereby enhancing the attractiveness of the local area to 

surrounding or other regions. Population migration and agglomeration towards urban areas can 

stimulate the consumption of livestock products such as meat, eggs, and dairy, thereby influencing 

the spatial pattern of carbon productivity in the livestock sector. Income level serves as the foundation 

for the economic development of the livestock sector in each province, promoting the cross-provincial 

flow of related resources and factors and positively impacting the spatial correlation network structure 

of carbon productivity in the livestock sector. Industrial structure plays a significant role in 

determining the speed, scale, and quality of livestock industry development. Therefore, the industrial 

structure and scale also determine the formation and distribution of the spatial network of carbon 

productivity in the livestock sector. Differences in technological levels may affect the adoption and 

diffusion of new technologies across regions. Hence, the study constructs a model for the driving 

factors of the spatial correlation network of carbon productivity in China’s livestock sector, including 

indicators such as geospatial proximity, urbanization level, per capita livestock income, agricultural 

industrial structure, livestock farming scale, and livestock mechanization level. The specific 

calculation formula is as follows: 

Q=F (D, U, R, I, S, M)                                                        (4) 



 

 

 

Here, the dependent variable Q is the spatial correlation matrix of carbon productivity from the 

livestock sector in China; independent variable D denotes geospatial proximity, as measured by the 

matrix of geographic distances of provincial capital cities between provinces; U denotes urbanization 

level, as measured by the network matrix of differences in urbanization rates between provinces; R 

denotes per capita livestock income, as measured by the network matrix of differences in per capita 

denotes income between provinces; I denotes agricultural industrial structure, as measured by a 

network matrix of differences between provinces in the share of livestock GDP in agricultural, 

forestry and fisheries GDP; S denotes livestock farming scale, measured by a network matrix of 

differences in year-end large livestock stocking between provinces; M denotes livestock 

mechanization level, as measured by a network matrix of differences in the total power of livestock 

machinery between provinces. The total power of livestock machinery is derived from the total power 

of agricultural machinery. Since both the dependent and independent variables are in the form of a 

“relationship” data matrix, using traditional statistical methods to test causality would inevitably 

encounter problems with multicollinearity, resulting in estimation bias. Therefore, a non-parametric 

method called QAP regression was utilized to explore the driving factors of the spatial correlation 

network of carbon productivity from the livestock sector. This method is more robust than traditional 

statistical methods. The meaning and data sources of each variable are shown in Table 5. 

Table 5 Description of variables for spatial correlation network of livestock carbon productivity 

Variable Meaning of variable Calculation method and description Data source 

D Geospatial proximity 
Matrix of geographic distances of provincial capital 

cities between province i and province j 

Measured by ARCGIS 

software 

U Urbanization level 
Network matrix of differences in urbanization rates 

between province i and province j 
China Statistical Yearbook 

R 
Per capita livestock 

income 

Network matrix of differences in per capita pastoral 

income between province i and province j 

China Livestock and 

Veterinary Yearbook 

I 
Agricultural industrial 

structure 

Network matrix of differences in the share of pastoral 

GDP in agricultural, forestry and fisheries GDP 

between province i and province j 

China Rural Statistics 

Yearbook 

S 
Livestock farming 

scale 

Network matrix of differences in year-end livestock 

stocks between province i and province j 

China Livestock and 

Veterinary Yearbook 

M 
Livestock 

mechanization level 

Network matrix of differences in total power of 

livestock machinery between province i and province j 

China Rural Statistics 

Yearbook 

3.5.2. QAP correlation analysis 

The matrices of the dependent and independent variables were imported into the UCINENT 

software, and 5000 random permutations were selected to obtain the correlation analysis results 

between the spatial relationship matrix of carbon productivity in the livestock sector and its driving 

factors (Table 6). It can be seen that the correlation coefficient between geospatial proximity and the 

spatial correlation of carbon productivity in the livestock sector is significant at the 10% level, while 

the correlation coefficients between urbanization level, per capita livestock income, agricultural 



 

 

 

industrial structure, livestock farming scale, and livestock mechanization level and the spatial 

correlation of carbon productivity in the livestock sector are all significant at the 1% level. This 

indicates that these variables drive the formation and evolution of spatial correlation network of 

livestock carbon productivity in China. Hence, the study also tested the correlation between the 

explanatory variables and found that all explanatory variables are significantly correlated with each 

other. Therefore, QAP regression is needed to find the driving factors behind the formation of spatial 

correlation network of carbon productivity in the livestock sector. 

