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Graphical Abstract 

 

Abstract: 

Soil moisture heavily influences the energy exchange between land and the atmosphere, 

and it plays an important role in ecological systems. Quantitatively acquiring soil 

moisture information is important for agricultural production, ecological protection and 

other processes. The current range of soil moisture data products is diverse, but how to 

enhance the applicability and accuracy of these products in China through data fusion 

is a question worth exploring. As a new, merged soil moisture product, ECV_SM was 

initially developed under the European Space Agency’s (ESA’s) Water Cycle Multi-

Mission Observation Strategy (WACMOS) project and is currently being extended and 

improved within the ESA’s Climate Change Initiative (CCI). In this study, an empirical 

model is suggested to improve the performance of ECV_SM over China. First, the study 

area was divided into seven sub-areas using digital elevation model (DEM), land 

surface roughness (ROUGHNESS) and vegetation optical depth (VOD). Then, nine 

impact factors (DEM, ROUGHNESS, VOD, antecedent precipitation index, slope, 

aspect, sand content, clay content and ECV_SM) and in-situ soil moisture data were 

used to build an empirical soil moisture estimation model for each sub-area. In total, 

70% of the in-situ soil moisture data was used for modeling and 30% was used for 

validation. The validation results indicate that the BIAS, root-mean-square difference 

(RMSD) and mean relative error (MRE) improved from 0.078 cm3/cm3 to 0.062 

cm3/cm3, from 0.099 cm3/cm3 to 0.078 cm3/cm3, and from 30.0% to 22.6%, respectively. 
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The spatial distribution of the improved dataset is also consistent with the actual 

conditions. The approach optimizes the ECV_SM product; therefore, the approach is 

efficient. The results of this study have successfully improved the accuracy of existing 

data products in China and enhanced the efficiency of data fusion. This has significant 

implications for the impact of soil moisture products on the regional ecological 

environment and agricultural production in China. 

 

Keywords: Soil moisture; Essential Climate Variable (ECV); Performance 

improvement; Partition; Impact factors; Multiple linear stepwise-

regression estimation model; China  



 

 

1. Introduction  

Soil moisture plays an extremely important role in ecosystems and agricultural 

production. The growth and development of plants, their nutrient absorption and 

transport, and their ability to adapt to environmental changes are all closely related to 

the conditions of soil moisture. Soil moisture not only affects plant growth but also 

impacts the activity and diversity of soil microorganisms. These microorganisms play 

a key role in the nutrient cycling and decomposition of organic matter in the soil, which 

in turn affects the nutrient supply to vegetation. Appropriate soil moisture is one of the 

key factors ensuring the healthy growth of crops. Uneven soil moisture can lead to field 

water management issues, thereby affecting the uniformity and yield of crops. For 

instance, rice requires sufficient waterlogging conditions to thrive, while crops like 

wheat and soybeans need good drainage to prevent root rot. Accurate monitoring and 

management of soil moisture can help farmers irrigate more effectively, avoiding over- 

or under-watering and maximizing the efficiency of water resource use. This can not 

only increase crop yield but also reduce the wastage of water resources. Utilizing soil 

moisture sensors, satellite remote sensing technologies, and climate models can help 

agricultural practitioners better understand and predict soil moisture conditions, thus 

making more informed decisions. Soil moisture conditions influence subsequent runoff 

generation, modulate interactions between land surface and atmosphere, and participate 

in the feedback between land and the atmosphere (McCabe et al., 2005). Soil moisture 

information over a large area would greatly benefit global climate forecasting, drought 

monitoring and yield estimation.  

Microwave remote sensing provides an efficient alternative to quantitatively acquire 

soil moisture information at various scales. Various microwave instruments have been 

launched and operated. The types of sensors carried can be roughly divided into two 

categories: datasets based on active microwave sensors and datasets based on passive 

microwave sensors. The earliest remote sensing satellites launched with active/passive 

microwave sensors include SMMR, SMMI, TMI, SCAT, etc. After 2000, remote 

sensing satellites carrying new active/passive microwave sensors were launched 

successively, and many soil moisture datasets were generated, such as AMSR-E 



 

 

((Njoku et al., 2003; Owe et al., 2008), WindSat ((Li et al., 2010; Parinussa et al., 2012), 

Aquarius (Vine et al., 2007), ERS-AMI, and MetOp-ASCAT (Bartalis et al., 2007; 

