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Abstract  

Investigating the influence of climate change on drought in a dynamic environment is essential 

for human society, agriculture, and ecology. Draught forecasting often considers machine 

learning techniques that use climate-mode indices as predictor variables. However, forecasting 

in long lead times is still difficult due to the consequences of climate change and the difficulties 

associated with evaluating drought. In this study, a novel ensemble learning with optimized 

pruning model (EnsLOP) based on different deep learning models, i.e., multilayer perceptron 

(MLP), convolutional neural network (CNN), temporal convolutional feature network (TCFN) 

and Attention-driven LSTM Autoencoder (AttLSTMAE), is applied to improve the forecasting 

capability of draught index namely Standardised Precipitation Evapotranspiration Index 

(SPEI). This study collects the preceding lag memory of climatic mode indicators such as 

rainfall, temperature, precipitation, and cloud cover as predictor variables to achieve 

significantly accurate draught forecasts. Also, a new flexible error correction (FEC) is proposed 

to reduce the prediction errors of the core predictors. The simulation results demonstrate that 



 

 

the proposed EnsLOP model gained a distinct advantage in terms of SPEI prediction with 

comparatively low relative errors (RMSE =0.098 and R2 <0.098). 

Keywords: Climate variables, draught, standardized precipitation evapotranspiration index 

(SPEI), ensemble learning, pruning, error correction and forecasting.  

1. Introduction 

Climate change is one of the most significant challenges of the twentieth century. India is one 

of many places in the world that are now undergoing climatic variability. Yang et al. (2023) 

developed an extreme events with more frequent and intense globally as a result of climate 

change, and tropical regions are particularly at risk of experiencing these occurrences. Kumar 

et al. (2023) introduce a Climate factors such as temperature and precipitation have a great 

influence on agricultural practices and water bodies. Yang et al. (2020) the hydrological cycle 

is mainly controlled by meteorological factors, and extreme variations in annual precipitation 

and temperature over long periods of time can cause natural disasters such as floods and 

droughts. Tamilvizhi T et al. (2022) implemented a methods for droughts occur in all climatic 

zones due to dry weather that can last for extended periods of time and cause a major imbalance 

in the water cycle. 

Nguyen et al. (2023) executed a drought will get worse if the rate of precipitation varies. In 

light of this, scientists have employed a number of drought indexes; The Standard Precipitation 

Index (SPI) is the most widely used index for analyzing precipitation data. The SPI is used 

together with other indicators such as the Rainfall Anomaly Index (RAI) to identify severe 

drought evented by Santhanaraj R. K et al. (2023). Liu et al. (2021) introduced a SPI to 

determine the start and end of a drought event and assess the influence of draught at multiple 

time intervals (monthly to yearly). Surendran R et al. (2023) stated the Univariate indices may 

not adequately capture the essence of a drought episode because drought is caused by many 

variables (such as precipitation, evapotranspiration, and soil moisture). Sharma et al. (2022) 



 

 

found the result, multivariate drought indices have been created including the US Drought 

Monitor (USDM), the Multivariate Standardized Drought Index (MSDI), and the Standardized 

Precipitation Evapotranspiration Index (SPEI). Wang et al. (2020) shared Information from 

two or more meteorological variables is integrated using multivariate indicators. Xu et al. 

(2021) discussed the use of drought index to analyze future drought estimates based on current 

levels is beneficial to climate policy and drought responses. 

Rehana et al. (2020) developed the SPEI has gained popularity as a meteorological drought 

index because it includes atmospheric climatic need, such as the disparity between precipitation 

and potential evapotranspiration (PET). SPEI has been shown to be a more trustworthy metric 

than SPI because it incorporates both PET and precipitation. Ullah et al. (2023) discussed about 

temperature and the techniques used to calculate evapotranspiration have an impact on SPEI. 

Furthermore, it has been demonstrated that the drought characteristics calculated from SPI and 

SPEI in monsoon regions are equivalent at short time scales. Surendran R et al. (2023) analyzed 

in the literature, three different types of model, such as physical, data-driven, and hybrid 

models, are used for forecasting draught because draught is fundamentally nonlinear. Hu et al. 

(2021) said the application of data-driven models has received more attention because it has 

been shown to produce better forecasting results than physical-based models. 

Dikshit et al. (2021) implements the artificial neural networks (ANN) method to predict 

draught with both short and long lead times. Guo et al. (2024) were able to quickly identify 

broad trends or differences between drought indices and weather information. Chao et al. 

(2020) executes the basic deep learning networks developed for sequence modelling are repeat 

(RNN) and convolutional neural networks (CNN) and are often preferred over multilayered 

perceptrons (MLPs) to forecast climate changes. Surendran R et al. (2023) developed a the 

long-short-term memory unit (LSTM) unit is a variant of the ordinary RNN design that 



 

 

incorporates gating approaches and skip connections to address the issue of vanishing or 

expanding gradients.  

