
 

 

Air Pollution Prediction using Attention Module with CNN -OptBiLSTM 

 

 

Visu P1, Rajesh Khanna M2, Sundara Rajulu Navaneethakrishnan3, Subramanian P4 

1 Department of Artificial Intelligence and Data Science, Velammal Engineering College, 

Chennai -600066, India. dr.visu.p@gmail.com 

2 Department of Information Tecnology, Vel Tech Multi Tech Dr Rangarajan Dr Sakunthala 

Engineering College, Chennai, India. rajeshkhanna@veltechmultitech.org 

3Department of Computer Science and Engineering, School of Engineering and Technology, 

Dhanalakshmi Srinivasan University Trichy, Samayapuram Campus, Tiruchirappalli – 

621112, India. drsundararajulu@gmail.com 

4 Department of Computer Science and Engineering, Saveetha School of Engineering, 

Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India. 

subramanianp.sse@saveetha.com  

 

*Corresponding author:  

E-mail: dr.visu.p@gmail.com 

GRAPHICAL ABSTACT 



 

 

 

ABSTRACT 

Predicting air pollution using environmental data assessment parameters becomes increasingly 

significant amid growing fears about climate change and the sustainability of urban areas. The 

use of sophisticated deep learning (DL) methods to model the intricate relation among these 

variables represents a promising area of research. However, current approaches have not 

effectively taken advantage of the temporal features derived from spatiotemporal correlations 

among air quality prediction systems, leading to poor long-term predictions. This work presents 

an AM (attention module) with CNN (convolutional neural network)-OptBiLSTM (optimal 

bidirectional long- and short-term memory) for AQIP (air quality index prediction). Here, the 

optimal process is carried out by the WSA (white shark algorithm). The analysis is 

demonstrated on the dataset and achieved better MSE and MAE values of 0.72 and 0.532 



 

 

respectively. The developed model has the potential for application to other air pollutants. This 

proposed AM-CNN-OptBiLSTM has the capacity to substantially improve information 

services related to air quality prediction for the public. In addition, it provides support for 

regional pollution control and early warning systems. 

Keywords: Air Pollution, Air Quality Index Prediction, Optimal Bidirectional Long-Short-

Term Memory, White Shark Algorithm 

1. Introduction 

Air quality issues pose a serious threat to public health and constitute a widespread focus of 

research for researchers around the world. Due to the rapid growth of the world economy and 

the emergence of urbanization and industrialization, air pollution is a problem in various cities 

worldwide [1]. The challenges posed by air pollution are becoming increasingly evident, 

posing a serious threat to human productivity, life, and long-term social progress. As a 

prominent criterion of environmental pollution, air pollution has attracted global attention. 

Robust, reliable, and consistent AQIP (air quality index prediction) is essential for effective 

atmospheric environment management and public health management [2]. 

AQIP is an essential factor to judge the level of air pollution. Accurate prediction of air 

pollution levels is crucial for collaboration with governments and raising public awareness 

about the hazards of pollution [3]. Air pollution data is commonly described by identifying 

trends such as rising or falling patterns, seasonal variations, cycles, or erratic movements. AQIP 

play a crucial role in mitigating air pollution and addressing environmental degradation issues 

[4]. Consequently, a set of prediction factors is required to compile air quality statistics. 

However, there are numerous air pollution factors and they are complicated [5].  

 Existing research methods often do not provide effective predictions for air pollution.   

Notably, 22105.23 ,,,,, SONOCOPMPMO
emerges as the primary factors in air pollution, 

and the rising concentration of 5.2PM
directly impacts the health of human. The sub-index 



 

 

with the highest range is chosen as the AQI [6]. This quantitatively describes the AQI of the 

respective area in a specific manner. Currently, numerous air quality monitoring systems have 

been established in many places to monitor meteorological parameters and pollutants 

concentrations [7]. On the contrary, statistical approaches do not consider physical variation, 

transport, and chemical processes. They rely solely on data-driven exploration of the interior 

relation with the prior data. Consequently, the cost of computation for these methods is 

considerably less than that of numerical methods. Conventional statistical methods such as 

ARIMA (integrated adaptive moving average) and ARMA (integrated adaptive moving 

average) are very easy to evaluate [8]. But these approaches are well adaptable for small 

databases and modelling of single parameters. Additionally, they are based on linear 

consideration and impose high needs on data stationarity. Therefore, capturing non-linear 

relationships in the data becomes inherently challenging. These limitations significantly slow 

the efficiency and availability of conventional statistical methods in AQIP [9]. 