Scipal et al., 2002). However, these sensors are not specifically designed for measuring 

soil moisture, and soil moisture products developed based on these data also differ in 

design objectives, spatiotemporal resolution and coverage range, data sources, 

algorithms, and delays (Beck et al, 2021). In 2009, the European Space Agency 

launched an L-band instrument for the Soil Moisture and Marine Salinity (SMOS) 

mission (Mecklenburg et al., 2012). Subsequently, novel and specialized soil moisture 

datasets such as SMAP (Entekhabi et al., 2008) emerged. In 2012, as a follow-up 

mission to AMSR-E (Parinussa et al., 2015), AMSR-2 was launched along with 

ASCAT sensors based on the MetOp-B platform (Entekhabi et al., 2010; Chan et al., 

2018; O'Neill et al., 2019). Between 2014 and 2015, Sentinel-1A and SMAPL 

(Entekhabi et al., 2010; Chan et al. 2018; O’Neill et al. 2019) were successfully 

launched. In recent years, new sensors such as radar biomass and NISAR will also be 

introduced one after another. The development of these instruments has driven the 

development of (near real-time) soil moisture products, guarantee the continuity of soil 

moisture products and will contribute to the maturity of microwave remote sensing of 

soil moisture. 

 

Individual microwave products cannot cover the period required for a climatological or 

hydrological analysis. Additionally, differences in system and mission designs and the 

use of different retrieval algorithms have led to data with spatio-temporally varying 

quality (Dorigo et al., 2010; Parinussa et al., 2011). Many studies (Karthikeyan et al., 

2020; Chawla et al., 2020; Miralles et al., 2019; Tian et al., 2019; Brocca et al., 2017; 

Dorigo and Jeu, 2016; Ochsner et al., 2013; Albergel et al., 2012; Taylor et al., 2012; 

Dorigo et al., 2010) have indicated that active and passive microwave data are 

complementary for different land cover types; radiometers generally perform best over 

dry areas, while scatterometers perform best over densely vegetated areas (Dorigo et 

al., 2014). Therefore, combining active and passive microwave datasets will contribute 

substantially to offering improved estimates of surface soil moisture at various scales. 



 

 

In a novel study, Liu et al. (2011; 2012;) merged active and passive microwave products 

into a single multi-decadal ECV for soil moisture (ECV_SM). Subsequently, Dorigo et 

al. (2012) was the first to globally assess trends in the ECV_SM for the period 1988-

2010; they compared these trends with soil moisture trends from two model-based 

surface soil moisture datasets, a precipitation dataset, and a vegetation dataset. Later, 

Albergel et al. (2013) used soil moisture from ERA-Land to monitor the global-scale 

consistency of ECV_SM and found that ECV_SM is generally relatively stable over 

time with respect to ERA-Land. Recently, based on existing validation studies, Dorigo 

et al. (2014) provided a more in-depth evaluation of ECV_SM over space and time 

using ground-based observations. A few years later, their latest research (Dorigo et al., 

2017) showed that the product quality of ESA CCI SM had steadily increased with each 

successive release and that the merged products generally outperform the single-sensor 

input products. However, domestic research over China regarding the ECV_SM 

product has rarely been conducted. 

  

China is located in eastern Asia on the western Pacific border. China is vast, covering 

9.63 million square kilometers. China’s average altitude decreases from west to east. 

The landforms include plateaus, mountains, hills, basins, plains and five basic terrain 

types. The mountainous area accounts for two-thirds of the surface area. The large 

latitude range, coupled with the topography, leads to uneven temperature and 

precipitation distributions. Thus, accurately acquiring soil moisture information for all 

of China is very difficult when using individual sensor products; many studies (Chen, 

2010; Li et al., 2013; Xi et al., 2014) have demonstrated this point. Chen et al. (2012) 

developed a modified surface roughness index to map the land surface roughness. 

Combining the microwave polarization difference index (MPDI) and the modified 

surface roughness index, they derived a semi-empirical model for soil moisture. The 

model was validated using in situ observations, indicating the effectiveness of the 

model, although it was only examined in Guangdong Province, southern China. The 

aforementioned studies primarily focused on validation and algorithm development for 

soil moisture in China. Some scientists have concentrated on improving the 



 

 

performance of the existing remote sensing soil moisture datasets over China. Yan et 

al. (2008) constructed multiple linear estimation models for Yanan City, China, with 

backward and forward stepwise regression. Ma (2007) improved the retrieval algorithm 

for AMSR-E soil moisture data over Xinjiang Province, China, using MPDI and 

calculated the vegetation opacity. The average correlation coefficient between the 

improved dataset and the ground-based dataset was found to be 0.811. 

 

The new and synthetic soil moisture product, ECV_SM, will provide new research 

opportunities for studying soil moisture and climate patterns in China. Therefore, this 

study aims to establish a multiple stepwise linear-regression model for the ECV_SM 

product using in-situ soil moisture data over China and to improve the data accuracy 

over China. Additionally, the improved ECV_SM product is validated to show the good 

performance of the improvement method. 