Dikshit et al. (2021) established a deep learning models are known to have high variances and 

low biases. Bentsen et al. (2023) maintaining high prediction accuracy and durability is 

challenging for a single deep learning model in a complex and dynamic application 

environment. Barzkar et al. (2022) provide an ensemble learning has proven to be a successful 

approach to resolving this problem. It does this by utilizing multiple distinct individual models, 

as well as specific ensemble procedures, to enhance the generality of the complete model. 

These points motivate us to propose a novel ensemble learning to forecast the draught by 

analysing the climate variables. The scope of this research work are listed as follows:  

• Analyze the climate variables at variable lead times for monthly SPEI predictions. 

• Introduce a robust temporal convolutional feature network (TCFN) to extract adequate 

local features. 

• Minimize the prediction errors of the core predictors using the flexible error correction 

(FEC) approach. 

The Objectives of the proposed work are listed as follows: 

• To transform the original input data from high-dimensional to low-dimensional while 

retaining important features through the introduction of a novel Attention-Driven 

LSTM Autoencoder (AttLSTMAE).  

• To propose a new ensemble deep learning model based on MLP, CNN, TCFN and 

AttLSTMAE for SPEI forecasting. It can improve the generality and resilience of the 

entire model based on the idea of adaptable extraction of inherent features within the 

climate variables. 

• To eliminate redundant learners according to the similarity and diversity-based pruning 

method. 



 

 

The structure of this paper is organized as follows. Section 2 describes recent draught 

forecasting methods. Section 3 explains in detail the proposed forecasting model. Section 4 

validates the performance of the proposed method through simulation. Finally, the paper is 

concluded in Section 5.  

2. Related Works 

The most susceptible societies can be warned of impending droughts and prepared for their 

negative effects with the help of drought predictions. Wan et al. (2023) analysed the temporal 

and spatial patterns of the drought period and harshness using Theil-Sen and Mann-Kendall 

(M-K) tests. Furthermore, the association between drought characteristics and climate 

parameters has been investigated using partial correlation analysis. According to this study, 

decision makers could develop an efficient measure to mitigate the negative social and 

ecological impacts related to climate change by knowing the primary climate elements that 

cause drought episodes. The author examined the possibility of creating drought prediction 

models using different machine learning methods: Support Vector Machine (SVM), Artificial 

Neural Network (ANN), and k-Nearest Neighbour (KNN). These models were used to estimate 

three classes of droughts: moderate, severe, and extreme, taking into account different cropping 

cycles. Furthermore, a unique feature selection method was applied for the first time in drought 

modelling to find the best possible set of predictors.  

Al Moteri et al. (2024) introduced a hybrid Convolutional long short-term memory with self-

attention for forecasting the shoreline drought because of its ability to capture intricate 

interactions between climate parameters. The effectiveness of the LSTM model on the 

prediction of draughts has been validated by considering several drought factors, including the 

severity of the drought, the classification of the drought, or geographical variation. Dikshit et 

al. (2023) aimed to predict the widely used drought measure, SPEI, using a stacked LSTM 

model. Here, the hydroclimatic indicators including temperature, PET, rainfall, and cloud cover 



 

 

were used along with some meteorological measurement. The results of this paper showed that 

the prediction abilities at an extended forecasting horizon can be improved by lagged climatic 

variables. 

The work used Gene Expression Programming, Model Tree, and Multivariate Adaptive 

Regression Spline models to compute SPEI values for different climates. These models were 

executed using meteorological data such as wind speed, rainfall, relative humidity, maximum, 

lowest temperatures, and average temperatures. CNN-LSTM is a new hybrid intelligence 

model that has been developed and verified for short-term climate-based drought projection. 

This model was used to anticipate multiple time-scale drought indicators, specifically three- 

and six-month SPEI. The effectiveness of this model was verified using statistical accuracy 

measurements and graphical examinations. According to the results, CNN-LSTM performed 

better than all the benchmarks. 

This investigation demonstrates that data-driven models are generally chosen for forecasting 

weather-related water and parameters. In the previous ten years, several researches investigated 

the use of numerous intelligent data models, including SVM, ANN, and kNN, to considerably 

forecast the draught. But these independent machine learning techniques lead to overfitting for 

large datasets due to the intricate and non-linear interactions between the predictors. To 

overcome the limitations of individual models, deep learning (DL) techniques such as CNN 

and LSTM have been developed and have been shown to produce greater precision. Although 

these individual learners provide ease of use and computational speed, their generalizability, 

robustness, and scalability are frequently constrained. Nevertheless, ensemble learning 

approaches can reduce these drawbacks and improve overall model performance through the 

aggregation of predictions from several models. The final ensemble performance is greatly 

influenced by the modelling and optimization techniques used at each step. Therefore, the 



 

 

objective of the current work was to improve the performance of the ensemble by applying 

error correction and pruning techniques.  