 DL (deep learning) models prove to be well suited for addressing air pollution prediction 

challenges, particularly those involving nonlinear, sequential, cyclical and seasonal 

dependencies within pollutants [10]. The DL models like LSTM (long-short-term memory) 

and BI-LSTM (bidirectional LSTM) models are developed for capturing long-range 

dependencies from time series dataset, outperforming the ML (machine learning) models. 

Challenges such as predicting pollution levels and the parameters influenced by sequential-

based behavior align well with the ability of the DL model to retain internal memory [11-13]. 

That is, the prediction of the pollution levels for every gas is based on previous analyses, where 

similar behavioral patterns will appear in the future [14]. 

Motivation: The improvement of AQIP accuracy is of significant importance in the control of 

air pollution and the improvement of air quality. The conventional models like RNN (recurrent 

neural network), GRU and ARIMA approaches may find it complex to capture deep features. 



 

 

To address this, the study introduces AM-CNN-OptBiLSTM and utilizes AQIP and for 

handling long time series. Consequently, the proposed AM-CNN-OptBiLSTM model, 

compared to its existing counterparts, exhibits improved prediction accuracy through 

comprehensive learning, analysis, and historical data processing across different models. 

Training the DL model involves a crucial step of finding its hyperparameters. The choice of 

hyper-parameters is pivotal, as inappropriate selections can result in overfitting or underfitting, 

impacting the overall performance. Meta-heuristic-based approaches are employed for 

hyperparameter optimization for enhancing prediction performance. These algorithms exhibit 

global search ability, generalization, and robustness, making them suitable for addressing 

various problems. The foremost contributions are as follows: 

To present an enhanced DL model for AQIP (air quality index prediction) and long-range 

dependencies. 

To enhance the performance of AQIP by AM (attention module) with CNN (convolutional 

neural network)-OptBiLSTM (optimal bidirectional long-term memory). 

To enhance the prediction performance of the WSA (white shark algorithm). 

The remainder of the work is unfolded as follows: Section 2 delves into an exploration of 

related work that includes various air quality prediction approaches. Section 3, elucidates the 

algorithmic process of the proposed air quality prediction approach. The implementation and 

results of our method are examined in Section 4. Finally, Section 5 encapsulates the conclusion, 

summarizing the work, and engaging in a discussion on result analysis. 

 

2. Related Works 

Zhang et al. [15] introduced SABT (sparse attention based Transformer) for predicting the  

5.2PM
pollutant. It was an encoder with a decoder model for reducing the complexity and the 

complex relation from the 5.2PM
 and the RMSE value achieved was 0.93. Ravindiran et al. 

[16] introduced different ML models to predict AQIP in the coastal city of Visakhapatnam, 



 

 

India. When comparing all ML models, Catboost achieved better MAE and RMSE of 0.6 and 

0.76 respectively.  Janarthanan et al. [17] presented SVR (support vector regression) SVR for 

classifying the AQI values. The texture features were then extracted by the GLCM and the 

RMSE value achieved was 7.8.  

Gilik et al. [18] presented CNN with LSTM model to extract spatial and temporal features in 

AQIP. The goals of this existing work involve creating a supervised approach to predict air 

pollution utilizing actual sensor data and transferring the model across different cities. In 

addition, this work performed various pollutants in cities such as Barcelona, Istanbul, and 

Kocaeli.  

Lakshmipathy et al. [19] developed ESCA (enhanced serial cascaded autoencoder) based 

LSTM -MVR (multivariate regression) model for AQIP. That is, ESCA was exploited for 

feature extraction and LSTM –MVR was exploited for AQIP. Then, the FIFDO (fitness- 

improved flow direction optimizer) was utilized for producing better prediction results.  Drewil 

et al. [20] presented a DL model LSTM and GA (genetic algorithm) to predict air pollution. 

The objective of this existing work was to identify the optimal hyperparameters for LSTM and 

predict the level of pollution for the next day based on different pollutants. The MAE and 

RMSE values achieved were 19.1 and 9.5 respectively. 