2. Materials and Methods 

The ECV_SM dataset 

ECV_SM (Version 02.0) is a newly merged soil moisture product developed under the 

framework of the European Space Agency's Water Cycle Multi-mission Observation 

Strategy (WACMOS) and CCI projects. The product was generated by spaceborne 

active and passive microwave instruments; it originates from a number of Earth 

Observation (EO) missions, agencies and sensor systems. The active dataset was 

generated by the University of Vienna using observations from the C-band 

scatterometers on board ERS-1/2 and METOP-A. The passive dataset was generated 

by the VU University Amsterdam in collaboration with NASA using passive 

microwave observations from Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua 

AMSR-E, Coriolis WindSat, and GCOM-W1 AMSR2. As shown in Figure 1, the suite 

of datasets covers a 35-year period, from the late 1970s to the present. At present, the 

product provides global coverage at a spatial resolution of 0.25 degrees. 



 

 

 

Figure 1. An overview of the active and passive sensors that provide the ECV_SM product (source: 

WACMOS project (2012)).  

Ground-based data 

A standard ground-based dataset, named CHINA, was obtained from the International 

Soil Moisture Network (ISMN) and was produced by the Institute of Geographic 

Sciences and Natural Resources Research of the Chinese Academy of Sciences. A total 

of 40 stations are mainly distributed throughout northeastern and eastern China.  

 

The in-situ soil moisture data, which are derived from the Chinese crop growth and 

farmland soil moisture dataset, were downloaded from the China Meteorological Data 

Sharing Service System.  

Auxiliary datasets 

The brightness temperature dataset from the AMSR-E Level-3 land surface product 

(AE_Land3) was downloaded from the American National Snow and Ice Data Center. 

The data with a 56-km mean spatial resolution are resampled to global cylindrical 25-

km Equal-Area Scalable Earth Grid (EASE-Grid) cell spacing. The data are stored in 

HDF-EOS format and are available via FTP. 

 

AMSR2 (Advanced Microwave Scanning Radiometer 2) is an improved version of 

AMSR (Aperture 2.0 meters) on ADEOS II and AMSR-E (Aperture 1.6 meters) on 

http://www.baidu.com/link?url=wQeFriY_N_nglqdWTL1iJTJmXPti5cVYCs0DKvu2kTC


 

 

NASA Aqua satellites. AMSR-2 is onboard GCOM-W1, which was developed by the 

Japan Aerospace Exploration Agency (JAXA) and launched successfully on 18 May 

2012. AMSR-2 is a passive microwave remote sensing instrument that cannot emit 

electromagnetic waves but can detect the characteristics of a target by passively 

receiving the microwave energy emitted by the observed object. AMSR-2 is a seven-

frequency passive microwave radiometer system that measures brightness temperatures 

at 6.9, 7.3, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz in horizontal and vertical polarization 

modes, resulting in a total of 14 observation channels. Each scanning band contains 

data from the relevant scanning area, which are stored in HDF5, a hierarchical data 

format with L1R representing the resampled data (Shen et al. 2019). 

 

The soil dataset of China, which is from the Harmonized World Soil Database (HWSD), 

was downloaded from the Heihe Plan Science Data Center of the National Natural 

Science Foundation of China. The dataset includes the following attributes: soil name, 

classification, soil texture, soil depth, soil water content, sand content, and silt content. 

The data are gridded using the WGS-84 projection. 

 

The land cover products for China were downloaded from the Cold and Arid Regions 

Science Data Center. In these products, China’s land surface is divided into 17 

categories, including evergreen broadleaf forests, grasslands, permanent wetlands, 

croplands, urban and built-up lands, glaciers and water bodies (Ran et al., 2006; Ran et 

al., 2012). 

 

The daily gridded precipitation data are extracted from the real-time rainfall data at 

more than 2400 sites and are downloaded from the China Meteorological Data Sharing 

Service System. 

Data Preprocessing 

In-situ soil moisture data were collected from agrometeorological stations on the eighth 

day of every ten-day interval each month. A maximum merging method was used to 



 

 

process ECV_SM and to unify the time periods of the two datasets. The ECV_SM data 

observed on the 7th, 8th and 9th day of every month were merged. A similar procedure 

was performed on the 17th, 18th and 19th days and on the 27th, 28th and 29th days. This 

procedure not only retains the temporal characteristics of the soil moisture data but also 

eliminates noise in the observations. Pixel values in the ice-covered and densely 

vegetated regions, where the microwave band was not viable, were rejected. A 5-by-5 

moving window was used to inspect every pixel and fill the rejected pixels with the 

average of nearby values. 