3. Materials and methods 

3.1. Data and Selection of Drought Index 

In this paper, the daily weather records given by the CRU TS v 4.03 dataset are utilized. This 

data set has been used in a number of research projects, including agricultural, ancient climate, 

and climatic variation investigations. The dataset offers ten distinct principal and auxiliary 

variables. The variables used in this study are divided into three categories: principal variables, 

which include mean temperature and precipitation; auxiliary variables, which include cloud 

cover and vapour pressure; and derivative variables, which include minimum and maximum 

temperatures and potential evapotranspiration. Drought indices are valuable measurements for 

identifying, tracking and measuring drought occurrences. The most commonly utilized draught 

measurement is SPEI. It depends on both rainfall and temperature data, while SPI depends only 

on rainfall data. The factors used to calculate SPEI are precipitation and PET as given below:  

                                                                  𝐷′ = 𝑃′ − 𝑃𝐸𝑇                                                                        (1) 

where 𝑃′ denotes the precipitation (millimetre) and 𝑃𝐸𝑇denotes the potential 

evapotranspiration (millimeter). The 𝐷′ series is fitted with different log-logistic distributions 

to compute SPEI. The PDF and CDF of different log-logistic distributions are defined as 

follows:  

                                             𝑔(𝑥) =
𝛼

𝛿
 (
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                                        (2) 

where 𝛿, 𝛼 and 𝜗 are the magnitude, silhouette and source variables, respectively. Also, the L-

moment process is used to obtain the log-logistic distribution variables as provided as follows:  
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2𝜔1−𝜔0
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                                                         (3) 
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the following expression: 

where 𝜔0, 𝜔1 and 𝜔2 denotes the weighted probability statistics and are computed usi  

                                            𝑊𝑘 =
1

𝑚
(

𝑚−1

𝑘
)

−1
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𝑖−1 (
𝑚−1

𝑘
) 𝑥𝑖 ,        𝑘 = 0,1,2                         (6) 

where 𝑚 denotes the dimension of the sample and 𝑥𝑖 represents the descending ordered vector 

descending of the data points. Then, the predictable Pearson-III distribution parameters are 

used to compute the CDF of log-logistic dissemination.  

                                                       𝐺(𝑥) = [1 + (
𝑋−𝜗

𝛿
)

−𝛼

]
−1

                                                 (7) 

Here, the time series of (𝑃′ − 𝑃𝐸𝑇) is modelled across many time scales using log-logistic 

distribution variables. Moreover, the Kolmogorov-Smirnov (K-S) test is used to validate the 

fitted log-logistic distribution variables for hydrological water balance data of 𝐷′. With the 

values of (𝑥) , the SPEI values were calculated as given below: 

                                                     𝑆𝑃𝐸𝐼 = 𝑊 −
∁0+∁1𝑊+∁2𝑊2

1+𝑑1𝑊+𝑑2𝑊2+𝑑3𝑊3                                         (8) 

Where 𝑊 = √−2𝑙𝑛(𝑝)  𝑓𝑜𝑟 𝑊 ≤ 0.5, 𝑝 denotes the likelihood of surpassing a detected 𝐷′ 

value, 𝑝 = 1 − 𝐺(𝑥). When 𝑝 > 0.5, 𝑝 is substituted by 1 − 𝑝 and the sign of the resulting 

SPEI is inverted. The coefficients are ∁0= 2.55155170, ∁1= 0.8028530, ∁2= 0.0103280, 

𝑑1 = 1.4327880, 𝑑2 = 0.1892690, 𝑑2 = 0.0013080. 

Different types of draught can be illustrated by calculating SPEI at varying time scales from 

one month to twenty-four months. In general, meteorological drought is best described by 

shorter time scales (1-3 months), agrarian drought is best described by longer time scales (3-6 

months), and hydrological drought is best described by longer time scales (12-24 months). 

Access to the global SPEI database using the CRU data set on various monthly scales is 

available at https://spei.csic.es/database.html. After the data are calculated, they might be 

https://spei.csic.es/database.html


 

 

utilized to comprehend various aspects of the drought. The categories of different draughts 

based on SPEI values are provided in Table 1.  

