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Abstract 

Understanding the retention of organic compounds (OCs) 
is critical for membrane applications in water recycling. 
The objective of this study was to create an optimized 
model using Artificial Neural Networks for Quantitative 
Structure-Property Relationship (QSPR-ANN) to predict 
the effect of adsorption on the retention of organic 
compounds (OCs) by nanofiltration (NF) and reverse 
osmosis (RO). 

An optimal model (QSPR-ANNoptimal) characterized by a 
similar structure (13 neurons in the inputs layer, 11 
neurons in the hidden layer, and 1 neuron in the output 
layer) is constructed to predict the effect of adsorption on 
the retention of organic compounds by membranes. A set 
of 273 data points was used to test the neural network. 
the data set was used 70% for training, 15% for validation, 
and 15% for testing. For the most promising neural 
network model, the calculated retention values were 
compared to the experimental retention values, and good 
correlations were found (the determination coefficient "R2 
= 0.9872" and the root mean squared error "RMSE = 
2.2743%" for the test phase). This indicates the good 
robustness of the established QSPR-ANN model and the 
possibility of predicting the various parameters that 
characterize the retention of OCs by RO/NF. Sensitivity 
analysis revealed that the effect of adsorption retention of 
organic compounds by reverses osmosis and 
nanofiltration membranes depends more precisely on two 

important interactions (hydrophobic/adsorption and 
steric hindrance). 

Keywords: Modelisation; hydrophobic adsorption; 
interactions; retention; organic compounds; reverses 
osmosis; nanofiltration; artificial neural networks 

1. Introduction 

The increasing global utilization of organic compounds 
(OCs) such as hormones, pesticides, pharmaceuticals, 
surfactants, and phenolic substances has led to their 
presence in wastewater effluents, source waters, 
groundwater, and even treated drinking water. This has 
given rise to a fresh environmental challenge, prompting 
significant apprehension among scientists in recent times. 
Consequently, the removal of OCs has become a subject 
of great interest. Dolar et al. (2013). 

Modern methods are utilized to efficiently eliminate OCs. 
Among these technologies, membrane processes like 
RO/NF are particularly good at getting rid of OCs, and 
protecting the environment and human health. NF/RO 
methods have previously been shown in several 
investigations to be capable of eliminating OCs. These 
investigations have demonstrated a universal relationship 
between retention efficiency and complex solute-
membrane interactions. These interactions include 
hydrophobic adsorption, electrostatic repulsion, and steric 
hindrance. The properties of the compounds, such as their 
hydrophobicity, polarity, molecular size, and charge, as 
well as the characteristics of the membranes, such as 
porosity, polarity, and electrostatic charges, affect the 
interactions between solute-membrane. Furthermore, 
these interactions are greatly influenced by operational 
filtration parameters are pressure, pH, permeate flux, 
temperature, recovery, and cross-flow velocity. (Ammi et 
al. 2023; Kim et al. 2018; Teychene et al. 2020). 

(Kiso et al. 2001) The adsorption effect plays a key role in 
the permeation of solutes in practical water treatment 
procedures. The extended adsorption and accumulation 
of solutes on membranes can have a profound influence 
on the efficacy of solute separation. As per the findings of 
(Comerton et al. 2007), the initial retention of OCs 
through membrane adsorption reaches a point of stability 
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when equilibrium is achieved. At this juncture, additional 
mechanisms, such as electrostatic repulsion and steric 
hindrance, come into play and contribute to the retention 
of OCs. Surprisingly, once equilibrium is reached, 
adsorption can exert a detrimental impact on retention. 
Research has demonstrated that adsorbed compounds 
can dissolve within the active membrane layer, 
subsequently diffusing through the polymer, and 
ultimately dissolving on the permeate side of the 
membrane. Furthermore, when the compound 
concentration in the feed water drops below the 
equilibrium value, these molecules adsorb on the 
permeate side of the NF/RO. For this reason, studying 
adsorption is crucial to improving our comprehension of 
membrane retention processes. 

A comprehensive understanding of the solute and 
membrane properties that influence retention forms the 
basis for a predictive modeling approach to determine the 
fate of specific compounds in high-pressure membrane 
applications. Despite numerous research studies 
attempting to establish connections between the 
physicochemical properties of solutes and membranes 
and solute retention, there remains an ongoing need for 
systematic and comprehensive efforts to identify key 
parameters that effectively predict solute separation, as 
well as a concurrent need for a comprehensive 
understanding of membrane characteristics to predict 
interactions between OCs and membranes, ultimately 
influencing retention. as highlighted by (Bellona et al. 
2004).  

sometimes, real-time analysis can be a time-consuming 
and laborious task for researchers. Soft computing 
approaches, such as genetic algorithms, ANN, or fuzzy 
logic, play an important role in analyzing water 
engineering problems (water treatment, desalination, and 
the accurate performance of plants) with minimal space, 
time, and energy. ANN is a successful soft computing 
technique that is widely used in chemical engineering 
research, such as predicting accurate outcomes through 
appropriate modeling and simulation. It employs a simple 
mathematical model inspired by the biological analogy of 
a human brain, it learns from examples of problem 
datasets and produces meaningful information for 
performance analysis. It can model and solve linear, 
nonlinear, and complex systems (Chan et al. 2023; 
Mahadeva et al. 2022, 2023). 