 

The selection of suitable stations for the soil moisture data was based on the criteria in 

the Product Validation Plan. A total of 533 stations were obtained. The field capacity 

was calculated using the China soil dataset. This procedure was used to convert in-situ 

soil moisture data into volumetric water content (cm3/cm3). The in-situ soil moisture 

data were evaluated using the standard CHINA dataset. The results show that the two 

datasets are significantly similar. The average correlation coefficient is 0.811, which 

passed the significance test at p=0.005. Thus, the in-situ soil moisture data were used 

in the modeling and validation procedures. 

Model parameter analysis and acquisition 

The effects of vegetation cover and vegetation water content on soil moisture are 

manifested as the water interception effect of crowns, the reduction of soil water 

evaporation and the increase in transpiration losses. Litter cover and plant roots can 

enhance soil water infiltration, which impacts soil moisture (Qiu et al., 2007). The 

effects of meteorological factors on soil moisture are mainly reflected in the 

precipitation. Hawley et al. (1983) and Henninger et al. (1976) found that the spatial 

variability and average value of soil moisture varies with precipitation changes and that 

consistent trends in seasonal variations occur. The main terrain factors are the slope, 

aspect and elevation. Generally, soil moisture decreases as the slope increases. The 

influence of the aspect on soil moisture is mainly manifested as a difference in solar 

radiation. Soil water preservation is mainly determined by the soil porosity and soil 
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texture: a smaller soil particle size corresponds to increased preservation (Owe et al., 

2001; Parinussa et al., 2011). Therefore, the following nine factors were used to build 

the empirical soil moisture model: DEM, ROUGHNESS, VOD, API, slope, aspect, 

SAND, CLAY and ECV_SM.  

Retrieving the API 

The following API definition, which was proposed in the 1950s by Kohler and Linsley 

(McQuigg, 1954), was applied in this study: 

( ) ( ) ( )1API i =P i +kAPI i- ,                      (1)
 

where P is the precipitation and k is the attenuation coefficient of the API.  

 

Equation (1) can be expanded as follows: 

 ( ) ( )
0

d

d=

API i = k P i d


 − .                         (2)
 

In this study, k was set to 0.9 based on previous studies (Jr., 2002; Yuan and Zhou, 

2004), and the influence of the two prior months was considered when calculating the 

API. 

Retrieving ROUGHNESS 

According to microwave radiation transfer theory, surface soil moisture, VOD and 

canopy temperature greatly influence canopy brightness temperatures. In the Jin (1998) 

surface-roughness empirical model, the rough surface reflectivity is represented as 

( )1 -h

sv ov ohr = -Q r +Qr e   ,                       (3)
 

( )1 -h

sh oh ovr = -Q r +Qr e   ,                       (4)
 

where Q is a polarization mixing parameter, which ranges between 0 and 0.5; h is the 

vertical surface roughness parameter; rsv and rsh represent the vertical and horizontal 

polarization reflectivities, respectively, of a rough surface; and rov and roh represent the 

vertical and horizontal polarization reflectivities, respectively, of a flat surface.  

 

Therefore, the MPDI can be characterized as follows (Ma, 2007): 
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where  and  are only affected by soil moisture. Three MPDIs 

can be obtained from AMSR-E 6.9 GHz, 10.7 GHz and 18.7 GHz brightness 

temperature data to calculate  (Ma, 2007): 
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Here,  is affected not only by the surface roughness but also by the vegetation 

coverage; consequently,  cannot represent ROUGHNESS well. Chen (2012) 

assumed that a linear relation exists among the various AMSR-E bands, namely,

, where m and n are coefficients. Thus, the following equation is 

derived (Chen et al., 2012):  
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Using Owe’s vegetation optical depth (Owe et al., 2001), a simple surface roughness 

index ( ) can be characterized (in cm) as follows (Chen et al., 2012): 
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Here,  is only influenced by the surface roughness of h; hence,  more 

reasonably represents ROUGHNESS than does  . Subsequently, Chen (2012) 

verified the results of using and demonstrated its high accuracy. In this study, 

the ROUGHNESS was retrieved using the above method. 

3. Results and Discussion 

Partitioning and modeling 

ov ohr r+ ( )( )1 2 ov ohQ r -r−
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The vastness of China has a profound effect on the spatial variation in soil moisture; 

therefore, the area must be partitioned. Soil moisture is closely related to topography, 

geomorphology, vegetation, and other factors. Among the data used, DEM data can 

accurately reflect the topographical conditions, the roughness factor can accurately 

reflect the geomorphological conditions, and VOD data can represent the impact of 

vegetation factors on soil moisture. Each factor affects the soil moisture modeling: 

DEM influences through elevation and slope, ROUGHNESS through the land surface 

texture, and VOD as a measure of vegetation density, which impacts soil moisture 

through transpiration and interception. The study area was divided into seven sub-areas 

using DEM, ROUGHNESS and VOD, as shown in Figure 2. 