Table 1. Draught Classes Based on SPEI Range 

SPEI range Classes 

≤ −2.00 Extremely Dry (ED) 

−1.99~ − 1.50 Severely Dry (SD) 

−1.49~ − 1.00 Moderately Dry (MD) 

−0.99~0.99 Near Normal (NN) 

1.00~1.49 Moderately Wet (MW) 

1.5~1.99 Severely Wet (SW) 

≥ 2.00 Extremely Wet (EW) 

 

3.2 Model development 

After the SPEI data collection, predictor values were gathered from related sources. This study 

uses high-resolution hydroclimatic predictors such as temperature (minimum, maximum, and 

mean), precipitation, cloud cover, and PET. In this work, a new ensemble learning model with 

optimized pruning (EnsLOP) is proposed to anticipate month-wise SPEI at various lead times. 

This paper mainly aims to offer an adequate testing dataset in addition to the largest possible 

input dataset for training. Thus, the parameter obtained from 1901 to 1990 is used for training, 

and the remaining data from 1990 to 2018 is used for testing purposes. Figure 1 shows the 

structural configuration of the proposed EnsLOP model for the prediction of SPEI. The three 

phases of the model are data preparation, core predictor development (CPD), and core predictor 

fusion (CPF). In the initial phase, the raw high-resolution data are partitioned using the cross-

validation method. During the CPD phase, the training and testing set are utilized to construct 

a sequence of core predictors. In addition, a flexible error correction (FEC) technique is 

proposed to address all the core predictor predictions. The final ensemble model is created in 

the CPF phase by combining the core predictors using a stacking-basis ensemble approach. 

Finally, a similarity index and a divergence-based ensemble pruning approach is introduced to 

improve the accuracy and steadyness of the ensemble model. 
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Figure 1. Proposed architecture for draught forecasting 

3.2.1 Development of the core predictor 

Different kinds of data features can be effectively extracted by specific kinds of Deep neural 

networks (DNNs). The ensemble learning uses different machine learning methods (i.e., core 

learners) for solving a problem and then merged to provide superior outcomes. In this work, a 

MLP, CNN, temporal convolutional feature network (TCFN) and an Attention-driven LSTM 

autoencoder (AttLSTMAE) are proposed as the core predictors for the ensemble model. MLP 

denotes a feedforward artificial neural network. Its network structure is more straightforward 

than that of other neural networks; it consists primarily of three layers: an input layer, a hidden 

layer, and an output layer. CNN uses a structure similar to a grid to signify and extract data 

features. A CNN applies a number of distinct convolution kernels (weight matrices) to the local 

data for creating feature maps with various feature information. After that, more abstract data 

features are extracted by convolving these feature maps. 

3.2.2 Temporal convolutional feature network 



 

 

As seen in Figure 2, the fundamental building block of TCFN is a "Conv1D," which is 

responsible for extracting local characteristics from the input. Additionally, TCFN uses 2 

multiple head convolutional neural layers, each made up of three Conv1D blocks to find higher-

level multiple scale features from the previously extracted low-level features. In addition, a 

self-attention layer is placed between the two multiple head layers to correlating the locations 

of the local features acquired from the first multiple head layer and enhancing the input features 

of the second multiple head layer.  

Model parameters 
(Minimum Temperature, 

Maximum temperature,

PET, Rain fall, Cloud 

cover)

1D conv Concatenation Self attention Average pooling

SPEI 

output

 

Figure 2. Architecture of TCFN 

A 1DConv unit contains a 1D convolution, a batch normalization (BN) and a leaky rectified 

linear unit (Lky-ReLU) activation function, as given as follows: 

                                                       𝑂𝑢𝑡1𝐷𝐶 = 𝐴𝐿−𝑅𝑒𝐿𝑈 (𝐴𝐵𝑁(𝐴𝑐𝑜𝑛𝑣(𝑠)))                             (9) 

where, 𝑂𝑢𝑡1𝐷𝐶 and 𝑠 denote the outcome and income of the 1DConv unit correspondingly. 

𝐴𝐿−𝑅𝑒𝐿𝑈, 𝐴𝐵𝑁, and 𝐴𝑐𝑜𝑛𝑣 represent the Lky-ReLU activation, BN, and convolution functions 

of Lky-ReLU, respectively. The convolution unit is utilized to explore the local features from 

the input as given below:  

                                                     𝐴𝑐𝑜𝑛𝑣(𝑠) = 𝜛𝑐𝑛𝑛⨂𝑠 + 𝐵𝑐𝑛𝑛                                              (10) 

where, 𝜛𝑐𝑛𝑛 and 𝐵𝑐𝑛𝑛 denote the weight and bias values of CNN correspondingly. ⨂ represents 

the convolution operator. Consider 𝑠𝐵𝑁 = {𝑥1, 𝑥2, … 𝑥𝑀}as the input of BN unit. Here, 𝑥𝑗 and 



 

 

