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Abstract 

Rapid industrialization and urbanization have resulted in 
poor air quality, which poses a risk to human health by 
causing a variety of lung diseases. The precise forecast of 
air quality is of practical importance. Consequently, the 
development of an automated air pollution monitoring 
system based on environmental toxicology is required. 
Although advanced machine learning approaches can 
yield reasonable results in air quality prediction, they 
require more historical data collection. In order to address 
this problem, a lightweight recurrent network based on 
transfer learning with skip connection (LRN-SC) is 
proposed for air quality prediction. LRN-SC pretrains the 
model using data from an available station. The features 
that were learned from the previous station are retained, 
and the pre-trained model is then adjusted to fit the new 
one. After that, Transfer learning-based light weight 
recurrent network with skip connection (TL2RN-SC) is 
trained, and the model is tested using data from the new 
station. The proposed model reduces the decoding 
burden by adding skip contacts between the decoder and 
the linear 

forecasting layer. The simulation results show that the 
proposed model outperforms the existing models by 
attaining average RMSE and MAE of 0.974 and 2.63 
respectively. 

Keywords: Air quality; deep learning; recurrent network; 
simple recurrent network; and transfer learning 

1. Introduction 

Environmental monitoring systems evaluate the current 
state of air, soil and water, identify patterns, predict 
future conditions, send early warnings of potential 
hazards, and assist decision makers in sustainable 
development and environmental preservation. Chapman J 
et al. (2020) introduced environmental monitoring has 
evolved as smart environmental monitoring systems that 
incorporate modern sensors, Internet of Things (IoT) 
technologies, and machine learning (ML) techniques. 
Surendran R et al. (2021) developed a systems include 
various environmental monitoring applications, such as 
water and air monitoring. Hojjati-Najafabadi et al. (2022) 
implemented a water monitoring assesses the effects of 
contaminants and dangerous materials in lakes, rivers, 
and oceans, while air monitoring monitors air quality. Liu 
et al. (2020) executed a air quality forecasting becoming a 
popular research topic in the domains of pollution control, 
urban area development, and sustainable smart 
environmental design, specifically in rapidly developing 
countries like India. Lu et al. (2021) established the 
growing use of industrial technology and the growth of 
the transportation sector contribute to an increase in 
urban air pollution. Goodsite et al. (2021) introduced 
PM2.5 or tiny particles with a diameter of 2.5 microns or 
less in the atmosphere are the main contributor to air 
pollution. Human health will be directly affected by an 
increase in PM2.5 concentration by Wang et al (2021). Al-
Janabi et al. (2021) added to this, there are several other 
toxins that adversely affect both the atmosphere and 
human health. Jion et al. (2021) stated the most common 
pollutants are sulfur dioxide (SO2), ozone (O3), carbon 
monoxide (CO), and nitrogen oxides (NOx). Surendran R et 
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al. (2023) describe the real-time forecasts of these factors 
have many practical and societal benefits. These data are 
essential for promoting sustainable development and play 
an important role in atmospheric management to reduce 
air pollution. 

Castelli et al. (2020) introduce the technologies for 
predicting air quality use a variety of techniques, from 
sophisticated machine learning and deterministic models 
to traditional statistical techniques. Ma et al. (2021) 
determined a deterministic approaches are dependent on 
the mass transfer or thermodynamic hypothesis for in-
depth modelling and analytical examination. It should be 
noted that the deterministic models that were realized 
using numerical simulation offer crucial information on 
self-governing variables and insightful commentary on 
system interactions during the design stage. Surendran R 
et al. (2023) and Khan et al. (2020) designed a the 
statistical forecasting approach uses historical time series 
data and quantitative analysis to forecast air quality. 
Regression analysis and time series analysis are two 
statistical prediction models that are often used by 
Masood et al. (2021). Jin et al. (2021) discussed about 
Machine learning (ML) approaches a core component of 
artificial intelligence (AI) and offers great opportunities to 
identify, classify, and forecast air quality indicators. Loy-
Benitez et al. (2020) and Eslami et al. (2020) stated a deep 
learning methods such as long short-term memory 
(LSTM), gated recurrent unit (GRU), and convolutional 
neural network (CNN) have the ability to capture the non-
linear characteristics of the air quality variables. Haq et al. 
(2022) implement a Long-term memory maintenance is a 
challenge for LSTM and GRU algorithms when predicting 
time series, particularly for long sequences. Mao et al. 
(2022) added a the static sequential input–output 
structure increases computation costs and slows the 
training rate of conventional RNNs such as LSTM. On the 
other hand, the recurrent computation is simplified by the 
Simple Recurrent Unit (SRU) through the avoidance of 
complicated gating mechanisms. As a result, SRU has 
faster training times and a lower demand for computer 
resources. 