The literature features a limited quantity of studies 
attempting to simulate nanofiltration and reverse osmosis 
processes using artificial neural networks. Nevertheless, 
only a handful of neural network models exist that can 
forecast the retention of organic substanc es in reverse 
osmosis, forward osmosis, and nanofiltration. (Ammi et al. 
2015, 2018, 2020, 2023; Ammi, Khaouane, et al. 2021; 
Ammi, Hanini, et al. 2021; Khaouane et al. 2017; Kratbi et 
al. 2023; Libotean et al. 2008; Shahmansouri & Bellona, 
2013; Yangali-Quintanilla et al. 2009).  

To the best of our knowledge, this marks the initial 
endeavor in utilizing QSPR-ANN for forecasting the 
influence of adsorption on the organic compound 

retention in NF/RO, as well as assessing its predictive 
capability. Therefore, the present work aims at the 
prediction of the effect of adsorption on the retention of 
OCs by NF/RO using QSPR-ANN. The remainder of this 
study is structured as follows: Section 2: Artificial Neural 
Networks, section 3: Modeling Procedure, section 4: 
Results and Discussion, section 5: Sensitivity Analysis, 
section 6: Applicability Domain, and section 7: Conclusion. 

2. Artificial neural network 

Quantitative structure-property relationships (QSPR) is a 
technique that can predict the properties of 
chemical/biological systems based on their molecular 
structure. Relationships are often established using 
statistical modeling methods, such as artificial neural 
networks (ANN)Fissa et al. (2023).  

Artificial neural networks are powerful tools that are often 
utilized as black-box models due to their exceptional 
capacity to learn and generalize nonlinear functional 
relationships between input and output variables. They 
operate as data-driven adaptive algorithms, capable of 
learning from training epochs and uncovering subtle 
functional correlations within the data, even when the 
underlying relationships between parameters are 
ambiguous or challenging to define. With a sufficient 
amount of data, neural networks can effectively tackle 
problems by treating them as multivariate nonlinear 
statistical models. The connections within neural 
networks, known as synapses, have adaptive weights that 
are adjusted during the learning process and are 
proportional to the synaptic potential. This adaptability 
allows neural networks to discover complex patterns and 
relationships in the data, making them valuable for a wide 
range of applications in fields like machine learning and 
artificial intelligence Mohammad et al. (2022); Rehab et 
al. (2022). 

The most widely used architecture is Multilayer 
Perceptron (MLP) with only three layers: 1. The first layer 
is the input layer, responsible for receiving input data, 2. 
The middle layer(s), referred to as the hidden layer, 
processes and passes on the information from the input 
layer, and 3. The final layer, called the output layer, 
generates the model's output. 

 

Figure 1. Designing the neural network architecture 

The capacity of a neural network to continuously enhance 
its performance is a fundamental characteristic. With each 
iteration of the learning process, the network becomes 
more proficient in understanding and responding to its 
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environment. In the context of neural networks, 'learning' 
involves the fine-tuning of connection weights, allowing 
the network to adapt and make increasingly precise 
predictions and decisions based on the provided data 
Mohammad et al. (2022); Rehab et al. (2022). 

3. Modeling procedure 

The modeling procedure involved designing and 
optimizing the neural network architecture, following the 
steps outlined in Figure 1. 

3.1. Data collection, division, pretreatment, and analysis 

In this study, we used available data from 4 references 
from 2009 to 2018 Arsuaga et al. (2010); Dolar et al.( 
2013, 2017); Liu et al. (2018). The database contains 273 
retention data for 21 OCs (pharmaceutical compounds 
and phenolics). The list of 21 OCs is presented in the 
Supplementary Data (Table 1). 

The selection of input and output variables is based on the 
hydrophobic/adsorption interaction between the OCs and 
the membranes (RO/NF). These interactions between 
solutes and the membrane are determined by the 
descriptors of the OCs, membrane characteristics, and 
operating conditions Gur-Reznik et al. (2011). 

We choose the following inputs: 

1 The descriptors of the OCs are molecular weight "Mw", 
the logarithm of the octanol-water partition coefficient 
"log Kow", dipole moment, molecular length, surface area 
min, surface area max, polar surface area, and 
polarizability;  

2 the characteristics of the membranes are molecular 
weight cut-off "MWCO", sodium chloride salt rejection 
"SR NaCl", and membrane hydrophobicity "contact angle"; 

3 the operating condition is pressure.  

