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Graphical Abstract  

Abstract 

Urban flooding has severely threatened the ecosystem and human life in recent years. The key to 

managing stormwater is to understand what causes it. The forceful effects of building shape on 

urban floods should be addressed, which results in a significant underestimation of flood danger. 

Algorithms for data-driven machine learning shed light on how the placement of buildings 

affects urban flooding. This study aimed to identify the elements of flooding risk and their 

effects on nearby communities using a concatenated modelling loop that included the XGBoost 

algorithm. This work suggests an enhanced extreme gradient boosting (XGBoost) approach 

based on a concatenated boosting particle swarm optimization (CBPSO) operator to acquire the 

meteorological refractive index of 100 m over the ocean. The prediction results of the enhanced 

XGBoost algorithm are compared with those of the backpropagation (BP) network and the 

original XGBoost method using the evaluation criteria Accuracy, Precision, Recall, F1-score, 

and IoU.Moreover, the networks resolve the featured misaligned issue during the decoder by 
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inserting a component synchronization module into the up-sampling procedure. The model's 

intersections of unions (IoU) of 89.90% outperformed SOTA flood detection systems. 

 

Keywords: Flood prediction, concatenation, boosting, ensembling, IoU, flood-prone and multi-

criteria. 

 

1. Introduction 

Floods, as a disruptive disaster, inflict severe damage to infrastructure, people, and property. 

Identifying flood-prone areas is essential for policy development and execution to mitigate risks 

and costs. However, examining natural processes, especially flooding, through experiments or 

analytical approaches is not always feasible. Establishing methodological techniques, models, 

and strategies for a rational, theoretical, and quantitative evaluation of floods becomes 

imperative. Flood vulnerability modeling and map-based methodologies often stem from two 

systems: physically-based methods grounded in experiential understanding and data-driven 

approaches employing techniques such as Decision Trees (DT), Random Forest (RF), Support 

Vector Machines (SVM), Artificial Neural Networks (ANNs), Naive Bayes (NB), Logistic 

Regression (LR), and Feature Ranking (FR) methods, among others. 

Many research endeavors focused on flood vulnerability leverage multi-criteria decision-making 

(MCDA). Advanced mathematical representations that capture observable behaviors serve as the 

foundation for physical forecasting systems. Conversely, data-driven frameworks rely on 

mathematical formulas constructed from concurrent input and output data, avoiding traditional 

physical methods. In this realm, Machine Learning (ML) models have risen to prominence, 

particularly for natural disaster forecasting, encompassing landslide hazards, forest fire 

vulnerability, and flood susceptibility. The Artificial Neural Network (ANN) framework, 

especially the Multi-Layer Perceptron Neural Network (MLP-NN), stands out as a popular ML 

model for hazard risk forecasting. Its strength lies in its ability to effectively approximate 

complex nonlinear input-output relationships and unveil hidden connections within historical 

data. 

Another noteworthy addition to the ML arsenal is AdaBoost, an enhancing algorithm that can be 

harnessed without prior expertise in the intricacies of weak learning approaches. Coupled with 

the Expectation-Maximization (EM) technique, AdaBoost yields precise predictions and boasts 

resistance to overfitting, making it a promising ML algorithm for assessing flood risk. Decision 

Trees (DTs) and Random Forest (RF) models prove highly effective for accurately identifying 

flood-affected regions. Logistic Regression (LR) emerges as a capable tool for predicting the 

presence or absence of floods, with numerous studies employing a range of geo-hydrological 

variables to exploit its potential. Support Vector Machines (SVM), a probabilistic classifier 

classification algorithm, find frequent application in flood vulnerability assessments. 

Traditionally, flood vulnerability assessments have relied on one or a limited number of ML 

methods. However, employing a diverse set of ML approaches to scrutinize flood vulnerability 



 

 

and its response to varying conditions represents a novel contribution to the literature. This study 

aims to evaluate flood vulnerability using a multitude of ML algorithms alongside an extensive 

dataset comprising meteorological, hydrodynamic, and geographical information at a high spatial 

resolution (12.5 meters). The mainstream of the proposed process is discussed as follows: 

• Input is the dataset collected across twenty-one meteorological stations in the Cuddalore 

district, Tamil Nadu, India.The dataset is categorized based on the vulnerable Zone and 

its rainfall occurrence. 

• When a dataset is first brought into the picture, it is often raw and can contain empty or 

irrelevant values. To help refine the dataset, a pre-processing step is introduced that uses 

PrincipalComponent Analysis (PCA). A significant pre-processing function used to 

reduce the dimensions of the dataset is the Singular Value decomposition of linear 

algebra, for which the columns would be the axes with high dimensional space. 

• The most crucial phase involves the machine learning algorithm. Based on the level of 

accuracy, the RandomForest algorithm is chosen for computing the feature selection. 

This classifier is an ensemble learning approach of categorization, validation, and other 

algorithms that, as already said, functions by building an enormous classification tree 

during training & producing the classification that is the average projection of the 

individual plants or the median of this classification. 

• Using XGBoost, the rainfall prediction is computed, which depends on the parameter 

passed and the ranges defined. The regions are classified by providing different colours 

for adequate identification. Each colour represents a pre-defined range of data. The 

following categories are used to categorize the rainfall data for this study: 1) No rainfall; 

2) Light rainfall; 3) Moderate rainfall; 4) Heavy rainfall; 5) Significantly heavier rainfall 

and 6) Extremely heavy rainfall. The above classification is required to assess the impact 

of rainfall in computing the chances of flood occurrence. 