Ke et al. (2020) discuused a deep learning and advanced 
machine learning methods can yield accurate air and 
water quality predictions, their use requires a sufficiently 
large historical data collection. In the absence of sufficient 
historical data, neural networks perform poorly because 
they cannot identify the patterns concealed in the time 
series. For example, recently constructed air monitoring 
stations or those with insufficient data cannot supply 
enough samples for deep learning model training. 
Therefore, it is important to investigate a prediction 
model that may address or reduce the problem of data 
scarcity in recently constructed stations. The current 
recurrent models can handle the time-series data on air 
quality, but they cannot deal with the model's intrinsic 
sensitivity to outliers, which makes the model fit poorly 
for the peak value of quality indicators.  Moreover, the 
network will become more complex due to the excessive 
parameter usage of current models. To this end, this 

paper proposes new lightweight deep learning models for 
air quality prediction. The main contributions of this 
research work are as follows:  

To circumvent the issue of insufficient data in the air 
quality prediction model by introducing a transfer 
learning-based lightweight recurrent network with skip 
connection. To simplify recurrent computation by 
avoiding complicated gating techniques using SRU. 
Compared to a traditional RNN, it can result in shorter 
training times and less computing overhead. To address 
the issue of network learning deterioration and reduce 
gradient vanishing by adding a skip connection to the 
BiSRU decoder.  

2. Related works 

Examining air pollution is regarded as a crucial study in 
mapping the degree of pollution in various places. 
Machine learning techniques have extensive applications 
in the prediction, forecasting, and control of pollution 
levels. An automated technique of forecasting air quality 
based on machine learning predicts the levels of the main 
pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) and 
their respective concentrations. Maltare et al. (2023) 
examined different machine learning techniques, 
including Seasonal Auto-Regressive Integrated Moving 
Average (SARIMA), Support vector machine (SVM) and 
LSTM to estimate the air quality index in India. Various 
pre-processing techniques, such as feature selection, 
outlier processing, and handling missing values, are 
employed in this study to manipulate data before feeding 
them to machine learning models. Kumar et al. (2023) 
used correlation analysis to preprocess the data set and 
identify important features. Five machine learning 
models, namely k-nearest neighbors (KNN), Gaussian 
naive Bayes (GNB), SVM, Random Forest (RF), and 
XGBoost, are used to forecast air quality after the data 
imbalance issue was resolved through resampling. 
According to this analysis, the SVM model has the least 
accuracy, while the GNB achieved the maximum accuracy. 
Monitoring air quality involved determining the intricate 
correlations between a variety of environmental 
parameters, including pollution concentrations, 
temperature, humidity, and wind speed. Conventional ML 
algorithms might struggle for capturing these intricate 
correlations efficiently, particularly when working with 
complex and non-linear data.  

Some stations provide extremely dynamic, nonlinear and 
highly random spatial temporal correlations in their air 
quality data. These spatial-temporal elements can be 
effectively captured by deep learning algorithms. 
Santhanaraj R. K et al. (2023) introduced an integrated 
LSTM network (LSTM-FC) to predict PM2.5 contamination 
using previous air quality information, climatic data, 
weather prediction data and the day of the week. The two 
parts of this predictive model are as follows: modelling 
the local discrepancy of PM2.5 contamination utilizing an 
LSTM-based temporal simulant; and capturing the spatial 
dependences among the PM2.5 contamination of the 
primary station and neighboring stations by means of a 
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neural network-based spatial collaborative model. QIN et 
al. (2019) presented a new integrated approach using 
CNN and LSTM to predict the density of urban PM2.5. This 
model extracted features from the input data 
spontaneously. The output layer took into account the 
time dependence of pollutants using an LSTM network. 
Zhang, Z. et al. (2024) introduced a layered deep learning 
framework, namely DL-Air, to forecast air quality. Here, all 
spatial relations in the data were encoded using the 
encoder. Then the spatiotemporal relationship analysis 
LSTM (STAA-LSTM) determined the degree of relationship 
between the forecasted and detected spatiotemporal 
data. Furthermore, STAA-LSTM predicted the upcoming 
spatio-temporal correlations in the hidden space. Finally, 
these correlations were appropriately decoded using a 
decoder to obtain the real forecast. The author 
introduced a bidirectional gated recurrent unit (Bi-GRU) 
network model to estimate the degree of various 
pollutants in the air.  