Molecular descriptors (the MW, the log Kow, the polar 
surface area, and the polarizability) were calculated using 
ChemSpider (Http://Www.Chemspider.Com, n.d.). We 
calculated the dipole moment of the descriptor and the 
molecular size of the descriptor (the molecular length, the 
surface area min, and the surface area max) by two 
software (hyperChem and Chembio 3D). 

The values of the molecular width, the molecular depth, 
are defined by the following equations (01,02), and the 
equivalent molecular width “Eqwidth” was calculated by 
the following equation (03): 

= min 

1
   S  

2
Width

 

(1) 

= max

1
Depth   S  

2  

(2) 

=Eqwidth width*depth   
(3) 

Table 1 displays the minimum (min), maximum (max), 
mean, and standard deviations (Std) values for both the 
input and output data. 

 

Table 1. Statistical analysis of inputs and output 

 Min  Max  Mean  Std  

Temps (h) 0.0000 24.0000 6.5616 7.1859 

MW (g mol-1) 94.1100 392.4700 288.0913 70.4984 

Dipole moment (Debye) 0.2358 6.3000 4.0203 1.4071 

Log Kow -1.2200 3.4800 1.7275 0.9046 

Polar Surface Area (nm2) 0.2000 1.3000 0.7592 0.2732 

Polarizability (nm3) 0.0112 0.0397 0.0311 0.0065 

Length (nm) 0.0970 0.1719 0.1472 0.0146 

Surface area min (nm2) 2.1394 5.1640 4.1329 0.6206 

Surface area max (nm2) 2.4437 7.8549 5.3434 1.2226 

MWCO (Dalton) 100.0000 340.0000 185.9341 102.0720 

SR (CaCl2) (%) - - - - 

SR(NaCl) (%) 20.5300 98.6400 73.9201 23.4504 

Contact angle (°) 20.1000 73.1600 53.5681 14.3834 

Pressure (KPa) 1000.0000 4100.0000 1127.4725 523.1549 

Retention (%) 7.1713 100.0000 86.0097 20.3951 

3.2. Model development 

The QSAR-ANN models were developed for the prediction 
of the effect of adsorption on the retention of OCs by (NF) 
and (RO) membranes. Each neural network contains 23 
and 27 variables (13 neurons in the input layer, 9 and 13 
neurons in the hidden layer, and 1 neuron in the output 
layer). 

The collective data in this model were randomly divided 
into two subsets: training and testing; and also, randomly 
divided into three subsets: training, validation, and 
testing. 

In the process of creating an ANN model, a typical 
allocation of 60-80% of the data is designated for training, 
making it the largest segment of the dataset. The training 
phase signifies the initial step in constructing an ANN 
model, during which the network learns and establishes 
the connections between input and output variables. 
Complex computations occur at this stage, and the neuron 
weights are adjusted after each epoch using one of the 
training algorithms to achieve a high level of accuracy. 
Different criteria, such as the number of epochs or 
iterations, and a minimum error threshold, can be 
configured. After the training phase is completed, the 
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remaining data is evenly divided between the validation 
and testing phases. in the validation phase, the validation 
dataset which includes unseen data, is utilized to evaluate 
the predictive capabilities of the ANN model. Employing 
multiple validation checks helps prevent the model from 
becoming stuck in local minima. In the testing phase, a 
distinct set of unseen data is used as input to forecast the 
output parameters, which assesses the model's 
performance on new, unseen data Jawad et al. (2021). 

in this work used the training algorithms are the 
Regularization-Bayesienne"train-BR" and the Levenberg-
Marquard "train-LM". The quantity of neurons in the 
hidden layer varies based on the network's performance 

throughout the training phase (9 to 13 neurons). The 
activation functions used in the hidden layer are the 
tangent hyperbolic (tansig) and logarithmic sigmoid 
(logsig) and the activation function used in the output 
layer is the pure-linear (purelin). The selection of the 
optimal subset division, the number of hidden neurons, 
the hidden functions, and the output function (Designing 
the neural network architecture) for a neural network 
optimal is done by trial and error method. The prediction 
of the effect of adsorption on the retention of OCs during 
NF/RO using QSPR-ANN was performed using MATLAB 
software. 