 

The work is organized as follows: section 2 provides a detailed explanation on the diverse 

prevailing approaches. The methodology is demonstrated in section 3 with investigational 

outcome is provided in section 4. The summary is descriptive in section 5. 

2. Literature Review 

This chapter covered significant flooding incidents throughout the globe and discussed pertinent 

research on ML for flood modelling. 

2.1 Flooding Events Around the World 

We consider floods conducted by various writers in various regions of the globe. We concentrate 

mainly on nations that experience large flooding disasters often and the models used to forecast 

future occurrences. Over time, flood vulnerability has caused significant human suffering, 

including food shortages, waterborne disease epidemics, and infrastructure destruction [1][2] 

found that 15 nations (see Table 1) represent almost 80% of the annual flood victims. These 

emerging or developed countries are susceptible to natural catastrophes and climate change. 



 

 

Africa, Asia, and South America are the top 15 flood-prone nations. Several research studies 

have shown that floods pose a significant threat to thousands of millions of citizens in both India 

with Bangladesh being one of the countries that are most severely impacted by floods; during the 

summer monsoon, almost one-third of Bangladesh is submerged in water [3,4]Bangladesh's 

lowland, geographical location, and dense population make floods a significant danger to both 

individuals and resources according to [5]. Flooding, the most common natural catastrophe in 

India, is triggered by sudden southwest monsoon rains, riverbed floodplains, and tropical storms. 

Floods impact 84% of India's projected GDP annually [6,7]. According to [8], blocking drainage 

routes and proximity to coastline waters significantly contribute to floods in susceptible regions. 

[9] lists three significant causes of flooding in South America, including growing urbanization, 

climate change, and land use decisions. In Africa, the increasing amounts of the Lagdo dam have 

repeatedly caused enormous floods of significant emergency rates in recent generations. The 

2012 & 2022 statistics were exceptional. In Nigeria, floods are not only a natural process; 

humans may also cause them due to inadequate or nonexistent drainage channels, improper 

waste management devices, unchecked development, and lax enforcement of planning rules. 

Table 1: Annual Expected Population Affected by River Flood 

Countries Population in millions 

Continent 

ASIA AFRICA 
SOUTH 

AMERICA 

India 4.85 ✓  - - 

Bangladesh 3.49 ✓  - - 

China 3.29 ✓  - - 

Vietnam 0.94 ✓  - - 

Pakistan 0.72 ✓  - - 

Indonesia 0.65 ✓  - - 

Egypt 0.47 - ✓  - 

Myanmar 0.40 ✓  - - 

Afghanistan 0.34 ✓  - - 

Nigeria 0.30 - ✓  - 

Brazil 0.28 - - ✓  

Thailand 0.26 ✓  - - 

Congo D.R 0.26 - ✓  - 

Iraq 0.20 ✓  - - 

Cambodia 0.20 ✓  - - 

 

These results imply that flood risk variables may be universal across nations. However, several 

other variables that affect flooding incidents are particular to specific geographic locations. This 



 

 

research aims to show how healthy ML can forecast storms in Africa by using the region as a 

research study. 

 

It is well known that floods have various adverse effects, including the destruction of homes, 

livelihoods, and other assets and extensive financial losses up to tens of millions of dollars. For 

example, in 2022, floods in Pakistan harmed around 33 million people, causing the deaths of 

more than 1,700 people and injuring another 13,000[10]. According to the authorities, severe 

flooding reportedly costs $30 billion. Similar severe floods occurred in Bangladesh in 2022, 

affecting around 7.2 million people, killing roughly 12, and causing $722.24 million in total 

losses [11]. In the same year, nearly 2.5 million Nigerians were impacted by floods, with 600 

dead and 2,400 wounded. The literature contains many references to past flooding incidents and 

estimations of their effects [12-15] 

2.2 Flood forecasting using MLs 

Recent studies on flood risk assessment & predictions use the prognostication abilities of 

numerous ML algorithms that discover patterns in historical data. These techniques included 

DTs, RFs, Linregs, LRs, XGBoosts, KNNs, SVMs, and ANNs. They have been used in flood 

prediction with trustworthy outcomes.[16] apply an LR employing RS information &GIS over 

flood inventories built from 153 historical flood sites in Rwanda with ten predictors. According 

to their findings, the two characteristics out of the ten—Normalized Difference Vegetation Index 

(NDVI) are shown the more influence. Utilizing Area Under Curve (AUC) as the assessing 

measure, they offer a 79.8% predictive performance. 

[17] use Markov Chain Cellular Automata (MCCA) &ANNs with optimum factors of Hiden 

layers =7, Activation function =7, Training Method= Backpropagation; Activation functions = 

0.2, Mobility = 0.22) to create an efficient prediction system for how seasonally flooded 

wetlands change when the flow of the Punargbhaba Body of water in India and Bangladesh 

changes. Wetland predictions were performed before and after the 2017 monsoon precipitation to 

assess the model's accuracy. The ROC-AUC curve coefficients have been 84.7% and 86.9%. 

[18] employ an ensemble of four approaches to ML algorithms. Reduced Errors Prune Tree 

(REPtree), RFs, and M5Ps, using the bagging approach on twelve indicators and the ROC curve 

as the assessment measure. The M5P device for tagging has the best performance. It produces a 

result with an ROC value of 0.99, a sensibility of 86.26, and an accuracy of 88.76.[19] use ANN, 

LRs, FRs, and AHP to estimate Bangladesh's flooding risk using 475 datasets, including 

independent factors. 