Ahmed et al.  (2024) analysis shows that the Recurrent 
Neural Network (RNNs) including GRU, LSTM, and their 
variants is an excellent tool for time series prediction 
because they can express express nonlinear relations and 
handle multiple-dimensional data in a nonlinear manner. 
LSTM and GRU still have significant computational 
restrictions due to their reliance on the hidden layer 
output from the prior calculation. The aforementioned 
LSTMs, GRU and its variations are excellent at identifying 
temporal dependencies during short to moderate time 
periods, but they could have trouble identifying long-term 
dependences in air quality data, which can be impacted by 
seasonal patterns, meteorological variations, and other 
outside variables. In the literature, this issue has been 
mitigated by using an attention mechanism because it has 
the capacity to extract crucial information. However, they 
are still unable to adequately capture all long-term 
dependences. Also, it presents the complicated decoding 
process, gradient disappearance, and learning 
deterioration problem. To tackle these issues, we used a 
special internal structure of Bi-SRU with attention and skip 
connection in this research. This model processed every 
input stream autonomously to remove temporal 
dependence without disturbing other inputs. Also, it 
transforms an RNN into a network that can be somewhat 
parallelized without computing the previous hidden layer 
output. Although the Bi-SRU network with attention and 
skip connection can yield good results in air quality 
prediction, it needs an adequate amount of historical data 
for training. The suggested strategy presents a transfer 
learning model to address or minimize the issue of data 
scarcity in recently constructed stations. 

3. The proposed model 

In this work, a new air quality prediction model is 
proposed by introducing lightweight networks based on 
transfer learning with recurrent learners. Initially, the 
source data is obtained from air pollutant data sets. After 
that, preprocessing is applied to the collected data using 
the linear interpolation (LIPN) algorithm to fill missing 
values. The direct deletion method eliminates values that 

are unnecessary or redundant. After preprocessing, a 
novel lightweight network based on transfer learning is 
proposed for air quality prediction. This approach used 
advanced deep learning techniques with transfer learning 
to address the problem of data scarcity in newly 
constructed air quality monitoring stations. Initially, an 
LRN-SC is proposed for pre-training the model using data 
from an existing station. Subsequently, it froze the first 
few layers of the basic model and the data from a new 
station is used to modify the remaining hidden layers. In 
this case, the features learned from the prior station can 
be retained and the model can be adjusted to meet the 
current station. After that, TL2RN-SC is trained and the 
data of the new station is then used to test the model. 
The proposed model reduced the decoding burden by 
insertion of skip connections between the input of the 
decoder and the linear prediction layer. The complete 
architecture of the proposed air quality monitoring 
system is illustrated in Figure 1. 

3.1. Data pre-processing 

In this work, the data obtained from the Kaggle website is 
used to train the neural network. It is a time series of data 
of different Indian stations from 2017 to 2020. It includes 
hourly readings for a number of gases, including PM2.5, 
PM10, nitrogen oxides (NOx), carbon monoxide (CO), 
ozone (O3) and sulfur dioxide (SO2). The parameters 
obtained from various stations might have irregularities 
including missing or erroneous data. This may be the 
result of sensor problems or potential data storage errors. 
These irregularities will cause an extreme deviation 
between the predicted and actual values.  

 

Figure 1. Proposed air quality monitoring framework 

The air quality parameters acquired from the source is a 
time series data. Time series data are data that are 
collected over a predetermined period of time. The time 
series air quality parameters are defined as  

( ) ( )( )= , ,1 1 ,, , , ,l m l l m mX s Z s Z
 

(1) 

Where Xl, m represents the time series data of l−th air 
quality parameter whose length is m. Each parameter has 
a sampling interval of one day. This means that all 
parameters are measured every day simultaneously. 
When the value Sl, i at Zi is not present, the estimated 
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values can be obtained using the LIPN approach. It is 
possible to construct the LIPN function as  

( )
−

= + −
−

, ,

, ,
 

l j l k

l i l j i j

j k

s s
S s Z Z

Z Z  

(2) 

If there are some missing values in air quality parameters, 
the LIPN algorithm determines the two nearest instants Zj 
and Zk. After that the missing value at the instant Ziis 
calculated using the values Sl, j and Sl, k. Here Sl, j represents 
the computed value for the missing data Sl, i. Also, the 
input data set was normalized using the Z-score 
standardization method to increase the accuracy of the 
prediction of the model and the training speed. 

