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Abstract 

Water quality (WQ) is hugely important for animals, 
humans, plants, industries, and the environment. In the 
past few years, the WQ has been compressed by pollution 
and contamination. Usually, WQ is assessed utilizing costly 
laboratory and arithmetical processes, making real 
observation ineffective. Whereas, the poor WQ wants a 
more real and cost-effective resolution. Water pollution is 
a critical problem, so, it is vital to generate a method that 
estimates WQ in order to manage water pollution and 
notify users on the occasion of the recognition of poor 
water superiority. For effectual WQ management, it is 
vital to precisely estimate the WQ type. We use the 
advantage of machine learning (ML) models to build a 
model proficient in forecasting the WQ index and class. 
Therefore, this paper presents an automated Water 
Quality Index Prediction and Classification using 
Hyperparameter Tuned Deep Learning (WQIPC-HTDL) 
Approach. The purpose of the WQIPC-HTDL technique is 

to estimate WQI and classify the WQ into multiple levels. 
In the WQIPC-HTDL technique, the linear scaling 
normalization (LSN) approach is used. Besides, the long 
short-term memory (LSTM) technique is employed for the 
prediction and classification process. To enhance the 
efficacy of the LSTM model, the grasshopper optimizer 
algorithm (GOA) can be used. To point out the enhanced 
performance of the WQIPC-HTDL technique, a detailed 
simulation analysis was made. The obtained values 
inferred the rule of the WQIPC-HTDL technique when 
equated to other models.  

Keywords: Water quality index; deep learning; 
grasshopper optimization algorithm; linear scaling 
normalization; machine learning 

1. Introduction 

Water is a major source of life, essential for helping the 
life of most present creatures and human beings. To 
continue their lives, living organisms require water with 
sufficient quality (Wang et al. 2024). There are specific 
restrictions on pollution that aquatic types are tolerated. 
These restrictions affect the presence of such living beings 
and threaten their survival. The majority of the 
environment's water bodies like streams, lakes, and rivers 
have particular quality values that show their quality 
(Prasad et al. 2022). Additionally, water conditions for 
other utilization retain their standards. For example, 
irrigation water should be neither too salt water nor 
comprise poisonous materials, which will be transported 
to soil or plants and therefore destroy the environment 
(Wong et al. 2023). Water quality (WQ) for industries also 
needs various aspects dependent upon the particular 
industrial methods. A few of the lower-cost resources of 
pure water namely surface and groundwater are real 
water resources. However, these sources could be 
polluted by manufacturing activities or humans and 
alternative natural methods (Saeed et al. 2024). 

Accordingly, fast industrial expansion will influence the 
degradation of WQ at a disturbing rate (Georgescu et al. 
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2023). Additionally, surroundings with the lack of public 
awareness, and lesser hygienic qualities, mainly affect the 
quality of drinking water. Indeed, the significance of 
contaminated drinking water will be more risky and 
seriously affect the environment, infrastructure, and 
health (Rustam et al. 2022) Consequently, it is very 
significant to suggest a novel method for analysing and 
predicting the WQ. This can be suggested to analyze the 
temporal dimensions to predict the WQ patterns to 
ensure the observing of the seasonal variant of the WQ 
(Xu et al. 2024). Nevertheless, WQ could be analyzed 
employing conventional methods like gathering manually 
the water samples followed by examining them in a 
laboratory (Zamani et al. 2023). Then, it is considered 
expensive and time-consuming. Sensors are also 
categorized as alternative traditional methods. But, with 
the help of sensors can be deliberated expensive to test 
each WQ sample and frequently indicate lower accuracy 
(Arepalli Naik 2024). One more solution for monitoring 
WQ can be predictable modeling using machine learning 
(ML) and deep learning (DL) models. By comparison with 
other traditional techniques, it has numerous benefits: 
fewer costs, effective with respect to the time needed for 
travel and assortment, allows prediction on diverse stages 
of a method, and forecasts required values while 
retrieving a location will be difficult (Debow et al. 2023).  