Under the ROC Curve, the area shows that regression analysis has the best likelihood of success 

(86%) & forecast rate (81.7%). [20] predict the spring flooding in New Brunswick, Canada, 

using a regression model with four attributes: Minimum Warm, Yesterday's Heat, Moisture, and 

Snow in winter. The analysis has 63.7% R2, and all features are statistically meaningful. 



 

 

Flood modelling & based on typical data is generally limited by available information, size and 

quality, goals, and research scope. Our research investigates numerous learning models to assess 

their applicability and effectiveness. We provide an exploratory method for choosing the best 

suitable probability distribution function to represent the meteorological data. Our findings show 

the best model's prediction classification performance and effectiveness variances across 

techniques. 

Table 1: Summary of the related works 

 

Study 
ML Algorithms 

Used 
Key Findings Drawbacks 

[16] 

DTs, RFs, 

Linregs, LRs, 

XGBoosts, 

KNNs, SVMs, 

ANNs 

Used LR with RS data & GIS 

over 153 historical flood sites in 

Rwanda. NDVI was a significant 

predictor. Achieved a 79.8% 

predictive performance (AUC). 

Limited to specific geographic 

area (Rwanda) and may not 

generalize well to other regions. 

The use of ten predictors might 

add complexity and require 

extensive data. 

[17] MCCA, ANNs 

Created a prediction system for 

seasonally flooded wetlands based 

on Punargbhaba River flow 

changes in India and Bangladesh. 

ROC-AUC curve coefficients 

were 84.7% and 86.9%. 

May rely heavily on data 

availability and quality related to 

river flow changes. Results might 

not be directly applicable to 

different wetland ecosystems. 

[18] 
REPtree, RFs, 

M5Ps 

Employed an ensemble of ML 

algorithms on twelve indicators to 

predict flooding. M5P tagging had 

the best performance with ROC 

value of 0.99, sensitivity of 86.26, 

and accuracy of 88.76. 

The ensemble approach can be 

computationally intensive, 

especially with multiple 

algorithms. Limited discussion on 

potential overfitting concerns. 

[19] 
ANN, LRs, FRs, 

AHP 

Estimated flooding risk in 

Bangladesh using 475 datasets. 

Regression analysis had the best 

performance with an ROC 

likelihood of success (86%) and 

forecast rate (81.7%). 

May rely on the availability and 

quality of the extensive dataset, 

which can limit generalizability to 

other regions. Complexity of 

using multiple algorithms. 

[20] 
Regression 

Model 

Predicted spring flooding in New 

Brunswick, Canada using four 

attributes. Achieved a 63.7% R2 

with statistically meaningful 

features. 

Limited to a specific geographic 

area (New Brunswick) and may 

not be directly applicable to other 

regions or global contexts. 

Limited to spring flooding 

prediction. 

 

Research Gaps Identified: 



 

 

While considerable research has been conducted on flood vulnerability assessments using 

various Machine Learning (ML) models, there exists a notable research gap that this study aims 

to address: 

• Existing studies predominantly focus on individual or a limited number of ML algorithms 

for flood vulnerability assessments. There is a lack of comprehensive research that 

systematically evaluates and compares the performance of a diverse set of ML models. 

• Previous research often lacks an integrative approach, either focusing solely on 

meteorological factors or neglecting the crucial interplay between meteorological, 

hydrodynamic, and geographical information. 

• While ML models are increasingly being used for flood vulnerability assessments, there 

is limited research on the practical challenges related to user adoption of these models in 

real-world scenarios. 

By addressing these gaps, the proposed study endeavors to advance the current state of 

knowledge in flood vulnerability assessments using ML models, offering insights that can 

contribute to improved risk mitigation strategies and more effective decision-making in the 

context of flood management and resilience. 

3. Proposed model building for flood prediction 

Learning methods frequently utilized in prediction models build an entire knowledge analysis 

tool by modelling biological neurons' composition, operation, and behaviour.The following are 

the procedures followed in predicting rainfall and, as a result, detecting the possibility of 

flooding in the Cuddalore region. 

3.1 Pre-processing of data 

Unbalanced characteristics exist in the information gathering. Consider the percentage of 74:26, 

which should be about equal between the current day's rainfall and the anticipated precipitation 

for the following day, as shown in Fig 1. It demonstrates that the information is unbalanced—

quality inputs balance information. The following resampling in  Fig 2 displays the value 

systems. Furthermore, an oversampling of the data is seen in the given dataset. The resampled 

information is produced when matching the large dataset, as shown in Fig 3. The detected 

characteristics include wind speed, humidity, lowest temperature, and precipitation, and the 

fraction of missing information is nearly less than 50%. From the research, attributes with 

oversampled information are crucial to modelling and forecasting; thus, the imputation of the 

dataset made a positive impact. 



 

 

 

Figure 1:Imbalanced Data 

 

Figure 2:Balanced Data 

 

Figure 3:Oversampled Features 

 



 

 

3.2 Imputation of Data using Multiple Imputation by ChainedEquations approach and 

Outlier Detection and FeatureSelection 

After calculating the mode to impute the categorical variables, the label encoding technique 

transforms the structured variables into numbers. The lacking values are determined using 

Multiple Imputation by Chained Equations (MICE). The MICE method finds outliers using the 

median value and removes them to produce the datasets required to create the model. The 

variables' relationship is then calculated, and the highest-correlating pair of different factors is 

found. One of the strongly associated variables will then be removed. Date, position, and wind 

patterns are the dataset's category values. By using a label encoding method, these traits are 

transformed continuously. The quantity values are used to calculate the outliers, which are then 

taken from the data. Fig. 4 depicts the flow of the proposed model. Table 2 displays outliers 

considered in the research. 