3.2. LRN-SC based on transfer learning 

Although the advanced deep learning model can 
potentially achieve excellent performance for air quality 
prediction, its effectiveness is limited as there is 
inadequate training data. The network does not obtain 
sufficient knowledge due to a data shortage. To address 
this problem, a Transfer learning-based light weight 
recurrent network with skip connection (TL2RN-SC) is 
introduced in this paper. This strategy combined 
advanced transfer learning and recurrent learning 
techniques to solve the issue of data scarcity in recently 
constructed air quality monitoring stations. The 
architecture of TL2RN-SC is shown in Figure 2. 

 

Figure 2. Architecture of TL2RN-SC 

3.3. BiSRU-ASC 

Traditional Bi-GRU models with recurrent learning 
struggle to maintain long-term memory for time-series 
prediction. In addition, expanding the application of deep 
learning in various domains is highly dependent on the 
development and improvement of lightweight models. In 
this paper, a new BiSRU-ASC is proposed as a base model 
for the proposed TL2RN-SC. The architecture. Assume that 
S = [S_1, S_2, ...S_n] Tis time-series data. The proposed 
BiSRU-ASC is made up of BiSRU based auto encoders. The 
BiSRU network consists of direction-dependent SRUs for 
extracting time dependencies from input time series data 
in forward and backward direction. The hidden layer 
output of the encoder is considered as the embedding 
vector H_evto create air indicator. The proposed model 
concatenates the hidden layer output and it is given as 
input to the attention layer along with the encoder output 
O_enc. The weight vector can be computed by the 
attention layer in various time steps. After that, the 
encoder output results are multiplied by the vector to 

produce the _out, which emphasizes the importance of 
the primary timesteps data. During the decoding phase, 
Å_outis supplied as an input vector to the BiSRU decoder. 
Also, the proposed model concatenates _out with the 
decoder output via skip link. The concatenated output is 
provided as input to the linear prediction layer to 
augment the feature information and relieve the decoding 
burden. 

 

Figure 3. Architecture of BiSRU-ASC 

3.4. BiSRU encoding 

Traditional LSTM and GRU depend on the output h_(n-1) 
of the prior run. But the special interior structure of SRU 
allows one to process individual input steps self-
sufficiently, remove time dependence during operation 
and transform an RNN into a network that may be 
partially parallelized without calculating h_(n-1). In Figure 
4, the structures of the LSTM, GRU, and SRU models are 
compared. 

 

Figure 4. Recurrent networks (a) LSTM (b) GRU (c) SRU 

In Figure 4, the two addition and multiplication variables 

are indicated as '+' and “×” respectively. Also,  and tanh 
denote the weight matrix, sigmoid activation, and 
hyperbolic tangent activation correspondingly. 

( )
−

=
+

1
 

1 s
s

e  

(3) 
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−

−
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+
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e e
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(4) 

SRU receives Sn as present input and calculates the 
outputs without requiring the results from the previous 
run. The SRU data flow is shown in Figure 5. 

( )  = +  n f n ff S
 

(5) 
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where the forgetting gate fn represents the level of 
historical information. After mapping the Sn linearly, the 
sigmoid activation function of fn yields a value between 0 
and 1.  

=   n nS S  
(6) 

Equation (6) multiplies Sn with the weight matrix  for 
obtaining the Sñ and is given as input to the next cell Cn. 
The reset gate rn is a sigmoid gate that regulates the 
amount of information update using the following 
expression. 

( )  = +  n r n rr S
 

(7) 

Following the preceding action, data is still transferred to 
SRU to determine the output hn Figure 5 shows the data 
flow of SRU. The cell status Cn is renovated as follows: 

( )−=  + − 1 1n n n n nC f c f S
 

(8) 

In (8), the first term multiplies forgetting gate fn with the 
previous cell status cn−1 for detecting the amount of 
overlook data that have been overlooked in the old status. 
The second term multiplies the remembered data with 
present input data Sñ for detecting the amount of 
reserved data. Finally, it adds the reserved data with the 
old cell status for the formation of new cell status Cn. After 
that, the present moment output hn is detected as 
follows:  

( ) ( )=  + − 1n n n n nh r tanh c r S
 

(9) 

It multiplies the tanh function with the rn after activating 
the new cell status Cn.  