This research develops an automated Water Quality Index 
Prediction and Classification using the Hyperparameter 
Tuned Deep Learning (WQIPC-HTDL) Approach. The 
purpose of the WQIPC-HTDL technique is to estimate WQI 
and classify the WQ into multiple levels. In the WQIPC-
HTDL technique, the linear scaling normalization (LSN) 
approach is used. Besides, the long short-term memory 
(LSTM) method is employed for the prediction and 
classification process. To enhance the efficacy of the LSTM 
approach, the grasshopper optimizer algorithm (GOA) can 
be used. To point out the enhanced performance of the 
WQIPC-HTDL technique, a detailed simulation analysis 
was made. The obtained values inferred the supremacy of 
the WQIPC-HTDL technique compared to other models. 

2. Literature survey 

Arepalli and Naik (2024) developed an improved Dilated 
Spatial-temporal CNN (DSTCNN) method. The WQ data 
taken by employing the IoT sensors are considered as per 
the WQ index values for exploration. The labeled data was 
efficiently categorized into 2 types by the developed 
DSTCNN method. Additionally, the developed technique 
utilizes a hybrid activation function that synchronously 
integrates ReLU and sigmoid function. In (Islam and Irshad 
2022), an artificial ecosystem optimization with a DL-
assisted WQ Prediction and Classification (AEODL-WQPC) 
system was introduced. In a primary processing step, the 
data normalization method was employed. Along with 
this, an optimum stacked BiGRU (OS-BiGRU) algorithm 
was employed for predicting, and the Adam optimizer was 
employed for tuning. AEO with an improved ENN (AEO-
IENNs) system was implemented in the classification. 
Talukdar et al. (2023) developed a stacking ensemble 
method dependent upon the DL method by incorporating 

3 techniques namely Gradient Neural Network (GNN), 
Generalized Linear Model (GLM), and Boosting Machine 
(GBM). The inclusion of a DNN method that could be 
employed for the primary time in water pollution 
exploration for executing the uncertainty and sensitivity 
analysis in forecasting WQI, included the novel 
dimensions for the workflow. 

Shin et al. (2024) introduced an AI method by forecasting 
dissolved organic carbon (DOC) elimination and 
decontamination byproduct formations, and relatively 
examined present experimental systems and predicted 
outcomes for analyzing the utility of the AI method. This 
article improved experimental methods for forecasting 
DOC removal and disinfection byproduct formations. Six 
AI methods have been implemented and examined 
employing real-time data. In (Khullar and Singh 2022), a 
DL–based BiLSTM (DLBL-WQA) technique was presented. 
The developed method exhibits a new model which 
comprises missing values attribution in the major phase, 
the secondary phase produces the feature maps from the 
specified input data, the last phase comprises a BiLSTM 
model for increasing the learning method. 

Moeinzadeh et al. (2023) projected a DL-based method 
for reconstructing these seven factors from four 
parameters for estimating the WQI. The technique also 
enables the analysis of sample qualities by computing the 
WQI through 7 synthesized factors with verified possible 
hydrogen and complete dissolved solids values. Correct 
evaluation of these parameters will be crucial to 
estimating the correctness of water for diverse functions. 
In (El-Shebli et al. 2023), a DNN method was developed 
for predicting WQI. Statistical modeling and unsupervised 
ML approaches have been employed. This modeling 
comprises the PCA or Factor Analysis (FA) that will be 
employed for interpreting the seasonal variations and 
sources of springs. Another modeling method was 
employed by using Hierarchical Cluster Analysis (HCA). 

 

Figure 1. Workflow of WQIPC-HTDL methodology 

3. The proposed method 

In this study, we have presented an automated WQIPC-
HTDL model. The main intention of the WQIPC-HTDL 
approach is to estimate WQI and classify the WQ into 
multiple levels. It contains three different procedures 
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namely LSN-based preprocessing, LSTM-based 
classification, and GOA-based parameter tuning process. 
Figure 1 demonstrates the workflow of the WQIPC-HTDL 
method. 

3.1. Preprocessing 

Initially, the WQIPC-HTDL technique undergoes the LSN 
approach is used. LSN is a data pre-processing model 
generally employed in numerous areas, containing image 
processing and ML (Sorguli and Rjoub 2023). The main aim 
of LSN is to normalize the arithmetical range of features or 
pixel values within a database. This technique involves 
linearly altering the original values so that they decrease 
within a definite range, normally between 0 and 1. By 
using a linear scaling alteration, LSN certifies that all data 
points are evenly adjusted, averting the dominance of 
definite features with higher arithmetical scales and 
enabling the convergence of algorithms during model 
training. 