 

 
Figure 4: Taxonomy of the proposed model 

 

 

Table 2: Outlier Detection 

Attributes Values 

Date 1978 

Position 1.01 

Low temperature 5.51 

High Temperature 6.01 

Rainfall 0.0 

Evaporation 2.11 

WindGustDir 8.01 

WindGustSpeed 2.21 

Wind Direction 8.01 

Wind Speed 3.64 

Humidity 25.01 

Temp 6.01 



 

 

Rain Current Day 0.0 

Rain Next Day 1.01 

 

The original data has been scaled down to 21736 records and fourteen attributes. There are 

around 40,000 entries removed, and the information is clear of anomalies. The association 

between the traits is to be discovered as a subsequent step. Fig 5 depicts an overall flow of the 

proposed method; this phenomenon is called multi-collinearity. The characteristics are all 

considered while developing the model since the weather map demonstrates their independence 

and lack of meaningful association. A machine learning model's data selection is vital. The 

suggested technique uses the random forest to ascertain a feature's significance. Chi-Square 

filters normalized information, and MinMaxScalar reduces negative numbers. The characteristics 

seen as being of high value in predicting rainfall from the built-in model are as follows. The 

feature is chosen in opposition to the next-day rainfall feature. It was found that the lowest 

warmth, highest temperature, absorption, wind direction, and humidity all significantly affected 

the likelihood of precipitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Features Multi-collinearity 

 



 

 

XG boost is the efficient gradient-boosting decision tree approach known as extreme gradient 

boosting, which can be used to calculate index weights (XGBoost). One can predict the score 

based on the features of the sample. When training is done, there are no trees. When a tree falls, 

its leaf node, which represents a score, will be reached. The matching scores out of each tree are 

then summed to get the sample's anticipated value. There are significant relationships between 

subsequent decision trees in the XGBoost algorithm. The forecast accuracy is substantially 

increased because each round forecast is built based on the forecast mistake from the previous 

round. In contrast to conventional predictive methods, it can choose a default branch direction 

for missing data, minimizing the associated error. Moreover, it can handle category and 

numerical data, increasing the model's predictability. 

 

3.3 Improved XGBoost Algorithm UsingCBPSO OperatorXGBoost Algorithm 

An integrated model using a decision tree is called XGBoost.  For every specific n-sample 

training data set, 

𝐷 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) (1) 
,
. 

(|𝐷| = 𝑛, 𝑥𝑖 ∈ 𝑅𝑚 , 𝑦𝑖 ∈ 𝑅) (2) 

 

For predicting the output, the framework for integrating the tree uses operations built from K-

stacked decision trees. The equation reads as follows: 

�̀� = ∑  

𝐾

𝑘=1

𝑓𝑘 (𝑥𝑖), 𝑓𝑘 ∈ 𝐹, 
(3) 

 

Where the instance region of every classification tree is represented by F. 

To discover the optimum model y and consider overfitting's effect on prediction performance, 

the following optimization techniques are developed and reduced: 

 

𝜉  = ∑  

𝑛

𝑖

  (𝑙(𝑦𝑖 , �̂�𝑖)) + ∑  

𝐾

𝑘=1

 Ω(𝑓𝑘), Ω(𝑓)

 = 𝛼 ∗ 𝑁 +
𝛽 ∗∥ 𝑤 ∥

2

 

 

(4) 

where i is a specified interpreted in many ways to compute the discrepancy between the 

predicted value yi and what occurs, N be the No. Of networks in the classification trees, w 

=(w1,w2,...,wn) is the mass of every node, and (f) is the penalty component that penalizes the 

number of hidden layers, including the quantity of intermediate node and their weights. 

 

The equation (4) represents an optimization problem designed to discover the optimum model 

(y) while taking into account the impact of overfitting on prediction performance. The 

optimization involves minimizing a composite objective function, ξ, which is the sum of two 

components: 



 

 

 

The first component (∑  𝑛
𝑖   (𝑙(𝑦𝑖 , �̂�𝑖))represents the loss function, where "l" is a function that 

measures the discrepancy between the predicted value (ŷ_i) and the actual value (y_i) for each 

data point i. This sum is taken over all data points in the dataset (from i=1 to n). 

 

The second component (∑  𝐾
𝑘=1  Ω(𝑓𝑘), Ω(𝑓)) is a regularization term that penalizes the 

complexity of the model to prevent overfitting. Here, Ω(f) is a regularization function applied to 

each tree (f_k) in the model. The regularization function Ω(f) consists of two terms: 

 

The first term (α*N) penalizes the number of networks (N) in the classification trees, where α is 

a regularization parameter. 

 

The second term (β*∥w∥/2) penalizes the complexity of each tree's structure, where ∥w∥ is the 

norm of the weights associated with the nodes, and β is another regularization parameter. 

In summary, the optimization problem aims to find the optimal model by balancing the trade-off 

between minimizing the prediction error (captured by the loss function) and preventing 

overfitting (controlled by the regularization terms). The regularization terms penalize the 

complexity of the model by considering the number of networks, as well as the weights and 

structure of each tree in the ensemble. The values of the regularization parameters (α and β) play 

a crucial role in determining the strength of the regularization applied to the model. 

 

The integrative trees paradigm represented by equations (6) can be computed using traditional 

objective functions in Euclidean distance. Thus, we use iterative approximating and designate the 

first used created by t repetitions with yi((t)).  