 

Figure 5. SRU data flow direction (a) Direction 1 (b) Direction 2 

Given that ḧ is the hidden node of BiSRU, the encoder 
output and the last hidden layer output are obtained as 
follows:  

( )   
= 

 

¨ ¨

1 2 2  ,h n h n m
enc enc ench O f S

 

(10) 

  = 
¨ ¨ ¨

1 2 1 1   h h h
enc fwd bwdh h h

 
(11) 

where ( )encf  denotes the fundamental function of the 

BiSRU encoder. The hidden forward and backward states 
are represented as hfwd, and hbwd individually. This hfwd and 
hbwd are concatenated to get encoder output henc. 

3.5. Attention mechanism and BiSRU decoding 

In this framework, an attention mechanism is utilized to 
differentiate the influence of various data from the 
timestep in the embedding vector. The attention layer 

used 1 2  h
ench   and 2n h

encO  to compute attention weight. It 

copies the initial size of 1 2
  nh

ench
  times for aligning with the 

size of 2n h
encO  vector. Then, the attention layer receives 

2  n h
ench   and 2n h

encO  as input for computing the attention 

weight 1 nÅ at every time interval. After that, the 

proposed mechanism multiplies the 1 nÅ with 2n h
encO  for 

obtaining the 1 2h
out
Å  vector. The decoder unit of BiSRU 

receives outÅ as input to compute the output vector and 

hidden status as given below:  

 →
¨ ¨

1 2 2   
copy

h n h
enc ench h

 
(12) 

   
= 

 
 

¨ ¨

1 2 2 n n h n h
enc encAtten h OÅ

 

(13) 
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¨

1 2 1 2h n n h
out encOÅ Å

 
(14) 

      
=   

   

¨ ¨ ¨

1 2 1 2 1 2 1 2  , ,  h h h h
dec dec dec out ench O f hÅ

 

(15) 

After that, Åout is combined with Odecfor giving the result 

as input to the linear prediction layer. It decodes 'nS , by 

repeating the above steps n times for predicting the 

complete encoded inputs 1 2, ,
T

nS S S S =     . The prediction 

error at moment j is j j jS S = − . The proposed TL2RN-SC is 

trained for minimizing the prediction error using the 
following expression.  

( )
=

= 
2

1
1

1

2

n

j
j

E

 

(16) 

where εj1 denotes the 1-norm operation. It converges 
more quickly and yields a more reliable model compared 
to 2-norm operation. The last encoder hidden state henc 
can be thought of as the compact depiction of the input S. 
Suppose that the suggested framework contains several 
BiSRU layers, the final hidden states of all layers are 
combined to obtain the embedding vector as given below: 

 = 1 2 L
n enc enc encZ h h h  

(17) 

where L
ench  denotes the L−th layer’s last hidden state 

vector, Zn denotes the embedding vector for the input 
time series data, and L is the total number of BiSRU layers. 

4. Results and discussion 

To verify the effectiveness of the proposed methodology, 
the air quality data is collected from 
https://www.kaggle.com/datasets/rohanrao/air-quality-
data-in-india?select=station_day.csv. This data set 
contains sensor measurements of various pollutants, such 
as PM2.5, PM10, NO, NO2, NOx, NH3, CO, SO2 and O3. 
This section first examines the periodicity of the data in 
the data set using the violin plot. The violin plot group the 
data into various time periods through the combination of 
all the data across years and months. The violin plots of 
different contaminants over time are presented in Figure 
6, both on an annual and monthly basis. India experiences 
a decrease in pollution between June and August. This 



6  PERIASAMY et al. 

may be due to the onset of a monsoon in the Indian 
subcontinent at this time. The smaller values for 2020 
indicate a significant drop in pollution. During the COVID-

19 pandemic, India implemented strict lockdowns that 
suspended all industrial and human activity. This is the 
reason for the significant drop in pollution.  