Table 2. Effect of dividing the database with the activation function (tansig) and two training algorithms 

Splitting the database into two subsets (trainbr) Splitting the database into three subsets (trainlm) 
 R2 RMSE (%)  R2 RMSE (%) 

D
iv

is
io

n
 0

1
 

Total phase 100%: 273 

datapoints 

0.9720 3.4079 

D
iv

is
io

n
 0

4
 

Total phase 

100%: 273 

datapoints 

0.9575 4.1991 

Training phase 60%: 164 

datapoints 

0.9986 0.7735 Training phase 

60%: 163 

datapoints 

0.9732 3.2192 

Validation phase - - Validation 

phase 20%: 55 

datapoints 

0.9306 5.1949 

Test phase 40%: 109 datapoints 0.9283 5.3092 Test phase 

20%: 55 

datapoints 

0.9458 5.4609 

D
iv

is
io

n
 0

2
 

Total phase 100%: 273 

datapoints 

0.9779 3.0317 

D
iv

is
io

n
 0

5
 

Total phase 

100%: 273 

datapoints 

0.9746 3.2466 

Training phase 70%: 

191datapoints 

0.9892 2.1833 Training phase 

70%: 

191datapoints 

0.9710 3.4460 

Validation phase - - Validation 

phase 15%: 41 

datapoints 

0.9803 3.1136 

Test phase 30% :82 datapoints 0.9428 4.4154 Test phase 

15%: 41 data 

points 

0.9872 2.2743 

D
iv

is
io

n
 0

3
 

Total phase 100%: 273 

datapoints 

0.9843 2.5813 

D
iv

is
io

n
 0

6
 

Total phase 

100%: 273 

datapoints 

0.9817 2.7565 

Training phase 80%: 218 

datapoints 

0.9976 1.0165 Training phase 

80%: 

219datapoints 

0.9880 2.1326 

Validation phase - - Validation 

phase 10%: 27 

datapoints 

0.9752 3.6410 

Test phase 20%: 55 datapoints 0.9368 5.3830 Test phase 

10%: 27 

datapoints 

0.9553 5.1654 

4. Results and discussion 

In this work, QSPR-ANN was used to construct a nonlinear 
model for the prediction of the effect of adsorption on the 
retention of OCs by NF/RO membranes. The performance 
of the model was assessed using the determination 
coefficient (R2) (values above 0.5 are generally considered 

satisfactory and values above 0.9 are considered 
excellent) and the root mean squared error (RMSE) was 
used to determine the modeling error between the 
experimental and calculated values, with a perfect RMSE 
when a Lower value, it is defined as follows Sediri et al. 
(2017); Wang et al. (2009). 



PREDICTION OF THE EFFECT OF ADSORPTION ON THE RETENTION OF ORGANIC COMPOUNDS BY NF/RO USING QSPR-ANN  5 

Table 3. Effect of dividing the database with the activation function (logsig) and two training algorithms 

Splitting the database into two subsets (trainbr) Splitting the database into three subsets (trainlm) 
 R2 RMSE (%)  R2 RMSE (%) 

D
iv

is
io

n
 0

1
 

Total phase 100%: 273 

datapoints 

0.9706 3.5450 

D
iv

is
io

n
 0

4
 

Total phase 100%: 273 

datapoints 

0.9584 4.1779 

Training phase 60%: 164 

datapoints 

0.9872 2.2732 Training phase 60%: 163 

datapoints 

0.9912 1.9056 

Validation phase - - Validation phase 20%: 55 

datapoints 

0.9122 6.2009 

Test phase 40%: 109 

datapoints 

0.9504 4.8684 Test phase 20%: 55 

datapoints 

0.9071 6.1179 

D
iv

is
io

n
 0

2
 

Total phase 100%: 273 

datapoints 

0.9783 3.0157 

D
iv

is
io

n
 0

5
 

Total phase 100%: 273 

datapoints 

0.9631 3.9284 

Training phase 70%: 

191datapoints 

0.9874 2.3662 Training phase 70%: 

191datapoints 

0.9890 2.2767 

Validation phase - - Validation phase 15%: 41 

datapoints 

0.8290 5.8909 

Test phase 30% :82 

datapoints 

0.9532 4.1518 Test phase 15%: 41 data 

points 

0.8894 6.6263 

D
iv

is
io

n
 0

3
 

Total phase 100%: 273 

datapoints 

0.9888 2.1525 
D

iv
is

io
n

 0
6

 
Total phase 100%: 273 

datapoints 

0.9549 4.3426 

Training phase 80%: 218 

datapoints 

0.9918 1.8637 Training phase 80%: 

219datapoints 

0.9626 3.9661 

Validation phase - - Validation phase 10%: 27 

datapoints 

0.9586 5.3357 

Test phase 20%: 55 

datapoints 

0.9791 3.0381 Test phase 10%: 27 

datapoints 

0.8327 5.8836 

 

( )
=

−
=


2

, ,1
 

  

n

i exp i cali
Y Y

RMSE
n

   

(4) 

with n is the total number of data points, Yi, cal represents 
the calculated values and Yi, exp is the experimental values 
from the QSPR-ANN models. 