: 

ξ(t+1) = ∑  

n

i

(l(yi, yi2
(t)) + ft+1(xi)) + Ω(ft+1). 

 

(5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Randomly choose the XGboost superior 

factors, and then utilize CBPSO to 

identify the ideal extra dimensions. 

 
Set the size of the population ps to 20, 

the present iteration n to 0, and the 

number of iterations to a maximum of N 

i=1 

For each particle, update the learning 

objects 

Update the ith particle's speed and 

position 

Replace 160 randomly selected accounts 

with the enhanced XGboost. Determine 

the median R - squared value of the 

filled events of the these 100 profile as 

the ith particle's efficiency. 

Update the ith particle's global and local 

optimum values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: CBPSO working flow 

 

Fig 6 shows the flow of the anticipated model where the number of populations and the learning 

objects are provided. The particle updation is discussed with the integration of XGBoost. In this 

workflow, XGBoost hyperparameters are initially optimized to identify the best-performing 

configuration randomly. Subsequently, a Particle Swarm Optimization algorithm (CBPSO) is 

employed with a population size of 20. For each particle in the population, its speed and position 

are updated iteratively to explore the search space. The improvement in performance is measured 

by replacing 160 randomly selected XGBoost configurations with the enhanced XGBoost model. 

The median R-squared value is computed from these 100 profile events, serving as the particle's 

efficiency. Both the global and local optimum values are updated during this process. This 

workflow combines random hyperparameter selection and PSO optimization to find the most 

effective XGBoost configuration and further fine-tune it using CBPSO to achieve optimal 

predictive performance.The model's forecasts are incrementally enhanced via iterations by 

maximizing the equation above. By performing a Taylor series expansion at the point 



 

 

((𝑦1
(𝑡)

, 𝑦2
(𝑡)

, … , 𝑦𝑛
(𝑡)

)) of equation (6), the best solution to the problem above may be found. This 

expression is as follows: 

ξ(t+1) = ∑  

n

i

  (l(yi, yi2
(t)) + ∂ỳ(t)l(yi, ỳ(t))) + ft+1(xi)

 +
1

2
∂2ỳml(yi, ỳ(t)) = ft+1

2 (xi) + Ω(ft+1).

 

 

(6) 

 

By subtracting ∂𝛾

𝑟
(0)𝑙(𝑦𝑖 , �̀�(𝑡)) and ∂�̀�2)

2 𝑙(𝑦𝑖 , �̀�(𝑡))and factoring in eq (7), we may deduce, for 

every DT function 𝑓𝑡+1(𝑥), the continuing to follow: where 𝐼𝑖 = {𝑖 ∣ 𝑞(𝑥𝑖) = 𝑗} provides 

all input multiple for the source vertex in the set of training data while q denotes the regression 

analysis formulation for the clustered method parameter f (t+1) (x).In the t+1-th iteration, 

𝜉𝑡+1may be utilized to compute the significant decision tree.Fig 7 shows the hidden layers of the 

network model where single input and single output is extracted. The weights of the hidden 

layers are measured with 𝑤𝑛 where 𝑛 = 1,2, … 

 

In a neural network with two concealed units, typically referring to a network with two hidden 

layers, the first hidden layer contains two neurons or nodes, and the second hidden layer also 

comprises two neurons. These concealed units perform computations on the input data and pass 

their results to subsequent layers. The choice of having two hidden layers and two units in each 

layer is a design decision that impacts the network's capacity to learn and represent complex 

patterns in the data, and it's often determined through experimentation to optimize performance 

on a specific task. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The layout of the two concealed units with NNs. 

 

XGBoost adds a regular component to the goal functions that comprise the number of the source 

nodes and the square summation of the components of weights for every tree-like structure to 



 

 

reduce training error. W. With XGBoost, column controlled digitally speeds up computation and 

avoids generalizations. With each repetition, XGBoost raises the leaf vertex strength by a 

parameter to reduce the influence of each tree, providing further learning space in the final 

phases.One of the most extended processes in learning the prediction model is sorting the feature 

values, and the XGBoost program allows multitasking. However, before realizing it, XGBoost 

organizes the information and stores it in a block structure to simplify computation. , The 

blocking approach allows concurrent analysis of feature gains while separating nodes. The 

element with the most significant improvement is ultimately chosen for split. 

 

3.4 Choosing Superparameters 

The impact of the method's findings is strongly tied to the choice of XGBoost's superparameters. 

The grid search strategy is the conventional approach for altering characteristics, and XGBoost 

requires a change of nine superparameters. The variable selection approach divides 

superparameters into squares in a specified space and searches all panel positions for the best 

values. This strategy may find the worldwide optimal solution when the optimal intervals are 

large, and the step length is short. Nevertheless, since the classification results among most super 

parameter sets in the grid are relatively poor, as well as the decision tree classifiers only in a 

minimal interval are rather good, all parametric groups in the traverse squares are readily 

susceptible to slipping into global optimum, resulting in an enormous wasted effort.To resolve 

the issue that the traditional gradient boosting strategy has the propensity to settle into the 

localized optimization technique readily and to enhance computing efficiency, we applied the 

CBPSO method to improve the selection of super parameters. 

 

3.5 CBPSO Operator 

The CBPSOs may be stated as a D-dimension minimal optimizer method: 

m∗ F(x), 2x = x1, x2, … , xD, x ∈ {xmin , xmax}. 