𝑀denote the 𝑗 -th sample and batch dimension. Also,  𝜇̈ =
1

𝑀
∑ ⬚𝑀

𝑗=1 𝑥𝑗and 𝜀 =

√
1

𝑀
∑ ⬚𝑀

𝑗=1 𝑥𝑗 − 𝜇̈ represent the mean and standard deviation of 𝑠𝐵𝑁, respectively. 𝐴𝐵𝑁(𝑠𝐵𝑁) 

is described as:  

                          𝐴𝐵𝑁(𝑥1, 𝑥2, … 𝑥𝑀) = (𝜗
𝑥1−𝜇̈

𝜀+𝜌
+ 𝜏, 𝜗

𝑥2−𝜇̈

𝜀+𝜌
+ 𝜏, … 𝜗

𝑥𝑀−𝜇̈

𝜀+𝜌
+ 𝜏)                       (11)        

where, 𝜗𝜖𝑅+ and 𝜏𝜖𝑅 denote the learning parameters  and 𝜌 > 0  represents small random 

value.  

The BN unit guarantees a quicker training process by eliminating the internal covariate shift. 

Furthermore, the capability of extracting local features is enhanced by regularizing the 

proposed model using BN. In contrast to the RELU, which takes only positive values into 

account, the Lky-ReLU incorporates both positive and negative values. As a result, the loss of 

characteristics throughout the data transfer process is minimized. The Lky-ReLU activation 

can be mathematically modelled as  

                     (𝑠𝑎𝑐𝑡𝑣𝑛) = {𝜍𝑠𝑎𝑐𝑡𝑣𝑛        , 𝑠𝑎𝑐𝑡𝑣𝑛 < 0 𝑠𝑎𝑐𝑡𝑣𝑛              ,  𝑠𝑎𝑐𝑡𝑣𝑛 ≥ 0                          (12) 

where, 𝑠𝑎𝑐𝑡𝑣𝑛denotes the input of the Lky-ReLU and 𝜍 represents the negative number’s 

coefficient.  

3.2.3 Attention-Driven LSTM Autoencoder (AttLSTMAE) 

This model integrates an LSTM with auto encoder (AE), and the resultant model is improved 

using an attention method to selectively focus on the input data. Figure 3 illustrates the structure 

of the proposed AttLSTMAE. Here, the LSTM networks are used as the encoder and decoder 

model of the AE. The high-dimensional input data series is used as static vector input to the 

encoder. The data handled by the encoder technique maintain dependences between different 

data points within a time-series sequence through the usage of LSTM memory cells. It also 

continuously reduces the higher-dimensional input vector into a lower-dimensional vector until 

it grasps the latent space. The output vector is reconstructed from the compact representation 



 

 

of the input data in the latent space using the LSTM decoder. Additionally, it employs 

reconstruction error rates to detect SPEI.  
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Figure 3. Structure of AttLSTMAE 

Step1: Input Sequence Data  

The input data is a time series data{𝑥1, 𝑥2, … 𝑥𝑁}. From this data, a static 𝑉-length time window 

data {𝑥1, 𝑥2, … 𝑥𝑉}is initially generated where 𝑥𝑡 ∈ 𝑅𝑛 denotes a 𝑛 -features input at time 𝑡. 

Then, the proposed model reshapes these data as a 2-dimensional matrix.  

Step2: LSTM Encoder with Attention Mechanism 

The LSTMAE interacts with several LSTM units to recognize the most significant features of 

the input. In the LSTM model, the memory units replace the RNN summation units. The gating 

mechanism used by LSTM memory blocks allows the network to retain and access data for 

extended periods of time. These gates decide whether the cell state data should be updated, 

maintained, or removed by the LSTM unit. Although the output of the LSTM unit is a function 

of all previous time steps, it may not be able to efficiently collect data on long-term inputs due 

to its small memory. The effectiveness of LSTM can be improved using an attention method 

while handing long-term input data. This attention method allowed the neural network to focus 

on the more crucial information in the input data. In the proposed model the attention method 

is placed in the space between the two layers of the LSTM network to give discerning 



 

 

significance to the input data. Initially, the attention method computes 𝑔𝑡𝑗at every time step 

according to the hidden state ℏ𝑡 of the LSTM encoder as provided as follows:  

                              𝑔𝑡𝑗 = 𝑡𝑎𝑛ℎ(𝜛𝑎[𝑢𝑡−1, ℏ𝑗]),               𝑔𝑗 ∈ [−1,1]                                        (13) 

Where 𝑢𝑡−1denotes the LSTM unit’s hidden state at one time step earlier and 𝜛𝑎 denotes a 

weight matrix that is fine-tuned throughout the training procedure. Also, 𝑔𝑡𝑗stands for a 

placement model score, describing the relations between an input at location 𝑗 and an output at 

location 𝑡. Subsequently, this score undergoes normalization through a Softmax function as  

                                                            Å𝑡𝑗=
𝑒𝑥𝑝(𝑔𝑡𝑗)

∑ ⬚𝑇
𝑖=1 𝑒𝑥𝑝(𝑡𝑖)

                                                           (14) 

Next, the semantic vector is formed using the normalized score provided as follows.  