3.2. WQI Prediction using LSTM Model 

In this paper, the LSTM technique is applied for the 
prediction and identification process. Though the RNN can 
develop sequential data, it is prone to gradient explosion 
or disappearance problems (Li et al. 2021). To solve these 
problems, the LSTM model is introduced. In comparison 
to RNN, LSTM comprises three logic gates (forget gate ft, 
input gate it, and output gate ot) along with memory unit 
Ct. It defines the output data at the present moment via 
the output data at the prior moment and the input data at 
the present moment and utilizes output data at the 
existing moment as input data. Using three logic gates and 
a memory unit, LSTM decides what amount of data and 
the input data at present to be kept, which can better 
abandon and transmit the data. However, the LSTM 
processes only the data in one direction. Thus, there is a 
need for data processing in the reverse and forward 
directions. Next, the Bi-LSTM is introduced so that the 
data in reverse and forward directions can be 
simultaneously processed. It implies the output of the Bi-
LSTM network has context data. Where xt and htare the 
input and hidden vectors at time t, correspondingly, U and 
W are the weight matrices, and b indicates the term bias. 

The forget gate expresses what amount of data to be 
forgotten by outputting the value within [0,1] as follows: 

( ) −= + +1t f t f t ff W h U x b
 

(1) 

The input gate decides what data to retain by evaluating it 
and Ct and combine them based on the subsequent: 

( ) −= + +1 Xt i t ii t
i W h U b

 
(2) 

( )−= + +1tanh t c t c t cC W h U x b
 

(3) 

−= +1 .t t t t tA f A i C
 

(4) 

The output gate decides which part of the data to be 
outputted according to the equations: 

( ) −= + +1 Xt o t oo t
o W h U b

 
(5) 

( )= tanh t t th o A
 

(6) 

Bi-LSTM fuses the reverse and forward hidden states as a 
last hidden representation at t moment. Thus, contextual 
information can be better learned, and it contributes to 
the information flow in both directions. 

3.3. Hyperparameter tuning 

Finally, the GOA can be used to enhance the efficacy of 
the LSTM model. In the wild, grasshoppers exhibit the 
capability to find food sources and combine in clusters for 
reproduction and movement (Meraihi et al. 2021). A 
distinguishing representative of GOA is its calculation of 
velocities and positions for virtual grasshoppers, each 
targeted at enhancing the main function value of the 
specified issue. The formula to upgrade the 
grasshoppers’s location can be given below: 

= + +  i i i jX S G A  
(7) 

Si refers to the interaction of social which indicates the 
relationship among the ith grasshopper; Xii represents the 
position of the ith grasshopper; Gi describes the 
gravitational attraction applied under ith grasshopper; Ai 
refers to the effect of air and wind circulation in the ith 
grasshopper. It should be noted that combines stochastic 
behavior, the mathematical formula could be expressed 
below: 

= + +1 2 3  i i i iX r S r G r A  
(8) 

r1, r2 and r3 denotes the random amount within the 
interval of [0, 1] 

The S element in Eq. (7) can be calculated through the 
following equation: 

( )
=



=
1

1

 
N

i ij ij
j

j

S s d d
 

(9) 

represents the distance among the 𝑖𝑡ℎ and 𝑗𝑡ℎ 
grasshopper, computed as below: d𝑖𝑗=x𝑗−𝑥𝑖; 𝑠 signifies 
the power of social interface; d𝑖𝑗=x𝑗−𝑥𝑖𝑑𝑖𝑗 shows the unit 
vector from the 𝑖𝑡ℎ to jth grasshopper 

The magnitude of social interactive powers could be 
calculated by the function 𝑠 that has been calculated 
based on the next equation: 

( )
−

−= −   
r

rls r fe e
 

(10) 

r refers to the distance value, l denotes the amount at 
which the power of social interaction decreases with 
distance, and f describes the strength of attraction of 
social interaction that affects the level of mutual 
attraction and interaction amongst grasshoppers. 