 

Figure 6. Distribution of the data (a) PM10 yearly (b) PM10 monthly (c) PM2.5 yearly (d) PM2.5 monthly (e) NO2 yearly (f) NO2 Monthly 

(g) SO2 yearly (h) SO2 monthly (i) O3 yearly (j) O3 monthly (k) NOx yearly (l) NOx monthly (m) NO yearly (n) NO monthly (o) CO yearly (p) 

CO monthly 

 

After collecting the input data, they are utilized to 
construct the base LRN-SC model. The model parameters 
of the deep learning model must be determined to 
produce the best possible outcome. The hyperparameters 
of the proposed model are provided in Table 1. 

Following the construction of time series samples and the 
determination of model parameters, the LRN-SC model is 
used to model data and forecast the level of air pollution 
for the coming hour. The prediction performance of the 

suggested model is assessed using three assessment 
indicators.  

Table 1. Hyperparameters settings 

Hyperparameters Values 

No of hidden layers 5 

No of hidden nodes 30/50/75/100 

Learning rate 0.001 

Epoch 100 

Optimizer Mini-Batch Gradient Descent (MBGD) 
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where m denotes the number of samples. The actual and 
predicted values of the j-th sample are represented as o_j 
and o_j* respectively. Reduced values of these three 
variables indicate improved model performance and 
increased forecast accuracy.  

4.1. Performance analysis 

The suggested TL2RN-SC model used the idea of transfer 
learning to improve prediction performance for stations 
with inadequate data. As a result, the source data is used 
to pretrain the model, while the target data are used to 
fine-tune and test the model. In this section, the 
effectiveness of the proposed transfer learning model is 
validated by comparing it with simple Bi-SRU, BiSRU-ASC 
and transfer learning based BiSRU-ASC (i.e TL2RN-SC) in 
Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, 
Figure 13 and Figure 14. The findings demonstrate that 
the Bi-SRU and BiSRU-ASC models are unable to acquire 
sufficient information for prediction and produce large 
error rates as a result of insufficient training data. To 
address the issue of data scarcity, the proposed TL2RN-SC 
transfer knowledge gained from the pre-trained BiSRU-
ASC to new stations. Thus, it overtakes all other base 
models. This shows the effectiveness of transfer learning 
in the proposed air quality prediction model. 

 

Figure 7. Comparative analysis of predicted and actual CO (a) Bi-

SRU, (b) BiSRU-ASC, and (c) TL2RN-SC 

 

Figure 8. Comparative analysis of predicted and actual NH3(a) Bi-

SRU (b) BiSRU-ASC and (c) TL2RN-SC 

 
Figure 9. Comparative analysis of predicted and actual NO(a) Bi-

SRU (b) BiSRU-ASC and (c) TL2RN-SC 

 
Figure 10. Comparative analysis of predicted and actual NO2(a) 

Bi-SRU (b) BiSRU-ASC and (c) TL2RN-SC 

 

Figure 11. Comparative analysis of predicted and actual O3(a) Bi-

SRU (b) BiSRU-ASC and (c) TL2RN-SC 

 

Figure 12. Comparative analysis of predicted and actual 

PM2.5(a) Bi-SRU (b) BiSRU-ASC and (c) TL2RN-SC 

4.2. Comparative analysis 

The performance of the proposed TL2RN-SC model for 
different pollutants including PM2.5, PM10, NO, NO2, 
NOx, NH3, CO, SO2 and O3 are listed in Table 2. It is 
obvious that CO, PM10 and PM2.5 have the lowest 
indicator values. 

 
Figure 13. Comparative analysis of predicted and actual PM10(a) 

Bi-SRU (b) BiSRU-ASC and (c) TL2RN-SC 
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Figure 14. Comparative analysis of predicted and actual SO2 (a) 

Bi-SRU (b) BiSRU-ASC and (c) TL2RN-SC 

This study compares the TL2RN-SC model with four 
additional deep learning techniques, such as the stacked 
BiLSTM model (S-BiLSTM), the stacked BiGRU (S-BiGRU), 
the Bi-SRU and the BiSRU-ASC in order to further test the 

performance of the model. In this instance, 30% of the 
samples from the station Secretariat, Amaravati, are 
utilized for validation, and 70% are used for training. The 
results of the comparison are shown in Table 3. Stacked 
BiLSTM models are susceptible to overfitting, especially 
when working with noisy or sparse data sets. As a result, 
S-BiLSTM performs worse than S-BiGRU. Unlike BiSRU 
models, S-BiGRU might have some drawbacks in terms of 
complexity, training effectiveness, and interpretability. 
However, the suggested BiSRU-ASC includes an attention 
mechanism that may enhance performance through the 
extraction of more insightful features. In addition, it 
allows the model to concentrate on pertinent segments of 
the input series.  