                                                            𝑍𝑡 = ∑ ⬚𝑇
𝑡=1  Å𝑡𝑗ℏ𝑗                                                          (15) 

The above semantic vector is utilized for the calculation of the hidden state of the subsequent 

layer as: 

                                                  𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝜛𝑏[𝑢𝑡−1, 𝑦′𝑡−1, 𝑍𝑡])                                            (16) 

where 𝑦′𝑡−1represents one step earlier output.  

Step3: LSTM Decoder 

The primary function of the LSTM decoder is to function as a series unfolding layer, recovering 

the output time series structure after series folding. 

 3.2.4 Flexible error correction method 

 The forecast accuracy of the final ensemble model is derived from the forecast accuracy of the 

constituent core predictors. As a result, the forecast series of the core predictors must be 

thoroughly examined and corrected before combining the models. It needs an error correction 

model to correct future prediction results. This work introduced a new FEC approach to correct 

the errors of the core models. Initially, the error (𝐸𝑛) sequence at 𝑙 time points prior to time 



 

 

𝑛 + 1 is gathered in order to anticipate the SPEI value. In this case, 𝑙 is found to be three by 

using the trial-and-error method. 

                                                                    𝐸𝑛 = 𝑆𝑃𝐸𝐼𝑛 − 𝑆𝑃𝐸𝐼𝑛                                        (17)           

where𝑆𝑃𝐸𝐼𝑛, 𝑆𝑃𝐸𝐼𝑛and 𝐸𝑛 denote the actual SPEI, forecasted SPEI, and error, respectively. 

Then the proposed algorithm corrects the forecasting value 𝑆𝑃𝐸𝐼𝑛+1 as: 

           𝑆𝑃𝐸𝐼′𝑛+1 = 𝑆𝑃𝐸𝐼𝑛+1+∑ ⬚𝑙
𝑛=1 (𝑆𝑃𝐸𝐼𝑛 − 𝑆𝑃𝐸𝐼𝑛) ×

|𝑆𝑃𝐸𝐼𝑛−𝑆𝑃𝐸𝐼𝑛|

𝑀𝐴𝐸
× 𝑒𝑥𝑝(−𝑛)        (18) 

where 𝑀𝐴𝐸 denotes the maximum absolute, and 𝑆𝑃𝐸𝐼′𝑛+1 is the adjusted SPEI value. The 

above expression consists of two terms to correct the error series. The term(𝑆𝑃𝐸𝐼𝑛 − 𝑆𝑃𝐸𝐼𝑛) ×

|𝑆𝑃𝐸𝐼𝑛−𝑆𝑃𝐸𝐼𝑛|

𝑀𝐴𝐸
 denotes the size and directional tendency of error, while the term 𝑒𝑥𝑝(−𝑛) 

denotes the time decaying parameter. This shows that the impact of the past forecast inaccuracy 

on the forecasting value at time 𝑛 + 1 slowly decreases with increasing time. Therefore, the 

proposed FEC uses past error series data flexibly to achieve real-time error correction during 

SPEI forecasting.  

3.2.5 Core predictor fusion using an optimized pruning method 

One of the crucial steps in the ensemble building process is core predictor fusion. The primary 

idea behind stacking is to combine the output of each core predictor to create new features. 

These features are then sent to the next-stage metapredictor to construct the correspondence 

between the output of the core predictor and the actual SPEI. The existing accuracy-based 

pruning removes the effective east members of the ensemble. In this work, an optimized 

ensemble pruning process is introduced for producing the best fusion model and lowering the 

generalization error of the ensemble model. This method takes into account both the diversity 

of the core predictors and their predictive outcome for pruning. Figure 4 illustrates the 

incorporation of a two-stage pruning technique. 
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Figure 4. Optimized ensemble pruning  

Initially, a collection of 𝑞poor predictors (𝐿𝑑𝑖𝑣𝑒
𝑞

) are chosen from 𝑄total predictors in the 

ensemble (𝛦). These selection processes are carried out through the computation of weights of 

corresponding predictors on present input. The predictor with the lowest weight is regarded the 

worst in terms of precision. At the initial level of pruning, the predictors are compared to one 

another, and the conceptual equivalency is used to identify similar predictors. The prediction 

value of two predictors that are considered for comparison across all the 𝑋𝑖 = {𝑥1, 𝑥2, … 𝑥𝑁} is 

represented as 𝐿𝑚 and 𝐿𝑛respectively. Subsequently, the similarity index is computed using 

the following expression:  

            𝑃𝑣(𝑋𝑖, 𝐿𝑚 , 𝐿𝑛 ) = {1,      𝑖𝑓𝐿𝑚(𝑋) = 𝐿𝑛(𝑋) 0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              (19) 



 

 

                                    𝑆𝐼(𝑋𝑐, 𝐿𝑚 , 𝐿𝑛) =
∑ ⬚⬚

⬚ 𝑃𝑣(𝑋,𝐿𝑚 ,𝐿𝑛 )

∑ ⬚
𝑋𝑐
𝑖=1

𝑋𝑖

                                                      (20) 

Where, 𝑃𝑣 , 𝑆𝐼 and 𝑋𝑐stands for predicted value, similarity index, and present correspondingly. 