 

(7) 

Concatenated boosting CBPSO, an enhanced variant of the classifier PSO technique, is referred 

to as this. It improves particle-to-particle interaction and quickens population confluence. It 

corrects the original PSO algorithm's flaw: it was prone to falling into the local optimal solution. 

Formulas to modify the classic PSO individual's velocity & location are: 

Vi
d = Vi

d + c1 ∗ r &(0,1) ∗ ( pbest 
i
d − Xi

d)

 +c2 ∗ r& (0,1) ∗ (g best 
d − Xi

d),

Xi
d = Xi

d + Vi
d.

 

 

(8) 

where p besti= {p best1, . . , p bestd}denotes the historical optimized value of the ith particle and g 

best = ( gbest1, … , gbestB} is the global optimized value of every particle. Eq 8 & 9 indicate that 

every PSO improves itself from historic and globally desired conditions in each learning phase to 

improve efficiency. 

The CBPSO method alters the PSO speed formula (11), so the training item may learn from 

nanoparticles in numerous levels and periods. The revised equation is as follows: 



 

 

Vi
d = Vt

d + c ∗ rand (0,1) ∗ ( pest 
fi(d)
d − Xi

d). 

 

(9) 

where fi = {fi(1),  fi(2), … ,  fi(D)} represent the fact of particles i need to gain understanding 

from the historically ideal value of particles fi(d) in dimensions D. 

 

3.6 XGBoost technique optimization vsCBPSO operator 

A three-step method is involved in optimizing CBPSO: 

• The first step is Setting the CBPSO algorithm and starting the particle swarm. 

• In the second approach, after starting, reboot the momentum and location of every 

nanoparticle, use the ongoing coordinates as the XGBoost superparameters, run the 

experimentation, use the experiences a sensation as the particle's optimal solution, and 

modify its spatial and global optimal values depending on its fitness value. 

• Repeat the second step N times in step third. 

 

XGBoost's nine superparameters are the number of estimations: n, training error, shallow 

distance, sampling ratios, the summation of sampling intensities of minimum tree structure (min 

child weight), the decreasing amount of loss function, and L1 upsampling. Lastly, we use 

CBPSO and three cross-verifications to get the optimum superparameters. 

 

 

Table 3: XGBoost Algorithm's last superparameter. 

Factors Limits 

Rate of Learning 0.113 

Maximum Depths 12 

Subsampling 0.73 

Child Weights are minimum 0.56 

Gamma 0.218 

Alpha Registry 0.146 

lambda Registry 0.6 

BytreeColsample 0.85 

 

4. Results and discussions 

Indicators of model correctness include Acc, Precision, Recall, F1-Score & IoU, without IoU 

providing as the primary statistic. The following defines these statistics: 

 

Accuracy =
TPs + TNs

TPs + TNs + FPs + FNs
 

 

(10) 

Equation 10: Accuracy measures the overall correctness of a classification model. It calculates 

the ratio of correctly predicted instances (both true positives and true negatives) to the total 

number of instances in the dataset. 



 

 

True Positives (TPs) are the instances correctly predicted as positive. 

True Negatives (TNs) are the instances correctly predicted as negative. 

False Positives (FPs) are the instances incorrectly predicted as positive. 

False Negatives (FNs) are the instances incorrectly predicted as negative. 

Accuracy tells us how well the model predicts both positive and negative classes. 

 

𝑝𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑃𝑠
 

(11) 

 

Equation 11: Precision is a measure of the model's ability to correctly predict positive instances 

without falsely classifying negative instances as positive. 

It calculates the ratio of true positives to the total predicted positive instances (true positives + 

false positives). 

Precision is useful when the cost of false positives is high. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠
 

 

(12) 

Equation 12: Recall, also known as Sensitivity or True Positive Rate, measures the model's 

ability to identify all positive instances correctly. 

It calculates the ratio of true positives to the total actual positive instances (true positives + false 

negatives). 

Recall is important when missing positive instances is costly or unacceptable. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(13) 

Equation 13: The F1-Score is the harmonic mean of precision and recall. It provides a balance 

between these two metrics. 

It's particularly useful when there is an imbalance between the two classes (e.g., one class has 

many more instances than the other). 

A higher F1-Score indicates a better balance between precision and recall. 

 

𝐼𝑜𝑈 =
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 

 

(14) 

 

 

 

 

Equation 14: IoU is commonly used in object detection and segmentation tasks to evaluate the 

overlap between predicted and ground truth regions. 



 

 

It calculates the ratio of the intersection of the predicted region and the ground truth region to the 

union of these regions. 

IoU ranges from 0 to 1, with higher values indicating better overlap between the prediction and 

ground truth. 

 

Accuracy is depicted as the ratio of TP and TN to TP, TN, FP and FN. The precision is the ratio 

of true positive to true positive and false positive. The recall is depicted as the ratio of true 

positive to the true positive and false negative. The F1-score is depicted as the ratio of precision 

and recall to the sum of precision and recall. Finally, IoU is depicted as the ratio of concatenated 

ground true and predicted value to the union of ground truth and prediction value. 

 

4.1 Implementation details 

All tests were done with PyTorch, Python 3.7, and MM Segmentation. Four NVIDIA Tesla P100 

integrated graphics were used for the feature learning. Similar equipment was utilized for the 

analysis. CentOS-7.9 was used as the OS. Networks were validated for 30 periods, with periods 

20 & 25 seeing several iterations enhanced by 0.1 and period 30 being kept for assessment.   The 

sample size was 96 for the single-stream algorithms, and the beginning training data was set at 

0.001. The dual-stream approaches' sampling size was 16, and the starting training error was 

0.0002. Dice losses and cross-entropy were used, and the combination of the two was considered 

the losses.The proposed model performs 5-fold cross validation where the validation accuracy is 

98% and validation loss is 2%. The samples are partitioned in 70:20:10 ratio where 10% of 

samples are provided for validation purpose over the dataset 

https://www.kaggle.com/datasets/virajkadam/sen12flood. 