 

Figure 2. The partitioning result for China using an unsupervised classification. 

Surface soil moisture modeling relies on many factors; thus, the precision of ECV_SM 

can be improved by establishing a regression model. The model can be characterized 

as follows:  

1 1 2 2 3 3 n nSM=a X a X a X a X+ + + ,                  (9) 

where SM is the surface soil moisture; X1, X2, X3,… Xn are various factors that influence 



 

 

SM; a1, a2, a3, … an are coefficients of the multiple regression calculation; and n is the 

number of impact factors. 

Many factors were considered when establishing the multiple linear stepwise-

regression model; however, the parameter dimensions were not consistent. Therefore, 

normalization was applied when processing the datasets to eliminate the influence of 

the different parameter dimensions. The agrometeorological station soil moisture data 

were preprocessed and classified based on the seven sub-areas (Figure 3). To evaluate 

the precision of the modeling results, the data of each sub-area were divided into two 

parts: 70% of the data was used for modeling and the other 30% was used for validation. 

Because the nine selected parameters differently affect the soil moisture within each 

sub-area, a backward method was used to construct a multiple linear-regression model 

for China for 2020 (specifically, early October). 

Figure 3. The distribution of the agrometeorological stations in each sub-area 

Validation and Analysis 

The parameter selection results in each sub-area are shown in Table 1. Lack of the 



 

 

observational data for the seventh sub-area led to the failure of the modeling process. 

Table 1. An overview of the selected factors for simulating each sub-area  

Elements 
Partition Number of 

occurrences 1 2 3 4 5 6 

API  √ √ √ √ √ 5 

ASPECT    √ √ √ 3 

ECV_SM √  √  √  3 

CLAY   √ √   2 

DEM     √  1 

ROUGHNESS     √  1 

SAND √ √ √  √ √ 5 

SLOPE √   √ √ √ 4 

VOD         √   1 

 

Based on Table 1, the API and SAND appear five times; thus, these two factors most 

greatly affect soil moisture. The ECV_SM product appears three times, which could be 

attributed to the limitations of the microwave dataset, particularly in the high-altitude 

area (>800 m) where the precision is low. Notably, VOD, ROUGHNESS and DEM 

were found to be important factors that affected soil moisture in our previous analysis, 

but the model participation rates were not high. The three factors used for the 

partitioning process exhibit similar performances within the same sub-area; therefore, 

these factors are not considered important in the soil moisture modeling. 

Table 2. Multiple linear regression models for each sub-area 

Partition 

Station 

Number 

for 

Modeling  

Model  R 
Adjust 

R2 
p 

1 80 SM = 0.396*CCI-0.156*SAND+0.230    

*SLOPE+0.233 

0.543 0.266 0.000 

2 65 SM = 0.078*API-0.396*SAND+0.477 0.579 0.313 0.000 

3 57 SM = -0.206*SAND+0.155*API+0.313*CCI-0.130 

*CLAY+0.370 

0.735 0.505 0.000 

4 28 SM = 0.310*API+0.077*ASPECT+0.25   

*CLAY+0.146*SLOPE-0.104 

0.746 0.473 0.001 

5 72 SM = 0.286*API+0.029*ASPECT+0.040    

*CCI-0.149*DEM+0.095 *ROUGHNESS-

0.802 0.596 0.000 



 

 

 

R is the multiple correlation coefficient of the regression model; this coefficient 

represents the linear relationship between an independent variable and dependent 

variable. Compared with R2, the adjusted R2 can better suppress the influence of 

variable numbers and sample sizes. p is the significance. Based on Table 2, the 

significance of the models in sub-areas 1, 2, 3 and 5 are very good compared with those 

in sub-areas 4 and 6 because of the abundant in-situ data. All models passed the 95% 

significance level test. Table 3 shows the results of the validation models using the 

remaining 30% of the data. 