Table 6 QAP correlation analysis for spatial correlation network of livestock carbon productivity  

Variable Coefficient Significance Average 
Std 

Dev 
Minimum Maximum P≥0 P≤0 

D -0.077  0.075  -0.000  0.058  110.003  3639.514  0.924  0.075  

U -0.313  0.000  -0.001  0.090  -52.690  52.690  1.000  0.000  

R -0.273  0.001  0.001  0.087  -16.374  16.374  0.999  0.001  

I 0.292  0.000  -0.002  0.089  -45.248  45.248  0.000  1.000  

S 0.334  0.000  0.001  0.091  -917.100  917.100  0.000  1.000  

M 0.208  0.001  -0.001  0.090  -2966.544  2966.544  0.001  0.998  

3.5.3. QAP regression analysis 

The QAP regression results were obtained after 5000 random permutations (Table 7). It can be 

observed that: 

(1) The regression coefficient of the urbanization level difference is significantly negative, 

indicating that the degree of population urbanization can to some extent measure current level of new 

urbanization construction in China and generate spatial spillover effects on the economy and society. 

However, a larger difference in urbanization levels can lead to significant differences in resource and 

factor demands among relevant personnel. It is not conducive to communication, exchange, and 

cooperation among various regions in livestock production and environmental protection aspects.  

(2) The regression coefficient of the per capita livestock income difference is significantly 

negative, indicating that the smaller the differences in the level of livestock economic development 

among provinces in China, the more similar the income situation of herdsmen, and the more 

conducive it is to promoting the formation of the spatial correlation network of carbon productivity 

in the livestock sector. A smaller difference in livestock output value leads to similar demands for 

livestock labor and breeding technology among provinces. It is helpful for the cross-regional 

allocation and circulation of various related factors and resources and further promotes the formation 

of spatial network correlation among regions.  

(3) The regression coefficient of the difference in agricultural industrial structure is significantly 

positive at the 5% level, indicating that the uneven industrial structure between regions under certain 

conditions affects the spatial correlation relationship of carbon productivity in the livestock sector. 

The greater the differences in the proportion of livestock development in agricultural development 

among regions, the more favorable it is for factors and resources to flow from provinces and 



 

 

 

departments with high production efficiency to those with low production efficiency, forming a 

positive spatial spillover effect. This ample spatial transfer and exchange of factors and resources 

help optimize and upgrade the structure of the spatial correlation network of carbon productivity in 

the livestock sector. 

(4) The regression coefficient of the difference in the livestock mechanization level is 

significantly positive and has passed the 5% significance level test, indicating that provinces with 

greater differences in the livestock mechanization level are more likely to have spatial correlations in 

carbon productivity in the livestock sector. This is because the level of mechanization to some extent 

reflects the regional level of technological development in the livestock sector, and these differences 

help in the overflow and absorption of capital, technology, and knowledge across regions. Thereby it 

promotes personnel exchanges and service spillovers in the livestock mechanization level among 

provinces. 

(5) The regression coefficient for the difference in geospatial proximity is negative but not 

significant, indicating that it does not significantly impact the formation of the spatial correlation 

network of carbon productivity in the livestock sector. Possible explanations are that the widening 

gap in geographical distance leads to higher costs of interregional factor mobility and poor transport 

of livestock products, which affects the degree of interprovincial livestock development correlation 

(Hao et al., 2022). The regression coefficient for the difference in livestock farming scale is positive 

but not significant. This suggests that similar farming scales imply similar conditions and 

environments for livestock development in different provinces, and similar demands for resources 

and factors, which in turn promote the formation of spatially linked networks. However, the difference 

in farming scale will cause regional carbon emissions to differ, and carbon productivity will also be 

affected by the regional economic development level and the basis of livestock development (Rehman 

et al., 2021), so this effect is not significant.  

Table 7 QAP regression analysis for spatial correlation network of livestock carbon productivity 

Variable 
Unstandardized 

coefficient 

Standardized 

coefficient 
Significance Probability 1 Probability 2 

Constant 0.208  0.000     

D -0.000  -0.041  0.280  0.720  0.280  

U -0.003  -0.117  0.066  0.934  0.066  

R -0.007  -0.099  0.075  0.925  0.075  

I 0.003  0.116  0.044  0.044  0.956  

S 0.000  0.102  0.116  0.116  0.884  

M 0.000  0.099  0.045  0.045  0.955  

R2 0.154   0.000    

Observations 930      

4. Discussion 

The average carbon productivity from the livestock sector in China has demonstrated a 



 

 