Zhang et al. [21] presented a DL model CNN with LSTM for AQIP. Initially, CNN was 

exploited to extract features, and LSTM was exploited for AQIP. When comparing other 

approaches, CNN with LSTM achieved better performance. Mao et al. [22] presented TS-

LSTME (temporal sliding long-short-term memory extended approach) for AQIP. This 

existing work incorporated the optimized time lagging to enable sliding prediction using a 

multilayer bidirectional long-short-term memory (LSTM) network. This involved considering 

the hourly historical concentration of PM2.5, meteorological data, and temporal data. 

Liao et al. [23] developed DM-ST-GNN (Dynamic Multi granularity-Spatiotemporal- Graph 

Neural Network) for AQIP. It was an encoder-decoder-based model; on the encoder side, the 

spatial features were identified, and on the decoder side the attention LSTM was for learning 

temporal features. Zhang et al. [14] introduced residual learning based CNN model for 

forecasting 5.2PM
 and 10PM

. A spatial temporal attention module was exploited for assigning 

weights and the residual learning-based CNN was utilized to extract features. Finally, the 

RMSE and MAE values achieved were 11.9 and 6.9 respectively.  



 

 

3. Proposed methodology 

This study aims to create a DL approach to forecasting air pollution using the transferability of 

the model between different cities. The proposed AQIP approach involves the integration of a 

DL approach AM-CNN-OptBiLSTM. This combination is designed to predict air pollutant 

concentrations across various places within a city by capturing spatiotemporal relationships in 

the data. Figure 1 defines the framework of the proposed AQIP which includes various stages 

like preprocessing, spatiotemporal feature extraction, and AQIP. Here, the AM-CNN-

OptBiLSTM is utilized for extracting spatio-temporal features of AQI. Moreover, the AM is 

deployed to focus on the essential features that have a better relationship with the AQI 

outcomes. This section outlines the step-by-step procedure flow for generating the AQIP 

model. 

Pre-processing

Feature extraction

CNN

AQI prediction

AM - OptBiLSTM 

Dataset

Pollutants
 

Figure 1. Framework of the proposed AQIP 

3.1. Pre-processing 



 

 

Initially, data is extracted from the data set and subjected to pre-processing to remove 

unnecessary information. At first, the missing values are removed from the dataset. Also, 

missing data imputation fills in any gaps or missing values in your dataset with estimated or 

calculated values. The preprocessed data is fed into the proposed classifier for performing the 

AQIP. Following the removal of missing values, a type conversion from object to floating data 

type was performed on the AQIP.  

3.2. Feature extraction 

In this research, a DL approach AM-CNN-OptBiLSTM is introduced to predict air quality in 

India. The method combines the advantages of CNN and BiLSTM, with AM for assessing each 

feature significance in the input data.  CNN is utilized for the extraction of spatial features and 

AM with OptBiLSTM is utilized for AQIP. Figure 2 shows the structure of the proposed DL 

approach AM-CNN-OptBiLSTM. The network has two blocks, such as the feature extraction 

block and the AQI prediction block. Within the feature extraction block, the CNN is employed 

for extracting spatial features, and the AM-OptBiLSTM is utilized for capturing long-range 

dependency features and identifying the AQIP. The outcomes from the BiLSTM are 

subsequently input into the AM, and it assigns diverse weights to the model's feature input, 

emphasizing the impact of essential features, thereby aiding the model in making more accurate 

predictions. Subsequently, the AQI prediction block incorporates the FC (fully connected) 

layer and an output layer to identify the outcomes. Every layer has training variables like size 

of filter, loss function, kernels, and total neurons that minimize the error.  

CNN:  CNN is constructed by layering three fundamental components: convolutional, pooling, 

and FC layer. Within every convolutional layer, there exists a set of adaptable filters designed 

to extract local features from the input matrix in an automated manner. These filters execute 

convolution operations, according to the concepts of weights and local connectivity, to alleviate 

the computational complexity and enhance the efficiency of the network. The result of the 

convolutional operation is given as: 
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where 
in

plnkZ ++ , and 
o

lkZ , are the input and output of the feature map, pnW , is the convolutional 

kernel, b is the bias and con
is the activation function.  
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Figure 2. Structure of the proposed AM-CNN-OptBiLSTM 

Following the convolution, the pooling layer executes the down-sampling operation. The 

advantage of the pooling layer is its ability to reduce the dimensionality of the feature map, 

thus preventing overfitting. In this feature extraction process, the ReLU is utilized as the 

activation term, and the BN (batch normalization) is utilized as the regularization term. 