Table 2. Comparative analysis of TL2RN-SC model for different pollutants 

Pollutants RMSE MAE MAPE 

PM2.5 0.972 2.14 8.36 

PM10 0.968 2.75 8.99 

NO 0.978 2.83 8.23 

NO2 0.987 2.75 8.54 

NOx 0.973 2.77 8.71 

NH3 0.978 2.53 8.19 

CO 0.961 2.39 8.37 

SO2 0.976 2.84 8.43 

O3 0.979 2.67 8.93 

Table 3. RMSE performance of different models 

Models PM2.5 PM10 NO NO2 NOx NH3 CO SO2 O3 

S-BiLSTM 0.872 0.868 0.852 0.861 0.863 0.879 0.851 0.862 0.855 

S-BiGRU 0.896 0.884 0.873 0.882 0.894 0.902 0.872 0.889 0.871 

Bi-SRU 0.912 0.928 0.908 0.913 0.917 0.925 0.891 0.906 0.911 

BiSRU-ASC 0.954 0.942 0.923 0.957 0.941 0.959 0.923 0.934 0.949 

TL2RN-SC 0.972 0.968 0.978 0.987 0.973 0.978 0.961 0.976 0.979 

Table 4. RMSE Comparative analysis with other reported works 

Model 
Air pollutants 

PM2.5 PM10 SO2 NO2 CO NH3 O3 

LSTM-FC  0.835 0.841 0.839 0.840 0.843 0.838 0.835 

2DCNN-LSTM  0.799 0.804 0.800 0.828 0.807 0.802 0.804 

DL-Air  0.947 0.948 0.947 0.961 0.957 0.950 0.953 

Bi-GRU  0.786 0.874 0.821 0.785 0.882 - - 

Proposed  0.972 0.968 0.976 0.987 0.961 0.978 0.979 

 

In addition, the decoding ability of the decoder is 
enhanced by using skip connections between the decoder 
input and the linear prediction layer. Furthermore, the 
TL2RN-SC model addresses the problem of data scarcity 
by transferring knowledge from a known station to a new 
station. As a result, it performs better than all other 
standalone models. The R2 values of the suggested air 
quality parameter prediction are compared with some 
existing methods, including LSTM-FC, 2DCNN-LSTM, DL-
Air, and Bi-GRU. Although long-range dependencies can 
be captured by LSTM networks with sequential data, the 
fully connected layers in LSTM-FC might not fully exploit 
this feature, which could result in suboptimal 
performance in applications that need long-range 
dependencies modelling. Furthermore, the complicated 
structure of 2D CNN-LSTM models might make them 
difficult to train and susceptible to overfitting. Bi-GRU 

models struggle to maintain long-term memory for time 
series prediction. Moreover, overfitting may occur more 
frequently in DL-Air due to the increasing complexity of 
STAA-LSTMs. Table 4 indicates that the suggested TL2RN-
SC has greater R2 values compared to other methods. It 
demonstrates an R2 improvement of more than 2.7 % 
over the baseline method with the highest performance 
(DL-Air). The enhanced R2 values imply the exactness of 
the proposed model in the prediction of air quality. The 
better performance of TL2RN-SC demonstrates its 
effectiveness in precisely capturing the temporal 
relationship and its impacts on the predicted values with 
simple architectures. 

5. Conclusions 

The changing nature of the environment, the 
unpredictability of pollutants, and spatial and temporal 
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variability make the prediction of air quality a difficult 
task. The current study examines air pollution data for six 
years from different Indian cities. Furthermore, a transfer 
learning-based lightweight recurrent network with skip 
connection (TL2RN-SC) model is shown to enhance air 
pollution forecasting precision, particularly for new 
monitoring stations with a limited amount of historical 
data.  In TL2RN-SC, the SRU model was used with attention 
mechanism and a skip connection to minimize the 
decoding burden and enhance the significant feature 
extraction ability. Experimental results showed that the 
TL2RN-SC method has the highest model validation 
accuracy in terms of RMSE (0.974) and MAE (2.63). In 
future, the proposed work will extend with higher number 
of parameters and larger datasets. 
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