Table 3. Validation results 

Partition 

Validation 

Station 

Number  

Original Data Improved Data 

BIAS 

(cm3

/cm3

) 

RMSD MRE R2 p-

value 

BIAS RMSD MRE R2 p-

value 

1 35 0.075 0.096 0.299 0.380 0.000 0.062 0.076 0.222 0.372 0.000 

2 28 0.078 0.105 0.270 0.296 0.004 0.073 0.095 0.234 0.251 0.010 

3 25 0.081 0.097 0.318 0.246 0.013 0.043 0.056 0.221 0.433 0.000 

4 12 0.080 0.109 0.426 0.126 0.283 0.071 0.083 0.359 0.413 0.024 

5 31 0.079 0.096 0.285 0.301 0.001 0.062 0.078 0.265 0.430 0.000 

6 6 0.080 0.085 0.271 - - 0.049 0.058 0.185 - - 

Average  0.078 0.099 0.300 0.270 - 0.062 0.078 0.226 0.380 - 

Based on Table 3, all statistical measures pertaining to each sub-area improved after 

the simulations. The improvements in sub-areas 3 and 6 are particularly notable; 

however, the amount of observational data for sub-area 6 is small, leading to uncertainty 

in the results. Generally, the models performed well; thus, the improved ECV_SM can 

be used for soil moisture related studies and applications. Figure 4 shows the China soil 

moisture distribution map. Null pixel information is displayed in white due to the lack 

of values in the original ECV_SM product, and the seventh sub-area relied on the 

original ECV_SM data because of the failure of the modeling process. 

0.232*SAND+0.029 

*SLOPE+0.022*VOD+0.231 

6 13 SM = 0.150*API-0.311*ASPECT+0.2     

*SAND -0.148 *SLOPE+0.343 

0.854 0.594 0.021 



 

 

 

Figure 4. China soil moisture map derived from the improved ECV_SM in early 

 October 2020 (cm3/cm3) 

Figure 4 presents an overview of the spatial distribution of the surface soil moisture 

according to the improved ECV_SM product. Overall, the northwest is dry, and the 

southeast is wet. A high soil moisture value between 0.3 cm3/cm3 and 0.5 cm3/cm3 is 

mainly found south of the Qinling Mountains to the Huaihe River, the three 

northeastern provinces and the eastern Tibetan Plateau. This finding is consistent with 

the geographical distribution of the humid areas. The abnormally high soil moisture 

value in the southern Tibetan Plateau is attributed to the original ECV_SM data. A low 

soil moisture value between 0 and 0.1 is mainly observed in Xinjiang province and 

central Inner Mongolia province. This finding is consistent with the actual conditions 

of arid areas. A soil moisture value between 0.1 and 0.3 is mainly observed near the 

dry-wet climate boundary. A soil moisture value between 0.1 and 0.2 is observed in the 

Inner Mongolia Plateau, Central Xinjiang, the Tibetan Plateau and the Loess Plateau. 

The regions whose soil moisture value ranges from 0.2 to 0.3 are located in the North 

China Plain, the Northeast China Plain, the Loess Plateau and northern Xinjiang 



 

 

province. From the above analysis, we found that the ECV_SM optimization results are 

similar to the spatial patterns of drought and wet soil in China and therefore reflect the 

rationality of the research. In addition, the average soil moisture contents of Yunnan 

and Guizhou are the highest among all of the provinces because rainfall occurred in 

early October in these areas. The abnormally high soil moisture contents in the 

northeastern Tibetan Plateau may be caused by the insufficient in situ observational 

data. 

Conclusions and Recommendations 

In this research, the study area was initially divided into seven sub-areas using DEM, 

ROUGHNESS and VOD. The VOD, API, DEM, SLOPE, ASPECT, SAND, CLAY, 

ROUGHNESS and ECV_SM parameters, which greatly influence the soil moisture, 

were selected to build the empirical soil moisture multiple stepwise-regression model; 

70% of the in-situ soil moisture observations was applied to modeling, and the 

remaining 30% of the data was used to validate the accuracy. The soil moisture map of 

China for 2020 (early October) was consistent with the actual conditions. The validation 

results show that the BIAS, RMSD and MRE were improved from 0.078 cm3/cm3 to 

0.062 cm3/cm3, from 0.099 cm3/cm3 to 0.078 cm3/cm3 and from 30.0% to 22.6%, 

respectively. The approach optimizes the ECV_SM product; therefore, the method is 

efficient. However, the approach only filled the sporadic null pixel values in the study 

area, and a large unfilled district remained unprocessed. In addition, because of the 

influence of ice-covered soil and low temperatures, a large number of 

agrometeorological stations lack measured data from winter. This data scarcity has an 

impact on the calibration results. Furthermore, the research is limited to short-term data. 