When the predictors  𝐿𝑚 and 𝐿𝑛 exhibit similarity, one of them is excluded from the ensemble, 

because they have been trained in the same way and represent the same notion. Subsequently, 

the poor predictors 𝐿𝑑𝑖𝑣𝑒
𝑞

are chosen from 𝑄total predictors. Then 𝐿𝑑𝑖𝑣𝑒
𝑞

is sent to diversity 

checking unit that calculates the diversity of the ensemble 𝛦 for removing the predictor 𝐿𝑞 ∈

[𝐿𝑑𝑖𝑣𝑒
𝑞 ]. Here the predictor 𝑞 being the one whose elimination results in the greatest diversity 

within the system.  

Three widely used diversity measures including disagreement (DST), double fault (DFT), and 

Q-static (Q-S) have been examined in the second level of the pruning stage. When the predictor 

𝐿𝑞 forecasts the SPEI of input series accurately then 𝑆𝑃𝐸𝐼(𝑋) = 1. Alternatively, 𝑆𝑃𝐸𝐼(𝑋) =

0 when it forecasts SPEI wrongly. Let 𝑉𝑖𝑗be the amount of training data whose forecast is 𝑖 

and 𝑗 (𝑖, 𝑗 ∈ (0,1)) for predictors 𝐿𝑚 and 𝐿𝑛 correspondingly. The diversity measures Q-S, 

DFT and DST can be computed using 

                                               𝑄_𝑆(𝐿𝑚, 𝐿𝑛) =
𝑉00𝑉11−𝑉01𝑉10

𝑉00𝑉11+𝑉10𝑉01                                                   (21) 

                                              𝐷𝐹𝑇(𝐿𝑚, 𝐿𝑛) =
𝑉00

𝑉00𝑉11+𝑉10𝑉01                                                    (22) 

                                                 𝐷𝑆𝑇(𝐿𝑚, 𝐿𝑛) =
𝑉01+𝑉10

𝑉00𝑉11+𝑉10𝑉01                                                 (23) 

Finally, a meta-predictor is constructed over the current input for SPEI prediction.  

4. Results and discussion 

The proposed drought forecasting model is simulated using Python programming language. 

Figure 5 analyzes the predicted results with respect to several drought features for four different 

lead times: one month, three months, six months, and twelve months. It is not possible to depict 

all the anticipated outcomes during the testing phase. Consequently, the first sample of the 

predicted SPEI sequence was shown. For example, a one-month lead time is displayed for 



 

 

January 2016. Similarly, a lead time of three months is shown for March 2016, a lead time of 

six months for June 2016, and a lead time of twelve months for December 2016. 

             Jan 2016             Mar 2016              Jun 2016           Dec 2016 

     

(a)                            (b)                           (c)                             (d)             (e) 

Figure 5. Predicted SPEI 1 values with lead times of a) 1 month, b) 3 months, c) 6 months, 

and d) 12 months (e) SPEI scale 

Figures 6 (a) and (d) show the changes in the intensity values of the drought at various lead 

times. A helpful statistical measure called a threat score (TS) was employed to understand the 

predicted outcomes in relation to the observed values. TS uses the subsequent expression to 

calculate the percentage of accurately anticipated results with respect to the observed values: 

                                                                  𝜏𝑠 =
𝐻

𝐻+𝑀+𝐹𝐴
                                                          (24) 

Where, 𝐻, 𝑀and 𝐹𝐴 represents hit, miss and false alarm respectively. TS has a value between 

0 and 1, where 0 denotes no talent and 1 represents the best score. According to the findings, 

TS was 0.97 for a one-month lead time, 0.95 for a three-month lead time, 0.90 for a six-month 

lead time, and 0.85 for a twelve-month lead time. These findings demonstrate that the model 

can predict monthly SPEI values with sufficient precision. 