Table 2 shows the RMSE and the R2 obtained for the effect 
of adsorption on the retention of OCs by NF/RO under the 
influence of the training algorithm trainbr with the 
activation function Tansig in the hidden layer: division 1 
"164 datapoints for the training data  (60%) and 109 
datapoints for testing data (40%)", division 2 "191 
datapoints for the training data  (70%) and 82 datapoints 
for testing data (30%)", and division 3 "218 datapoints for 
the training data (80%) and 55 datapoints for testing data 
(20%)" and with training algorithm trainlm: division 4 "163 
datapoints for training data (60%), 55 datapoints for 
validation data (20%), and 55 datapoints for testing data 
(20%)", division 5 "191 datapoints for training (70%), 
41datapoint for validation data (15%), and 41 datapoints 

for testing data (15%)",  and division 6 "219 datapoints for 
training data (80%), 27 datapoints for validation data 
(20%), and 27 datapoints for the testing data(20%)".  

Table 3 shows the RMSE and the R2 obtained for the effect 
of adsorption on the retention of OCs by NF/RO under the 
influence of the activation function "Logsig" in the hidden 
layer with two training algorithms ("trainbr" and 
"trainlm"). 

The results of the two tables below show that division 5 is 
the division optimal with the training algorithm 
Levenberg-Marquard "train-LM" and activation function 
hyperbolic tangent sigmoid "Tansig". The QSPR-ANN5 
model with the structure optimal (train-LM and activation 
function Tansig) gives lower errors than the other models 
(RMSE = 2.2743 and R2 = 0.9872 for the testing phase). 
We conclude the superiority of the optimal neural 
networks (QSPR-ANN5) for modeling the effect of 
adsorption on the retention of OCs by NF/RO. 

 

Table 4. Structures of the optimized QSPR-ANN model 

Training Algorithm  Input layer Hidden layer Output layer 

Neurons numbers Neurons numbers Activation function Neurons numbers Activation function 

Levenberg-

Marquard "LM" 

13 11 tansig 1 purelin 

 

The structure of the optimized QSPR-ANN for the 
prediction of the effect of adsorption on the retention of 

OCs by NF/RO is cited in Figure2, and a more detailed 
illustration of its architecture is in Table 4. 
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Figure2. Three-layer feed-forward neural network for modeling 

the  

The weight matrices and bias vectors of the QSPR-
ANNoptimal model are listed in Supplementary Data 
(Table 2).  

indices wji
I is the input-hidden layer connection weight 

matrix (11 rows × 13 columns), 

bj
h is the hidden neurons bias column vector (11 rows),  

w1. j
h is the hidden layer-output connection weight matrix 

(11 rows × 1 column), b1
0 is the output neurons bias 

column vector (1 row). 

From the optimized QSPR-ANNoptimal, assimilation of the 
effect of adsorption on the retention of OCs by the NF/RO 
be expressed by a mathematical model that incorporates 
all the inputs Ei (time, molecular weight "Mw", dipole 
moment, surface area min, surface area max, polar 
surface area, polarizability, log Kow, length, MWCO, 
SR(NaCl), contact angle, and pressure). 

The instance outputs Zj of the hidden layer: 

j = 1,2, 3…,11 

=

= =

= =

 
= + = 

 

+ − − +

+ + − +



 

 

13
I h

j ji  i j
i 1

13 13I h I h
ji  i j ji  i ji 1 i 1

13 13I h I h
ji  i j ji  i ji 1 i 1

Z w E  b  

exp (  w E  b )  exp (   w E  b )  

exp (  w E  b )  exp (   w E  b )  

hf

 

(5) 

The output "Retention": 

= =

 
= + = + 

 
 
11 11

0 0
1. 1  1. 1 

j 1 1

Retention        h h
O j j j j

j

f w Z b w Z b
 

(6) 

The combined equations (05) and (06) lead to the 
following mathematical formula, which describes the 
retention assimilation by considering all indices Ei: 

( ) ( )
( ) ( )

= =

=
= =

+ − − +
= +

+ − − +

 


 

13 13I h I h
11 ji  i j ji  i ji 1 i 1h 0

1.j 113 13I h I h
j 1

ji  i j ji  i ji 1 i 1

  w E  b       w E  b   
  w  b

  w E  b         w E  b   

exp exp
Retention

exp exp

 

(7) 

The linear regression's parameters and plot are easily 
generated with the MATLAB function "postreg" (Figure 3 
(a), (b), (c), and (d)). The comparison of the estimated 
retention values calculated by the QSPR-ANN model with 
the experimental retention values reveals great 
agreement between them, with agreed vectors getting 

closer to the ideal "α=1 (the slope), β=0 (y-intercept), and 
R=1 (correlation coefficient)": [α, β, R] = [0.9780, 1.7480, 
0.9872] for the total phase, [α, β, R] = [0.9776, 1.5560, 
0.9854]for the training phase, [α, β, R]  = [0.9756, 1.0152, 
0.9901] for the validation phase, and [0.9827, 1.5265, 
0.9936] for the testing phase respectively.  