In future studies, this problem, as well as the identification of the partitioning and 

modeling rules, will be considered to generate new methods of evaluating large areas 

and multiple temporal and high-precision soil moisture data sets. Additionally, future 

studies will consider the use of more advanced soil moisture sensing technologies or 

methods to improve the accuracy of research data. Furthermore, efforts will be made to 

enhance the applicability and improvement methodologies of specific data in extreme 



 

 

areas such as high-altitude regions, providing more comprehensive data outcomes for 

the research. 
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Comment to author:  

Here are some comments:  

1：How does soil moisture influence ecological systems and agricultural productivity?  

Response: The manuscript discusses how soil moisture heavily influences energy 

exchange between land and the atmosphere and plays a critical role in ecological 

systems. It also highlights the importance of soil moisture in agricultural production 

and ecological protection. 

Revision: The first paragraph of Introduction. 

Soil moisture plays an extremely important role in ecosystems and agricultural 

production. The growth and development of plants, their nutrient absorption and 

transport, and their ability to adapt to environmental changes are all closely related to 

the conditions of soil moisture. Soil moisture not only affects plant growth but also 

impacts the activity and diversity of soil microorganisms. These microorganisms play 

a key role in the nutrient cycling and decomposition of organic matter in the soil, which 

in turn affects the nutrient supply to vegetation. Appropriate soil moisture is one of the 

key factors ensuring the healthy growth of crops. Uneven soil moisture can lead to field 

water management issues, thereby affecting the uniformity and yield of crops. For 

instance, rice requires sufficient waterlogging conditions to thrive, while crops like 

wheat and soybeans need good drainage to prevent root rot. Accurate monitoring and 

management of soil moisture can help farmers irrigate more effectively, avoiding over- 

or under-watering and maximizing the efficiency of water resource use. This can not 

only increase crop yield but also reduce the wastage of water resources. Utilizing soil 

moisture sensors, satellite remote sensing technologies, and climate models can help 

agricultural practitioners better understand and predict soil moisture conditions, thus 

making more informed decisions. Soil moisture conditions influence subsequent runoff 

generation, modulate interactions between land surface and atmosphere, and participate 

in the feedback between land and the atmosphere (McCabe et al., 2005). Soil moisture 

information over a large area would greatly benefit global climate forecasting, drought 

monitoring and yield estimation. 

 

2：Evaluate the clarity and informativeness of the abstract. It should provide a concise 

overview of the study, including the research question, methods, results, and conclusion. 



 

 

Report the BIAS, root-mean-square difference What makes ECV_SM different from 

other soil moisture products?  

Response: The abstract provides a clear and concise overview, mentioning the 

improvement of the ECV_SM soil moisture product over China, the methods used 

(empirical model using in-situ data and various factors like DEM, ROUGHNESS, and 

VOD), and the results showing improved BIAS, RMSD, and MRE. The description of 

the research problem and conclusions in the abstract has been rewritten for greater 

clarity. 

Revision in Abstract: 

Soil moisture heavily influences the energy exchange between land and the atmosphere, 

and it plays an important role in ecological systems. Quantitatively acquiring soil 

moisture information is important for agricultural production, ecological protection and 

other processes. The current range of soil moisture data products is diverse, but how to 

enhance the applicability and accuracy of these products in China through data fusion 

is a question worth exploring. As a new, ……The approach optimizes the ECV_SM 

product; therefore, the approach is efficient. The results of this study have successfully 

improved the accuracy of existing data products in China and enhanced the efficiency 

of data fusion. This has significant implications for the impact of soil moisture products 

on the regional ecological environment and agricultural production in China. 

 

3：What criteria were used to choose these three factors (DEM, ROUGHNESS, VOD) 

for subdividing the study area?  

Response: The basis for selecting DEM, ROUGHNESS, and VOD has been added to 

the manuscript. 

Revision: The first paragraph of Partitioning and modeling. 

The vastness of China has a profound effect on the spatial variation in soil moisture; 

therefore, the area must be partitioned. Soil moisture is closely related to topography, 

geomorphology, vegetation, and other factors. Among the data used, DEM data can 

accurately reflect the topographical conditions, the roughness factor can accurately 

reflect the geomorphological conditions, and VOD data can represent the impact of 

vegetation factors on soil moisture. 

 

4：How do each of these factors individually and collectively influence soil moisture?  

Response: Corresponding explanations have been added to the manuscript. 

Revision: The first paragraph of Partitioning and modeling. 

Each factor affects the soil moisture modeling: DEM influences through elevation and 

slope, ROUGHNESS through the land surface texture, and VOD as a measure of 

vegetation density, which impacts soil moisture through transpiration and interception. 

The study area was divided into seven sub-areas using DEM, ROUGHNESS and VOD, 



 

 

as shown in Figure 2. 

 

5：What specific improvements were observed in BIAS, RMSD, and MRE, and how 

do these improvements compare to other studies or existing methods?  