 

(a) 



 

 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Drought intensity values at various lead times (a) 1 month (b) 3 months (c) 6 months 

(d) 12 months 

4.1 Ablation study 

This section examines the impact of individual deep learning models in the ensemble. Figure 

7 (a) demonstrates that the EnsLOP prediction curve is more closely aligned with the actual 

value compared to the other four distinct deep learning models. Additionally, Figure 7 (b) 

illustrates the impact of the proposed FEC method in EnsLOP. It demonstrates that the 



 

 

ensemble model's forecasting curve is more similar to the real curve, while using the FEC 

processing. In Figure 7 (c), the forecast curve of EnsLOP is closer to the actual curve, while 

the forecast curve of EnsL without optimized ensemble pruning (OEP) shows poor 

performance. These analyses verify the usefulness of each technique used in the suggested 

model, allowing the dominance of the suggested EnsLOP approach.  

 

(a) 

 

(b) 

 

(c) 

Figure 7.  Ablation study with (a) individual core predictors, (b) FEC approach, and (c) 

optimized ensemble pruning (OEP) 



 

 

The root mean square error (RMSE) and the coefficient of determination (R2) were used as 

statistical metrics to analyze the effectiveness of the proposed framework. RMSE is a useful 

metric for forecasting and penalizes big errors. The degree of correlation between the predicted 

and observed values is shown by the R2 value. This R2 value is a number between 0 and 1, 

where 0 means there is no relation and 1 represents an accurate match. However, a smaller 

RMSE score indicates better performance. The performance of the suggested EnsLOP is 

compared with that of the core predictors, CNN, TCFN, MLP and AttLSTMAE in Figure 8. It 

shows that the forecasting results of individual core predictors perform poorly compared to the 

suggested EnsLOP.  

  

(a)                                                    (b) 

Figure 8. Comparative analysis (a) R2 and (b) RMSE 

The performance of the suggested draught prediction is compared with the state-of-the-art 

methods in Table 2. It is evident that the suggested EnsLOP performs better than any of the 

current models by achieving RMSE of 0.098 and R2 of 0.98. The reason for this is that the 

large-scale variance of climate data may be too much for traditional CNN, SVM, and KNN 

models to handle when trying to extract features with varying scales. The stacked LSTMs do 

not have the capability for handling temporal dependences which are lengthier than a certain 

step. When trained on a long-term dependency dataset (for example, 100 steps), the network 

encountered difficulties in learning the task. As a result, the effectiveness of these methods is 



 

 

not good enough for draught forecasting. However, the proposed model integrates the benefits 

of different models to achieve the best results. 

Table 2 Comparative analysis with state-of-the-art methods 

References Datasets: Climate 

variables 

Model RMSE R2 

Surendran 

R., et al 

(2023) 

PGF- version 3/ Air 

temperature, 

geopotential height, 

relative humidity, wind, 

Sea level pressure 

SVM 0.33 @ 6- 

month lead 

 

0.96 @ 6- 

month lead 

  

 

ANN  0.49 @ 6- 

month lead 

0.95 @ 6- 

month lead 

 

 KNN 0.62 @ 6- 

month lead 

0.75 @ 6- 

month lead 

 

Dikshit et al 

(2021) 

CRU: Temperature, 

PET, rainfall, cloud 

cover and climatic 

indices  

Stacked 

LSTM 

0.11 @ 6-

month lead 

0.92@ 6month 

lead 

Bentsen et al 

(2023) 

synoptic stations at Iran: 

Temperature, humidity, 

rainfall and wind speed 

GEP 0.250 - 

MT 0.107 - 

MARS 0.148 - 

Proposed CRU: Temperature, 

PET, rainfall, cloud 

cover 

EnsLOP 0.098 @ 6- 

month lead 

0.98 @ 6- 

month lead 

 

5. Conclusions 

This study presented a novel ensemble learning with an optimized pruning model for draught 

forecasting. High-resolution hydroclimatic variables, including temperature (minimum, 

maximum and mean), precipitation, cloud cover, and PET, were employed to validate the 

effectiveness of the techniques in the suggested model and the dominance of the general 

ensemble draught forecasting model. During the testing time, the suggested EnsLOP model 

predicts SPEI at varied lead periods and performs better than other baseline models. The 

proposed FEC approach aimed to reduce the forecasting error by taking into account the 

comparative pattern and temporal deterioration in the error series. The predicted results were 

evaluated using statistical metrics and looking at various aspects of the drought. The results 



 

 

demonstrated that the EnsLOP model performs better than conventional data-driven models in 

terms of statistical metrics. Regional drought management planners may find this study highly 

beneficial in planning for future potential drought conditions. The suggested approach can 

produce good forecasting results; however, it is not directly scalable to multidimensional data. 

Extending the suggested model to multivariate and multistep time series forecasting is one 

potential avenue for future research.  

Data Availability Statement: 

The source of data sets are download from the following link  

https://www.ncdc.noaa.gov/cdo-web/datasets and 

http://apdrc.soest.hawaii.edu/data/data.php 
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