The errors of the QSPR -ANN optimal for the total phase, 
the training phase, the validation phase, and the testing 
phase were calculated to confirm the prediction for the 
effect of adsorption on the retention of OCs by NF and RO 
membranes. 

 

Figures 3. Comparison between experimental and calculated 

retention values for the total (a), training (b), validation (c), and 

testing phases (d). 

The root mean squared error (RMSE), the errors are the 
mean absolute error (MAE), the standard error of 
prediction (SEP), residual predictive deviation (RPD), range 
error ratio (RER), the mean square error (MSE), the mean 
relative squared error (MRSE), the accuracy factor (Af), 
and bias factor (Bf). 

The error values were obtained with the following 
equations Dahmani et al. (2022):  

=

= − , ,
1

1
    ( )

n

i exp i cal
i

MAE y y
n  

(8) 

( ) = %   100 
e

RMSE
SEP

y  

(9) 

=  
SD

RPD
RMSE  

(10) 

−
= 
max min

RER
RMSE  

(11) 

( )
=

= −
2

, ,
1

1
 
n

i exp i cal
i

MSE y y
n  

(12) 
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=

 −
=   

 


2

, ,

1 ,

1
   
n

i exp i cal

i i exp

y y
MRSE

n y  

(13) 

=

= 
,

1 ,

1
    log  

n
i cal

f
i i exp

y
A

n y  

(14) 

=

 
=   

 


,

1 ,

1
    log  

n
i cal

f
i i exp

y
B

n y  

(15) 

where n: the total number of data points, 

Yi, exp: the experimental retention value,  

Yi, cal: the calculated retention value,  

Ye: the mean value of experimental data,  

SD: the standard deviation of experimental data, 

min: the minimum of experimental data,  

max: the maximum of experimental data. 

Table 5 represents the statistical parameters of the QSPR-
ANN optimal model. The determination coefficient (R2) in 
both the training and validation phases is quite high, with 
values of 0.9710 and 0.9803, respectively, indicating 
excellent agreement between the experimental and 
calculated results. The determination coefficient (R2) for 
the testing phase measures the model's ability to 
interpolate, and it's impressively high at 0.9872, 
demonstrating a strong match between experimental and 
calculated retention. On the flip side, we have embraced 
the five-level interpretations of Residual Predictive 
Deviation "RPD" and Range Error Ratio "RER" provided by  
Viscarra Rossel et al. (2006): excellent predictions (RPD 
and RER > 2.5); good predictions (RPD and RER of 2.0 to 
2.5); approximate quantitative predictions (RPD and RER 
of 1.8 to 2.0); the ability to distinguish between high and 
low values (RPD and RER of 1.4 to 1.8); and unsuccessful 
predictions (RPD and RER< 1.40) Ammi et al. (2020; 
Viscarra Rossel et al. (2006). 

 

Table 5. Statistical parameters of the QSPR-ANNoptimal model 

 Total phase Training phase Validation phase Testing phase 

R2 0.9746 0.9710 0.9803 0.9872 

RMSE 3.2466 3.4460 3.1136 2.2743 

MAE 1.8235 1.8292 2.0710 1.5494 

SEP 3.7747 4.0175 3.6540 2.5870 

RER 28.5923 26.9384 29.1745 40.2866 

RPD 628.1936 585.2833 701.7060 895.0705 

MSE 10.5406 11.8746 9.6943 5.1724 

MRSE 7.6634e-06 2.7226e-05 4.3237e-05 5.6940e-07 

Af 1.0064 1.0121 1.0152 1.0017 

Bf 0.9936 0.9880 1.0152 0.9983 

 

The RPD = 628.1936 (%) and RER = 28.5923 (%) values of 
the QSPR-ANNoptimal model are notably higher than 2.5 
for the total phase. Furthermore, various other statistical 
parameters, including MAE, SEP, MSE, MRSE, Af, and Bf, 
reinforce the model's strong predictive power across the 
total, training, validation, and testing phases. These 
results collectively highlight the model's ability to capture 
the nonlinear relationship between adsorption effects and 
the retention of OCs by NF/RO.  

5. Sensitivity analysis 

The analysis of the QSPR-ANNoptimal model establishes 
the relationship between inputs and outputs. To see the 
contribution as well as the variation profile of each input 
variable (time, molecular weight "Mw", dipole moment, 
surface area min, surface area max, polar surface area, 
polarizability, log Kow, length, MWCO, SR(NaCl), contact 
angle, and pressure) on the output (retention), sensitivity 
analysis is often used to study how inputs affect outputs 
Baghban et al. (2017). A “weight” method sensitivity 
analysis was performed. The method was first proposed 
by Garson (1991) and repeated by Goh (1995) Gevrey et 
al. (2003). The process of calculating the importance of 
"weights" is grounded in the following equation, as 
outlined in the research conducted by Dahmani et al. 
(2022): 

IR (relative importance) = Connection Weights of Input-
Hidden / Connection Weights of Hidden-Output 

This equation provides a measure of the relative 
importance of the connection weights between the input 
and hidden layers compared to the connection weights 
between the hidden and output layers within the neural 
network. 
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(16) 

The results of the contributions are presented in Figure 4. 
The most relevant variables (RI> 5%) that can influence for 
prediction of the effect of adsorption on the retention of 
OCs by RO/NF membranes are time, MW, dipole moment, 
surface area min, surface area max, polar surface area, 
polarizability, log Kow, length, MWCO, SR(NaCl), and 
contact angle. 