The G element in Eq. (7) can be estimated employing the 
following equation: 

= −    i gG ge
 

(11) 

Here, eg is the unit vector directed to the Earth's centre 
and g denotes the gravitational constant. 
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The A module in Eq. (7) is estimated by employing the 
subsequent formulation: 

=  i wA ue
 

(12) 

Whereas, 𝑢 defines the constant drift; ew stands for unit 
vector combined with the path of the wind. 

With the help of replacing, G, and A into the equation 
given in Eq. (7), the mathematical expression can be 
described in Eq. (13): 

( ) −

−
=



= − +
1

1

  i

N
j X

i j i g w
j ij

j

x
X s x x ge ue

d

 

(13) 

Where, eg is the unit vector directed to the Earth center, 
dij denotes the distance amongst the ith and jth 
grasshopper, g refers to the gravitational constant; s is the 
strength of social interaction forces; u refers the constant 
drift; ew represents the unit vector united with the wind’s 
direction. 

Within the context of the optimizer method, Eq. (13) has 
been deliberately prevented because of its trend to 
constrain the method's capability to systematically 
discover and exploit the adjacent areas within the solution 
space. This particular nymph grasshopper system is 
complexly created to overcome a grasshopper swarm 
function in an infinite space. The significant mathematical 
model could not be directly implemented for solving 
optimization glitches, as the grasshoppers rapidly unite to 
their comfort regions and the group can not be changed 
to a singular point. An adapted version of Eq. (13) can be 
utilized to successfully overcome optimization challenges: 

( )
=



 
− −

= − + 
 
 


1

1

  
2

N
j id d dd d

i j i d
j ij

j

x xub lb
X c c s x x T

d

 

(14) 

c indicates the coefficient value, ubd represents the upper 
limit, Td is the desired value and lbd describes the lower 
limit. 

To calculate the following grasshopper position, data 
including the target’s location, the existing grasshopper’s 
places, and the location of each grasshopper will be 
employed. According to Eq. (14), the following place of a 
separate grasshopper could be resolved by an integration 
of its existing place, the global finest outcome, and the 
position information of other search agents. It denotes 
that the GOA needs an effective contribution of each 
search agent in modeling the path of all grasshoppers. 
Particularly, the initial measure of Eq. (14) considers the 
comparative positioning of the existing grasshopper with 
compared to complements within the field. On the other 
hand, the following segment bounds the level of 
movement near the target position. The opposition 
emphasizes the technique's search of both wide-ranging 
exploration and considered exploitation with the 
complete swarm cantered on the target. 

To simplify, c1 denotes the restriction level executed on 
grasshopper actions near the objective, attaining a stable 
equilibrium among exploitation and exploration in the 

group. Conversely, c2 donates to the reduction of 
repulsion, comfort zones, and attraction amongst 
grasshoppers, efficiently decreasing the spatial range. 
Accordingly, c2 directs the grasshoppers to navigate the 
search space to the optimum outcome. 

Important is the adaptive nature of c1 that gradually 
diminishes the impact of repulsion and attraction forces 
between grasshoppers in ratio to the iteration count. 
Simultaneously c2 progressively decreases the width of 
the comfort region with improving rounds. The tactical 
interaction arises, where c1 improves exploitation in the 
next optimization phases, and c2 progressively contracts 
the zones for improving proximity to the optimum 
solution. Both c1 and c2 are combined as only one 
parameter that can be considered to alteration as given 
below: 

−
= − max min

max   
c c

c c l
L  

(15) 

L states the total number of iterations, 𝑐min denotes the 
lower boundary of the parameter 𝑐, 𝑐max describes the 
upper limit 𝑐; 𝑙 represents the existing iteration. Figure 2 
demonstrates the steps involved in GOA. 

 

Figure 2. Steps involved in GOA  

The fitness function (FF) is the significant factor 
manipulating the GOA performance. The hyperparameter 
range method contains the solution encoding technique 
for evaluating the efficiency of the candidate solution. In 
this work, the GOA reflects accuracy as the main standard 
to propose the FF, which can be expressed below.  

( )=   max   Fitness P
 

(16) 

=
+

 
TP

P
TP FP  

(17) 

From the above formulae, 𝑇𝑃 and 𝐹𝑃 denotes the true 
positive and false positive values. 