 

4.2 Methods of Comparison 

Semantic frameworks are ideally suited to various remotely sensed applications, such as land 

covering categorization, flood diagnosis & edge detection. It makes sense to incorporate 

construction made for text categorization into computer vision frameworks. For instance, the 

ASPP module—the essential part of DeepLabv3+—was used by [21] to improve feature 

modelling capacity. U-shaped convolution network with a fundamental topology similar to D-

LinkNet was suggested for activity recognition. We examined CBPSO to four commonly used 

feature extraction concepts: DeepLabv3+, PSPNet, OCRNet, and D-LinkNet to demonstrate the 

usefulness of function multi-modal temporal lobe information fusion. We used MCANet and 

CMGFNet to show our neural network-based approach's advantage in multi-modal analysis 

software.The newest model in the DeepLab line is DeepLabv3+ [22]. Several land cover 

categorization and change detection investigations relied on DeepLabv3+. Expanding the region 

of interest and strengthening multi-scale feature interactions, PSPNet, like DeepLabv3+, 

increases model accuracy. OCRNet, a more current feature extraction method than DeepLabv3+ 

and PSPNet [23], uses self-attention components to construct the pixel-object association and 

beats DeepLabv3+ on most benchmark problems. One of the most often used deep learning 

approaches for analyzing spatial patterns via satellite imagery is D-LinkNet [24]. It was initially 

designed for road separation but has been extensively used for water body separation and other 

https://www.kaggle.com/datasets/virajkadam/sen12flood


 

 

land-covering data mining algorithms.The other two fully convolutional models, MCANet and 

CMGFNet, reflect more recent developments in inter-land cover research and were used for 

comparability. To improve complementary interactions across various methods, these networks, 

which are dual-stream approaches, combine extracted features. Table 3 provides the super 

parameters. 

 

ResNet-50 was employed as the backbone by all methods beyond CBPSO. The 2 test pictures' 

predictions findings are given in Fig 8. The figures show deep learning-based disaster 

identification may be employed when floods occur regularly. Lakes, interior river plain 

communities, and estuaries are good places to look for flood regions.   In this investigation, the 

CBPSO had the most outstanding results (Acc = 97.28, Precision = 94.17, Recall = 96.99, F1-

Score = 95.51 & IoU = 88.85).The flood-extracting characteristics under various techniques are 

compared. CBPSO can produce sharper outlines and is more aligned with the actual data. Due to 

the more significant memory requirements that dual-stream algorithms use during learning, we 

used a tiny sample size of 16 & a lower learning period rate of 0.0002. 

 

To assess CBPSO's performance more thoroughly, we developed a brand-new DeepLabv3 + s 

model based on DeepLabv3+ and used the same packet size and starting learning algorithm as 

CBPSO. Table 4 displays the test accuracy for DeepLabv3 + s, with an IoU metric equivalent to 

DeepLabv3(IoU +'s = 87.58). CBPSO's greater accuracy on the testing dataset is not due to a tiny 

sample size or lower learning period rate, according to DeepLabv3 + s. In multi-modal flood 

recognition, CBPSO outperformed CMGFNet and MCANet. Moreover, CBPSO outperformed 

its base technique, D-LinkNet (IoU = 86.85), demonstrating the viability of our suggested 

modifications.The network complexity shows some variation during the training process with 

respect to number of epochs. The proposed CBPSO (Chaos-based Particle Swarm Optimization) 

method achieves an accuracy of 97.28%, which is higher than several existing models, but 

slightly lower than DeepLabv3+ at 97.53%. Deep learning models often have a degree of 

randomness in their training due to factors like weight initialization and stochastic optimization 

algorithms. It's possible that the proposed CBPSO converged to a suboptimal solution during 

training, whereas DeepLabv3+ may have found a slightly better configuration in its random 

initialization. And also the performance of deep learning models can be influenced by the dataset 

they are trained on. If the proposed CBPSO model was trained on a dataset that is slightly 

different from the one used for benchmarking the other models, it could result in variations in 

accuracy. 

 

Table 4: Evaluation of the algorithmic accuracy 

Techniques 

 

Accuracy in 

% 

Precision in 

% 

Recall in % F1-score in 

% 

IoU in % 

DeepLabv3+ [2] 97.53 92.03 96.71 94.17 88.59 

DeepLabv3+CNN 

[8] 

96.51 91.07 95.49 93.11 87.48 



 

 

PSPNet [9] 96.49 91.03 95.45 93.06 87.40 

OCRNet [11] 96.13 90.04 96.39 92.45 86.40 

D-LinkNet [12] 96.26 90.20 96.89 92.73 86.86 

CMGFNet [13] 96.54 90.99 96.92 93.20 88.62 

MCANet [15] 96.54 90.93 96.99 94.56 88.64 

CBPSO 

(Proposed) 

97.28 93.17 97.98 95.52 89.85 

 

 

 

Figure 8: Outcomes of the estuary region of Australia's Wilsons Rivers Basin's testing 

location roi4's predictions. 