Figure 4 shows that the retention of OCs by reverse 
osmosis and nanofiltration is governed by two important 
interactions (hydrophobic/adsorption interaction and 
steric hindrance "sieving effect").  The first interaction 
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(hydrophobic/adsorption) takes place between 
hydrophobicity/polarity of OCs "log Kow (IR=7.85%), 
dipole moment (IR = 7.66%), polar surface area (IR = 
6.08%), and polarizability (IR = 5.90%)"   and 
hydrophobicity/polarity of membranes "contact angle (IR 
= 10.18%)". The second interaction steric hindrance 
"sieving effect" occurs between the parameter steric / size 
of OCs "length (IR = 7.85%), surface area min (IR = 5.50%), 
MW (IR = 5.48%), surface area max (IR = 5.02%)" and the 
parameter steric / size of membrane " MWCO (IR = 9.23%) 
and SR(NaCl) (IR = 10.38%)". This research work suggests 
that the OCs retention on the NF/RO strongly depends 
much more on the time (IR = 13.21%), SR(NaCl), and 
contact angle. 

 

Figure 4. The histograms of the relative importance (RI) of the 

QSPR-ANN optimal for prediction of the effect of adsorption on 

the retention of OCs by RO/NF membranes 

It is clear that steric/size SR (NaCl) is more suitable for 
modeling the impact of adsorption on the retention of 
OCs by RO/NF compared to steric/size MWCO (molecular 
weight cutoff) (RI (MWCO) = 9.23% and RI (SR "NaCl") = 
10.38%). Consequently, characterizing a membrane in 
terms of the steric/size SR (NaCl) parameter is a simpler 
and more appropriate approach than using MWCO. These 
findings align with the results from previous studies by 
Ammi et al. (2020). 

The sensitivity analysis using the weight method has 
effectively determined the true significance of all the 
variables employed in predicting the impact of adsorption 
on the retention of OCs by RO/NF. This, in turn, validates 
the appropriateness of the selected variables utilized in 
this research study. 

6. Applicability domain 

The accuracy with which data points are identified has a 
significant impact on the validity of the model Peter J. 
Rousseeuw, (2005) . Note that, as previously mentioned, 
this study used a database, these data points may 
potentially include errors stemming from laboratory 
measurements. Outliers are data points that deviate from 
the general trend of the main data points. therefore, it is 
important to employ robust outlier detection methods to 
identify and exclude imprecise experimental data, 
ultimately enhancing the accuracy of the model. 
Hosseinzadeh & Hemmati-Sarapardeh, (2014); 
Mohammadi et al. (2012). Corresponding methods often 
include numerical and graphical algorithms Peter J. 

Rousseeuw, (2005). In this study, we use the 
mathematical method of leverage to find outliers. The 
method first computes the residuals and then creates a 
hat matrix from the input data points according to 
Moammadi et al. (2012); Peter J. Rousseeuw, (2005):  

−= 1( )  t tH X X X X  
(17) 

Here, X denotes a matrix of dimensions mn, where n 
corresponds to the number of inputs layer (rows), m is the 
model parameters (columns), and t represents the 
transpose matrix. The Hat values of the data are derived 
from the main diagonal of the matrix H. 

= ( )Hat diagonal H  (18) 

the Williams plot is created to visually detect suspended 
data or outliers. The plot illustrates the correlation 
between Hat indices and standardized cross-validated 
residuals. These residuals are calculated as the variance 
between the represented or predicted values and the 
implemented data.  

+
=

3( 1)
*

n
H

m  

(19) 

A leverage value (H*) of three is typically regarded as a 

'cut-off' point, accepting points within a range of 3 
standard deviations from the mean (bounded by two 
horizontal red lines) to encompass 99% of normally 
distributed data Baghban et al. (2017); Hosseinzadeh & 
Hemmati-Sarapardeh, (2014); Mohammadi et al. (2012). 
the standardized cross-validated residuals are calculated 
from the data of the retention experimental and that 
calculated by the model 
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(20) 

If the majority of the data points fall within the ranges of 0 
≤ Hat ≤ H* and of − 3 ≤ R_Norm ≤ 3 it indicates that the 
model development and its predictions occur within the 
domain of applicability, which leads to a model 
statistically valid. Thus, we can identify ''Good High 
Leverage'' points in the domain of 0 ≤ Hat ≤ H* and − 3 ≤ 
R_Norm ≤3. However, points falling outside this range, 
with R_Norm <−3 or R_Norm>3 (whether greater or less 
than the H* value) are classified as model outliers or as 
"Bad High Leverage" points Baghban et al. (2017); 
Hosseinzadeh & Hemmati-Sarapardeh, (2014); 
Mohammadi et al. (2012). 