4. Result analysis 

The WQI detection outcomes of the WQIPC-HTDL system 
can be assessed on the WQ dataset from Kaggle 
[https://www.kaggle.com/datasets/mssmartypants/water
-quality]. It includes 1600 samples with two classes as 
defined in Table 1. 

Table 1. Details on database 

Classes No. of Samples 

WQI-Not Safe 800 

WQI-Safe  800 

Total Samples 1600 

https://www.kaggle.com/datasets/mssmartypants/water-quality
https://www.kaggle.com/datasets/mssmartypants/water-quality
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Figure 3 establishes the confusion matrices formed by the 
WQIPC-HTDL approach below 80:20 and 70:30 of 
TRAPH/TESPH. The outcomes specify that the WQIPC-
HTDL has effective detection of the WQI-Not Safe and 
WQI-Safe samples under all classes. 

The WQI recognition of the WQIPC-HTDL technique is 
demonstrated under 80% of TRAPH and 20% of TESPH in 
Table 2 and Figure 4. The results demonstrate the 
proficient capability of the WQIPC-HTDL system in the 
detection of the WQI. 

Table 2. WQI recognition of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 

Classes Accuy Precn Recal F1Score MCC 

TRAPH (80%) 

WQI-Not Safe 84.48 97.47 84.48 90.51 83.07 

WQI-Safe 97.82 86.38 97.82 91.75 83.07 

Average 91.15 91.93 91.15 91.13 83.07 

TESPH (20%) 

WQI-Not Safe 89.51 94.77 89.51 92.06 84.52 

WQI-Safe 94.94 89.82 94.94 92.31 84.52 

Average 92.22 92.30 92.22 92.19 84.52 

 

 

Figure 3. Confusion matrices of (a-b) 80:20 of TRAPH/TESPH and 

(c-d) 70:30 of TRAPH/TESPH 

 

Figure 4. Average of WQIPC-HTDL approach under 80:20 of 

TRAPH/TESPH 

With 80% of TRAPH, the WQIPC-HTDL technique gains 
average 𝑎accuy, precn, recal, and Fscore, and MCC of 
91.15%, 91.93%, 91.15%, 91.13%, and 83.07%, 
respectively. Additionally, with 20% of TESPH, the WQIPC-
HTDL model gains average accuy, precn, recal, and Fscore, 
and MCC of 92.22%, 92.30%, 92.22%, 92.19%, and 
84.52%, correspondingly. 

 

Figure 5. Average of WQIPC-HTDL approach under 70:30 of 

TRAPH/TESPH 

The WQI detection of the WQIPC-HTDL method is verified 
below 70% of TRAPH and 30% of TESPH in Table 3 and 
Figure 5. The results determine the proficient capability of 
the WQIPC-HTDL model on the recognition of the WQI.  
With 70% of TRAPH, the WQIPC-HTDL method acquires 
average accuy, precn, recal, and Fscore, and MCC of 90.14%, 
90.16%, 90.14%, 90.19%, and 80.30%, correspondingly. 
Moreover, with 30% of TESPH, the WQIPC-HTDL system 
gains average accuy, precn, recal, and Fscore, and MCC of 
91.55%, 91.75%, 91.55%, 91.62%, and 83.30%, 
respectively.  

The performance of the WQIPC-HTDL technique below 
80:20 of TRAPH/TESPH is graphically offered in Figure. 6 in 
the method of training accuracy (TRAA) and validation 
accuracy (VALA) curves. The figure displays a beneficial 
analysis into the behavior of the WQIPC-HTDL technique 
over numerous epoch counts, representing its learning 
procedure and generalization abilities. Remarkably, the 
figure infers a stable development in the TRAA and VALA 
with a development in epochs. It safeguards the adaptive 
nature of the WQIPC-HTDL system in the pattern 
recognition procedure on both TRA and TES data. The 
rising trend in VALA sketches the ability of the WQIPC-
HTDL technique to adjust to the TRA data and also excels 
in providing precise classification of hidden data, 
indicating strong generalization skills. 
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Figure 6 Accuy curve of WQIPC-HTDL approach under 80:20 of 

TRAPH/TESPH 

Figure 7 exhibits a comprehensive representation of the 
training loss (TRLA) and validation loss (VALL) results of 
the WQIPC-HTDL approach below 80:20 of TRAPH/TESPH 
over different epochs. The progressive reduction in TRLA 
highlights the WQIPC-HTDL system enhancing the weights 
and minimalizing the classification error on the TRA and 
TES data. The figure specifies a clear understanding of the 
WQIPC-HTDL model's association with the TRA data, 
emphasizing its ability to take patterns within both 

datasets. Remarkably, the WQIPC-HTDL method 
repeatedly increases its parameters in diminishing the 
alterations among the forecast and actual TRA class labels. 