Typically, the FC layer is incorporated finally and its role is to comprehend the non-linear 

combined features obtained using the convolution layer for generating the final outcomes. 

BI-LSTM: The LSTM can only use information in one single direction (forward). On the other 

hand, the BI-LSTM structure consists of two LSTM layers, one of which functions forward 

and the other backward. The standard LSTM has the layers like input ji
, forget jf

and output 

jo
gates. Let the input data ty

at the present stage and 1−jh
 output from the hidden stage of 

the prior layer. The jf
is utilized for deciding what feature must be retained or eliminated, and 

it is given as: 

 ( )fjjfj bxhWf += − ,1
                                                                                                  (2) 

The ji
is utilized for deciding which features are updated, and it is given as: 

 ( )ijjjj bxhWi += − ,1
                                                                                                          (3) 



 

 

At last, the jo
 is represented as: 

 ( )ojjfj bxhWo += − ,1
                                                                                                      (4) 

The hidden phase jh
 is given as: 

)tanh( jjj coh =
                                                                                                               (5) 

where jc
 is memory cell. 

On the contrary, the BILSTM network comprises two LSTM layers, positioned in both forward 

and backward directions. The forward LSTM is capable of assimilating information from the 

past information of the input sequence 

→

jh
, while the reverse LSTM captures details regarding 

the future information of the input sequence 



jh
. Subsequently, the results of both jh

 are 

integrated and it is represented as 

→

= jjj hhh
                                                                                                                        (6) 

where  is the summation. 

AM: The AM selectively concentrates on essential features, ignores unnecessary details, and 

amplifies relevant information. The essence of the attention function lies in its definition as a 

map from a Q (Query) to values of the pairs of K (Key) and V  (Value). As depicted in Figure 

3, the calculation of AM has three stages. Initially, in the first stage, the correlation between 

the Q and every K  is computed as: 

( )htht ahVA += tanh
  (7) 

where tht hVA ,,
 and ha

are the attention value, weight, bias, and input value. The value of 

the first phase is standardized in the second stage, and the softmax is exploited for converting 

the tA
. 
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The third stage is obtained by the weighted summation of tb
and th

and it is given as: 
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Figure 3. AM model 

WSA: Determining the hyperparameters of AM-CNN-OptBiLSTM is a crucial step in the DL 

model. The training and overfitting issues are all greatly impacted by the selection of these 

hyperparameters, which in turn affects the final model's accuracy. In many instances, the 

selection of hyperparameters takes more time for attaining the best hyperparameters. To 

address the challenge of hyperparameter selection, particularly concerning the size of window 

and number of AM-CNN-OptBiLSTM units, the metaheuristic approach WOA is utilized. The 

AM-CNN-OptBiLSTM is trained with WSA to find the best window size and the number of 

AM-CNN-OptBiLSTM units and predict the level of air pollution.  

     This optimizer mimics the remarkable characteristics observed in the WS (white shark), 

particularly its exceptional olfaction and hearing used in foraging and navigation. These 

distinctive traits can be effectively modelled numerically and scrutinized mathematically, 

establishing a balanced approach for studying and deploying this scheme. This methodology 

helps search agents to explore and exploit various zones within the search area systematically, 

facilitating a better process. Simultaneously, the search agents in the WSA have the capability 

to adjust the positions randomly. The position of WS is given as 
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where v  is the position of shark and the it is computed by the upper jul
 and lower jll

limits 

at the 
thj dimension is given as: 

( )jjj

t

j llulrandulv −+=  
                                                                                          (11) 

where rand is the random number; When the high WS identifies its prey's location through 

wave frequency detection, it can approach the target using oscillating movements, guided by 

the expressed velocity. 
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where m  is the random number, 
t

kv
 is the location of WS, gbkv

is the best parameter,   is the 

WS term, 
t

ku 1+ and 
t

ku
are the previous and present velocities; 1p and 2p are the parameters; 1c

and 2c are the random parameters. The parameters 1p and 2p are given as:  
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The progression toward locating optimal prey involves WS detecting the scent of the target, 

observing the motion of the prey, or potentially identifying the waves generated by the prey's 

actions. Continuously advancing towards the prey, the WS persistently tracks its motions. Even 

if the prey relocates or escapes its initial position, the lingering scent remains in that area. As a 

result, the WS updates its position accordingly. 
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Figure 4. Flowchart of WSA 
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where nv is the motion force and the motion to the best WS is given as: 