Figure 5 represents Williams range plot of QSPR-ANN 
optimal neural model for the total phase. This plot 
contains 263/273 (96.34%) validated data points (red) and 
10/273 (3.66%) suspected data points (blue). The critical 

leverage value is  
( ) ( )3 1 3 13 1

0 1539
273

+ +
= = =* . .

n
H

m
 This 

indicates that the development of the optimal QSPR-ANN 
model and its prediction are within bounds leading to the 
optimal statistically valid neural model. Therefore, we can 
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affirm that there are "Good Haut Levier" points for the 
total phase. 

 

Figure 5. Williams range plot of QSPR-ANN optimal neural model 

for the total phase. 

 

Figure 6. Williams range plot of QSPR-ANN optimal neural model 

for the testing phase. 

Figure 6 represents Williams range plot of QSPR-ANN 
optimal neural model for testing phase. This plot contains 
40/41 (97.56%) validated data points (red) and the blue 
line vertically and 1/41 (2.44%) suspected data points 
(blue). The critical leverage value is  

( ) ( )3 1 3 13 1
1 0244

41

+ +
= = =* .

n
H

m
 . This indicates that the 

development of the optimal QSPR-ANN model and its 
prediction are within bounds leading to the optimal 
statistically valid neural model. Therefore, we can affirm 
that there are "Good Haut Levier" points for the test 
phase. 

7. Conclusion 

The present paper demonstrates the use of the QSPR-
ANNoptimal which was developed to predict the effect of 
adsorption on the retention of OCs by nanofiltration and 
reverse osmosis. The QSPR-ANN optimal can summarize 
interactions between the descriptors of OCs are Mw, log 
Kow, dipole moment, molecular length, surface area min, 
surface area max, polar surface area, and polarizability, 
the characteristics of the membranes are MWCO, SR NaCl, 
and contact angle, and the operating conditions is 
pressure.  

An optimal QSPR-ANN is characterized by a structure (13 
neurons in the input layer, 11 neurons in the hidden layer, 
and 1 neuron in the output layer). Training algorithm 
Levenberg-Marquard “train- LM" with activation function 
"Tansig " in the hidden layer and "Purlin" in the output 
layer. QSPR-ANNoptimal showed good agreement between 
calculated and experimental data by the testing phase, 
with a coefficient of determination “R2 = 0.9872” and a 
root mean square error “RMSE = 2.2743%”. 

The sensitivity analysis conducted through the weight 
method successfully identified the true importance of all 
the utilized variables for the prediction of the effect of 
adsorption on the retention of OCs by RO/NF which is 
governed by two important interactions 
(hydrophobic/adsorption interaction and steric hindrance 
"sieving effect"), As a result, proves the correctness of the 
choice of variables appropriateness that were used in this 
study. The SR(NaCl) may be a possible lump parameter for 
the prediction of the effect of adsorption on the retention 
of OCs by NF/RO.  

Applicability domain and Diagnostic analysis of the 
outliers of the optimized neural model (QSPR ANN 
optimal) demonstrated that both its development and its 
predictions are performed in the application domain. This 
substantiates the statistical validity optimal neural model. 
indicating the presence of "Good High Leverage" points 
during the test phase. 

Abbreviation 

OCs  Organic Compounds 

QSPR Quantitative Structure-Property 
Relationships 

ANN  Artificial Neural Networks 

RO  Reverse Osmosis 

NF  Nanofiltration 

MLPs  Multilayer Perceptron 

Mw  molecular weight  

log Kow  logarithm of the octanol-water partition 
coefficient 

MWCO  molecular weight cut-off 

SR NaCl   sodium chloride salt rejection 

Smin  surface area min 

Smax   surface area max 

Min  minimum 

Max  maximum 

Mean  means 

Std  standard deviations 

RMSE  root mean squared error 

R2  determination coefficient 

train-BR  Regularization-Bayesienne 

train-LM  Levenberg-Marquard,  

tansig  tangent hyperbolic 

logsig  logarithmic sigmoid 

purelin  pure-linear 

MAE  mean absolute error 

MPE  model predictive error 

SEP  the standard error of prediction 

RPD  residual predictive deviation 

RER   range error ratio 

MSE  the mean square error 
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MRSE  the mean relative squared error 

Af  the accuracy factor 

Bf  bias factor 

IR  relative importance 

Exp  experimental 

Cal  calculated 

W  weights 

b  bais 
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