 

consistent upward trend, aligning with the existing studies (Huo et al., 2022). As government 

regulations have intensified, livestock and poultry farmers have gradually curbed and regulated their 

farming practices, resulting in a convergence of livestock carbon emissions. Concurrently, the 

expansion of the economic scale of livestock farming has contributed to the increased level of carbon 

productivity. The spatial network of carbon productivity from the livestock sector has become 

increasingly intricate, with strengthened connections within the network. This underscores the 

significance of removing barriers to inter-provincial factor flows and advancing regional cooperation 

and exchange (Rong et al., 2022). Notably, the carbon productivity from the livestock sector in China 

has formed a spatial network structure, with the eastern coastal region serving as the core and the 

northeastern and northwestern regions as the periphery. Therefore, it is crucial to develop tailored 

carbon emission reduction programs for the livestock industry (Xu et al., 2021). Provinces and cities 

situated in the eastern coastal zone, at the core of the network, should lead in implementing 

environmentally friendly and low-carbon initiatives, while continuing to drive the optimization and 

upgrading of the agricultural industrial structure. The northeastern and northwestern regions should 

enact more stringent environmental regulations and policies and be open to the transfer of resource 

elements from other regions. Central and western regions should attract talent and livestock 

technologies from developed areas to enhance the efficiency of local livestock production, while 

simultaneously serving as intermediaries in spatially linked networks. 

Comparing with previous literature, this study has made advancements in several aspects. Firstly, 

the research focus has shifted from “livestock carbon emissions” to “livestock carbon productivity” 

and the perspective has evolved from emphasizing “environmental benefits” to promoting the 

“synergistic development of environmental and economic benefits”. Secondly, this study has revealed 

the spatial correlation network structure of livestock carbon productivity, including its overall 

structure, individual structures, and clustering structures. This enriches the research content on spatial 

correlation of carbon productivity in the livestock sector, expanding the scope of spatial relationships 

from “proximity” to a nationwide “network”. However, this study still has some limitations. Firstly, 

the lack of access to livestock data at the county level hinders the calculation of carbon productivity 

in livestock sector at that granularity. Therefore, the study of the spatial correlation network of 

livestock carbon productivity only at the provincial level may be considered somewhat crude. Future 

research should aim to refine these findings to enhance the value of research related to carbon 

productivity in the livestock sector. Secondly, the spatial correlation network is the result of multiple 

driving factors working together. Analyzing the driving forces based solely on variables such as 

geospatial proximity, urbanization level, per capita livestock income, agricultural industrial structure, 

livestock farming scale, and livestock mechanization level may be somewhat biased. Future research 

should delve deeper into discussions on mechanisms, considering factors like the degree of openness 

and the intensity of environmental regulations. 



 

 

 

5. Conclusion  

The main conclusions are as follows: 

(1) Overall, the average carbon productivity of the livestock sector in China has shown an 

upward trend with fluctuations, indicating that China is gradually achieving its carbon emission 

reduction targets in the livestock sector. Among them, the carbon productivity of the livestock sector 

in the eastern coastal zone is higher than that in the central and western zones. A series of policies 

related to carbon emission reduction in the livestock sector and the adoption of green production 

methods by related farming entities have played an important role in this trend. 

(2) The spatial correlation of carbon productivity in the livestock sector exhibits a multi-linear 

network structure, with the spatial correlation network becoming increasingly complex and the 

internal connections within the network growing tighter. There is an increasing fluctuation in network 

density and network contacts, while the network connectedness remains stable at 1, and the network 

hierarchy and network efficiency show a decreasing trend. This indicates that the spatial correlation 

network of carbon productivity in the livestock sector is becoming more complex and balanced, while 

efforts should be made to avoid adverse impacts on network stability from uncertain exogenous events. 

(3) The spatial correlation network of carbon productivity in the livestock sector is centered 

around the eastern coastal provinces and cities, with the northeastern and northwestern regions 

forming the periphery of the spatial correlation network structure. Additionally, the position of the 

central and western regions in the spatial correlation network of carbon productivity in the livestock 

sector is gradually strengthening. 

(4) The spatial correlation and spatial spillover effects of carbon productivity in the livestock 

sector between the plates are significant. Twenty-three provinces, including Inner Mongolia, Gansu 

and Guizhou, belong to the “main outflow” plate. Beijing, Zhejiang, Tianjin, Fujian and Ningxia 

belong to the “main inflow” segment. Henan, Guangdong and Hunan belong to the “agent” plate. 

(5) Differences in urbanization levels, per capita livestock income, agricultural industry structure, 

and livestock mechanization level significantly influence the dynamic changes of the spatial 

correlation network of carbon productivity from the livestock sector in China. In addition, differences 

in geospatial proximity and livestock farming scale do not significantly impact the formation of the 

spatial correlation network of livestock carbon productivity. 
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