( ) SrandwhenrandDrandvv vgbk
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where 1rand , 2rand  and 3rand
are the random numbers; S is the strength of the WS, 

→

vD
is the 

distance among the prey and the WS. Figure 4 shows the WSA flow chart and Algorithm 1 

defines the pseudocode of the overall AQIP.  

Algorithm 1: Pseudocode of the overall AQIP 

Input: AQI dataset 

Output: Air pollutants and AQI 

Pre-processing phase 

For   

    Missing values 

    Type conversion 

  End for 

Feature extraction and AQIP 

For (overall samples) 

     Split data based on the 10-fold cross validation 

End for 

For every training set 

Evaluate the parameters of the AM-CNN-OptBiLSTM 

End for 

For every testing set 

Test the AM-CNN-OptBiLSTM 

Evaluate the performance measures 

End for 

End for 

4. Analysis of results 

   The implementation of smart contract-based malicious detection and mitigation is employed 

using PYTHON programming language and is assessed based on various measures. Table 1 

presents the parameters used for the experimental analysis. 

Table 1. Parameters 

Parameters Values 

Learning rate 0.0001 

Size of batch 64 

Epochs 100 

BiLSTM nodes 16 

Dropout 0.3 

Optimizer Adam 

Loss function  Cross entropy 

 



 

 

4.1. Performance measures 

The evaluation measure for regression methods is employed to measure the efficiency of the 

model in forecasting output values according to the inputs. Measures like MSE (mean square 

error), RMSE (root MSE), MAE (mean absolute error), MAPE (mean absolute percentage 

error) and R-squared (R2).  

MSE: It is the variation of predicted ky
and actual values 



ky
and RMSE is the square value of 

MSE. These two expressions are given as 
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MAE: This measure serves as an alternative metric for quantifying the disparity between ky

and 



ky
. Its computation involves determining the absolute value of the variation among ky

and 



ky
, followed by averaging these absolute variations. 
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MAPE: It is a metric that defines the performance of the model, represented as a percentage. 

Its computation involves taking the absolute value of the variation among ky
and 



ky
, dividing 

it by the ky
, and then averaging these resulting percentages. 
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R2: It is an indicator of how effectively a model aligns with the data set. Its calculation involves 

summing the squares of the differences between  ky
and 



ky
. This sum is then divided by the 

sum of the squares of the variation among the average of the  ky
and 

→

ky
.  
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4.2. Dataset Description 

The data set considered for this work is collected between 2015 and 2023. from various 

metrological cites. This dataset includes the pollutants like 

2332105.2 ,,,,,,,, SONOONHNONOCOPMPM x
. 

4.3. Performance Analysis 

This section examines and compares the evaluation metrics of the proposed AM-CNN-

OptBiLSTM model with some DL approaches. Evaluation is a critical phase of any model 

evaluation, providing insights to determine the optimal process with respect to the performance 

outcomes. The study conducts a comprehensive evaluation analysis that compares the 

performance of various approaches using five metrics.      

   

(a) (b) (c) 

https://www.kaggle.com/datasets/rohanrao/air-quality-data-in-india


 

 

   
(e) (f) (g) 

   
(h) (i) (j) 

 

Figure 5. Correlation of various pollutants 

 Figure 5 presents the correlation among the actual and predicted values. Pollutants like 

2332105.2 ,,,,,,,, SONOONHNONOCOPMPM x  are compared with respect to R2 

values. It is observed from the Figures that the pollutant 5.2PM
achieved better R2 value of 

0.9872.  

 



 

 

 

Figure 6. AQI trends between 2015 and 2023 

Figure 6 presents the AQI trends between 2015 and 2023 in India. It is observed that the actual 

and the predicted values are the same.  

 

Figure 7. Confusion matrix of the proposed AM-CNN-OptBiLSTM model 

Figure 7 presents the confusion matrix of the proposed AM-CNN-OptBiLSTM model that 

predicts the pollutants like 2332105.2 ,,,,,,,, SONOONHNONOCOPMPM x . 