 

Figure 7. Loss curve of WQIPC-HTDL approach under 80:20 of 

TRAPH/TESPH 

Inspecting the PR curve, as exposed in Figure 8, the results 
certified that the WQIPC-HTDL method below 80:20 of 
TRAPH/TESPH gradually achieves enhanced PR values 
under every class. It confirms the improved skills of the 
WQIPC-HTDL approach in the classification of dissimilar 
classes, demonstrating proficiency in the recognition of 
classes. 

Table 3. WQI recognition of WQIPC-HTDL approach under 70:30 of TRAPH/TESPH 

Classes Accuy Precn Recal F1Score MCC 

TRAPH (70%) 

WQI-Not Safe 87.78 92.46 87.78 90.06 80.30 

WQI-Safe 92.50 87.85 92.50 90.12 80.30 

Average 90.14 90.16 90.14 90.09 80.30 

TESPH (30%) 

WQI-Not Safe 89.43 92.69 89.43 91.03 83.30 

WQI-Safe 93.68 90.80 93.68 92.22 83.30 

Average 91.55 91.75 91.55 91.62 83.30 

Table 4. Comparative analysis of WQIPC-HTDL technique with other approaches 

Algorithm Accuy Precn Recal F1Score 

WQIPC-HTDL 92.22 92.30 92.22 92.19 

MLP Algorithm 85.09 56.60 56.42 56.51 

Logistic Regression 84.03 55.21 55.96 55.50 

KNN Model 72.72 47.36 47.84 47.52 

Decision Tree 79.51 53.00 52.52 52.69 

Random Forest 75.88 50.65 50.13 50.29 

SVM Model 79.80 51.88 53.28 52.30 

 

Besides, in Figure 9, ROC curves formed by the WQIPC-
HTDL system under 80:20 of TRAPH/TESPH outperformed 
the classification of different labels. It delivers a 
comprehensive understanding of the tradeoff among TPR 
and FRP over dissimilar detection threshold values and 
epoch counts. The figure emphasized the higher classifier 
outcomes of the WQIPC-HTDL technique under all classes, 

outlining the efficacy in addressing many classification 
problems. 

Table 4 and Figure 10 report a detailed comparison study 
of the WQIPC-HTDL technique (Ahmed et al. 2019). It is 
noticed that the KNN, DT, RF, and SVM models gain 
ineffectual results. Next to that, the MLP and LR models 
have reached considerable performance. But the WQIPC-
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HTDL technique demonstrates its superior performance 
with increased accuy, precn, recal, and Fscore of 92.22%, 
92.30%, 92.22%, and 92.19%, respectively. Thus, the 
WQIPC-HTDL technique can be applied to the automated 
WQI detection process. 

 

Figure 8. PR curve of WQIPC-HTDL approach under 80:20 of 

TRAPH/TESPH 

 

Figure 9. ROC curve of WQIPC-HTDL approach under 80:20 of 

TRAPH/TESPH 

 

Figure 10. Comparative analysis of WQIPC-HTDL technique with 

other approaches 

5. Conclusion 

In this research, we have presented an automated 
WQIPC-HTDL model. The main intention of the WQIPC-
HTDL method is to estimate WQI and classify the WQ into 
multiple levels. It contains three different procedures 
namely LSN-based preprocessing, LSTM-based 
classification, and GOA-based parameter tuning process. 
Initially, the WQIPC-HTDL technique undergoes the LSN 
approach is used. Besides, an LSTM model is applied for 
the prediction and classification process. To enhance the 

efficacy of the LSTM model, the GOA can be used. To 
point out the enhanced performance of the WQIPC-HTDL 
technique, a detailed simulation analysis was made. The 
obtained values inferred the supremacy of the WQIPC-
HTDL technique compared to other models. 
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