Response: The specific improvement level has been explained in the abstract from 

indicators such as BIAS, RMSD, MRE. 

Revision in Abstract: 

In this study, an empirical model is suggested to improve the performance of ECV_SM 

over China. First, the study area was divided into seven sub-areas using digital elevation 

model (DEM), land surface roughness (ROUGHNESS) and vegetation optical depth 

(VOD). Then, nine impact factors (DEM, ROUGHNESS, VOD, antecedent 

precipitation index, slope, aspect, sand content, clay content and ECV_SM) and in-situ 

soil moisture data were used to build an empirical soil moisture estimation model for 

each sub-area. In total, 70% of the in-situ soil moisture data was used for modeling and 

30% was used for validation. The validation results indicate that the BIAS, root-mean-

square difference (RMSD) and mean relative error (MRE) improved from 0.078 

cm3/cm3 to 0.062 cm3/cm3, from 0.099 cm3/cm3 to 0.078 cm3/cm3, and from 30.0% to 

22.6%, respectively. The spatial distribution of the improved dataset is also consistent 

with the actual conditions. The approach optimizes the ECV_SM product; therefore, 

the approach is efficient. 

 

6：Can you provide examples or visualizations of how the spatial distribution of the 

improved dataset aligns with actual soil moisture conditions?  

Response: The manuscript includes a soil moisture map of China illustrating the spatial 

distribution of the improved dataset. The spatial distribution of achievement data is 

basically consistent with the distribution of other research achievement data. In addition, 

accuracy verification with measured data shows that the accuracy of the results data has 

improved significantly compared to the original data. 

Revision: Figure 4 and Table 3. 



 

 

 

Figure 4. China soil moisture map derived from the improved ECV_SM in early 

 October 2020 (cm3/cm3) 

 

Wang, L., Fang, S., Pei, Z., Wu, D., Zhu, Y. and Zhu, W.  2022.  Developing machine 

learning models with multisource inputs for improved land surface soil moisture in 



 

 

china. Computers and Electronics in Agriculture 192, 106623. 

 

Song, P., Zhang, Y., Guo, J., Shi, J., Zhao, T., and Tong, B.  2022.  A 1km daily 

surface soil moisture dataset of enhanced coverage under all-weather conditions over 

china in 2003–2019. Earth System Science Data. 

Table 3. Validation results  

Partition 

Validation 

Station 

Number  

Original Data Improved Data 

BIAS 

(cm3/cm3) 

RMS

D 

MRE R2 p-

value 

BIAS RMS

D 

MRE R2 p-value 

1 35 0.075 0.096 0.299 0.380 0.000 0.062 0.076 0.222 0.372 0.000 

2 28 0.078 0.105 0.270 0.296 0.004 0.073 0.095 0.234 0.251 0.010 

3 25 0.081 0.097 0.318 0.246 0.013 0.043 0.056 0.221 0.433 0.000 

4 12 0.080 0.109 0.426 0.126 0.283 0.071 0.083 0.359 0.413 0.024 

5 31 0.079 0.096 0.285 0.301 0.001 0.062 0.078 0.265 0.430 0.000 

6 6 0.080 0.085 0.271 - - 0.049 0.058 0.185 - - 

Average  0.078 0.099 0.300 0.270 - 0.062 0.078 0.226 0.380 - 

 

7 ： Ensure that all relevant studies are cited, and consider integrating recent 

developments in the field to demonstrate a thorough understanding of the current 

scholarly landscape. Are there any limitations or potential areas for further 

improvement in the model? 

Response: All existing relevant studies in the article have been cited, and the latest 

research results have been searched and cited. In the conclusion section, prospects for 



 

 

the research and thoughts on the next research direction have been added. 

Revision: Conclusions and Recommendations 

The approach optimizes the ECV_SM product; therefore, the method is efficient. 

However, the approach only filled the sporadic null pixel values in the study area, and 

a large unfilled district remained unprocessed. In addition, because of the influence of 

ice-covered soil and low temperatures, a large number of agrometeorological stations 

lack measured data from winter. This data scarcity has an impact on the calibration 

results. Furthermore, the research is limited to short-term data. In future studies, this 

problem, as well as the identification of the partitioning and modeling rules, will be 

considered to generate new methods of evaluating large areas and multiple temporal 

and high-precision soil moisture data sets. Additionally, future studies will consider the 

use of more advanced soil moisture sensing technologies or methods to improve the 

accuracy of research data. Furthermore, efforts will be made to enhance the 

applicability and improvement methodologies of specific data in extreme areas such as 

high-altitude regions, providing more comprehensive data outcomes for the research. 

 