 

 

 

  
(a) (b) 

  

(c) (d) 

 
(e) 

Figure 8. Comparison of (a) MAE, (b) MAPE, (c) MSE, (d) R2 and (e) RMSE  

Figure 8 and Table 2 presents Figure 7 illustrates the performance comparison among various 

techniques, including LSTM, BiLSTM, OptBiLSTM and the proposed AM-CNN-

OptBiLSTM. Evaluation metrics such as MSE, RMSE, MAE, MAPE and R2 are computed. 



 

 

Table 2. Comparative analysis 

Methods MSE RMSE MAE MAPE R2 

LSTM 1.11 1.05 1.23 8.77 0.80 

BiLSTM 1.07 1.03 1.16 6.57 0.83 

OptBiLSTM 1.04 1.02 0.90 6.38 0.87 

Proposed 0.72 0.84 0.53 4.47 0.98 

In Figure 8 (a), the MSE performance of different DL approaches is presented. It is evident 

from the graph that the MSE value (0.72) of the proposed AM-CNN-OptBiLSTM is 

significantly lower than other approaches. Similarly, for an effective weather prediction model, 

a lower MAPE value is preferable, and in Figure 8 (b), the proposed AM-CNN-OptBiLSTM 

exhibits a lower MAPE value of 4.47. Then, in Figure 8 (c), the MAE values achieved by the 

LSTM, BiLSTM, OptBiLSTM and the proposed AM-CNN-OptBiLSTM are 1.23, 1.16, 0.9 

and 0.53 respectively. Additionally, for an improved AQIP model, a higher R2 value is desired, 

and in Figure 8 (d), the proposed AM-CNN-OptBiLSTM achieves a high R2 value (0.98). 

Finally, in Figure 8 (e) also, the proposed AM-CNN-OptBiLSTM achieved a better RMSE 

value of 0.84. Across all comparisons, the proposed model outperforms others, attributed to 

better weight selection by CNN with BiLSTM and WSA.  

 
 

(a) (b) 

 

Figure 9. Accuracy-loss curves of the proposed AM-CNN-OptBiLSTM 

Figure 9 illustrates the performance of the proposed AM-CNN-OptBiLSTM instrument with 

respect to accuracy and loss curves. The evaluation covers variations in values over 100 epochs, 

and the graphs depict the relationship between the training and validation samples. In 

particular, the model does not exhibit under- or over-fitting, indicating its superior 



 

 

generalization capability. This substantiates the proposition that the proposed AM-CNN-

OptBiLSTM can be effectively utilized in the AQIP process. Table 3 analyzes the comparative 

analysis and all comparative measures, the proposed AQIP model outperformed recent research 

works with respect to measures like MSE, RMSE, MAE and R2. 

Table 3. Comparative analysis 

References MSE RMSE MAE R2 

Maltare et al. [8] - 4.9  0.82 

Wu et al. [9] - 2.3 2.1 0.94 

Zhang et al. [14] 11.3 11.9 6.9 0.93 

Zhang et al. [15] - 0.93 - - 

Ravindiran et al. [16] 0.5 0.76 0.6 - 

Janarthanan et al. [17] - 7.8 - 0.63 

Drewil et al. [20] - 9.5 19.1 - 

Mao et al. [22] - 17.9 12.3 0.87 

Proposed 0.72 0.84 0.53 0.98 

 

5. Conclusions 

The focus on monitoring air pollution is on the rise, with an increasing emphasis on 

understanding its impacts on human health. Presently, most air quality investigations transition 

from quantitative approaches to DL models. The AQIP experiences significant fluctuations 

influenced by pollutant concentrations. This study concentrates on establishing the AM-CNN-

OptBiLSTM approach, reevaluating the AQI through the application of time series and DL 

methodology. The proposed AM-CNN-OptBiLSTM successfully extracted the spatio-

temporal features, predicted all pollutants, and attained better performance. In the future, 

addressing sudden fluctuations in time series data related to air pollution poses an intriguing 

and challenging task for AQIP. Successful prediction of sudden changes in air pollution in 

advance holds significant advantages for the protection of the environment, government 

decisions, and the daily health of individuals. 
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