 

Hyperparameter Tuning for the proposed Urban Flood Detection 

 

1. Model Selection: 



 

 

   - Chosen Model: XGBoost (eXtreme Gradient Boosting) 

 

2. Dataset Preparation: 

   - Urban features, SAR data, meteorological data, and historical flood records are used. 

   - Split dataset into training and validation sets. 

 

3. Baseline Model Configuration: 

   - Initial configuration with default hyperparameters. 

 

4. Grid Search Cross-Validation: 

   - Explore a range of hyperparameters systematically: 

      - Learning rate: [0.01, 0.1, 0.2] 

      - Maximum depth of trees: [3, 5, 7] 

      - Number of trees (boosting rounds): [50, 100, 150] 

      - Minimum child weight: [1, 3, 5] 

      - Subsample ratio: [0.6, 0.8, 1.0] 

      - Column subsample ratio: [0.6, 0.8, 1.0] 

      - Gamma (minimum loss reduction): [0, 0.1, 0.2] 

      - Regularization terms (alpha, lambda): [0, 1, 2] 

      - Sampling method: [stratified, uniform] 

 

5. Cross-Validation Setup: 

   - K-fold cross-validation (e.g., 5 folds). 

 

6. Performance Metrics: 

   - Evaluate metrics: accuracy, precision, recall, F1-score, ROC-AUC. 

 

7. Iterative Tuning Process: 

   - Refine based on grid search results iteratively. 

 

8. Randomized Search (Optional): 

   - Randomly sample hyperparameter combinations. 

 

9. Final Model Selection: 

   - Choose hyperparameters optimizing the selected metric. 

 

10. Model Evaluation: 

    - Evaluate final model on a separate test dataset. 

 

11. Model Deployment (Optional): 

    - Deploy for real-time urban flood detection. 

 



 

 

This is the tuning of hyperparameters of the proposed model which is optimized for efficient 

urban flood detection over vulnerable zones. The chosen hyper-parameter values lead to 

improved performance metrics, ensuring the model's reliability in real-world scenarios. 

 

4.3 Complexity issues 

The Extreme Gradient Boosting (XGBoost) algorithm exhibits specific complexity 

considerations. In terms of time complexity, XGBoost builds an ensemble of decision trees 

iteratively, and the overall complexity depends on the number of trees, their depth, and the 

complexity of the weak learner used. Memory complexity is influenced by the dataset size, the 

number of features, and the number of trees, as each tree requires memory for storage. 

Scalability is determined by the dataset size and the available computational resources, as larger 

datasets and complex problems may require more time and memory. Additionally, XGBoost 

involves tuning hyperparameters, which introduces complexity in finding optimal parameter 

settings. Understanding these complexity issues helps evaluate the feasibility and practicality of 

using XGBoost for large-scale or resource-constrained applications. 

 

The time complexity of training each individual base model (usually a decision tree) is 

influenced by factors such as the number of features (m), the number of samples (n), and the 

depth of the trees (d). 

For decision trees, the typical time complexity is O(m * n * log(n) * d). 

The complexity is affected by tree-specific optimizations, such as column blockings and tree 

pruning. 

 

5. Conclusion 

This study proposes improving the XGBoost algorithm using Concatenated Boosting Particle 

Swarm Optimization (CBPSO). CBPSO demonstrates strong capabilities in overcoming local 

optima and premature convergence, thus enhancing the convergence of the population and 

particle training. This research uses CBPSO to fill in missing data and adjust the atmospheric 

reflection index over the oceans to evaluate its effectiveness. The experiment utilizes high-

resolution sounding balloon data to calculate the adjusted ambient optical properties at various 

points. The output comprises the adjusted atmospheric refractive indices of the middle layer 

(100-4500 m), while the input consists of the refractive index in the lower levels (approximately 

100 m to 4500 m). To train the enhanced XGBoost algorithm, missing data for the modified 

index of refraction within the middle layer (100 m–4500 m) are filled in. Due to the scarcity of 

large-scale remote sensing data specifically related to multispectral flood risk assessment, this 

study successfully addresses this challenge using CAU-Flood, which also serves as testing data 

for future research in this domain. The authors extensively analyze various state-of-the-art 

(SOTA) techniques in urban flood detection, and the testing results demonstrate that the 

proposed algorithm achieves higher recognition accuracy than other algorithms. 

 

However, it should be noted that the suggested algorithm does not account for weather-related 

physical phenomena and merely fills in values for the modified air refractive index. Future 



 

 

research endeavours will incorporate these considerations to enhance the suggested method 

further and improve the accuracy of filling in missing values for the adjusted atmospheric 

refractive index. 

 

Nomenclature 

 

S.No. Abbrevation Description 

1 XGBOOST Extreme Gradient Boosting 

2 CBPSO 
Concatenated Boosting Particle Swarm 

Optimization 

3 BP Backpropagation 

4 DT Decision Trees 

5 RF Random Forest 

6 SVM Support Vector Machines 

7 ANN Artificial Neural Networks 

8 NB Navie Bayes 

9 LR Logistic Regression 

10 FR Feature Ranking 

11 MCDA Multi-Criteria Decision-Making 

12 MLP-NN Multi-Layer Perceptron Neural Network 

13 EM Expectation-Maximization 

14 PCA Principalcomponent Analysis 

15 AUC Area Under Curve 

16 MCCA Markov Chain Cellular Automata 

17 REPtree Reduced Errors Prune Tree 

18 MICE Multiple Imputation By Chained Equations 

19 TP True Positive 

20 TN True Negative 

21 FP False Positive 

22 FN False Negative 
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