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Abstract 

Floods inflict significant damage globally each year, 
underscoring the importance of accurate and timely flood 
prediction to mitigate property loss and life. Precise flood 
prediction provides governments with crucial preemptive 
alerts regarding potential flood disasters, allowing timely 
evacuations and lifesaving measures. Although various ML 
(machine learning) models have shown improved 
performance compared to traditional statistical models in 
flood prediction, they often overlook the spatial features 
crucial to understanding the generation of floods. deep 
learning (DL) is used in flood prediction to enhance the 
promptness and efficiency of flood level predictions. This 
work presents an optimized DL model to forecast floods 
using time series data. Initially, the data set was cleaned 

and normalized by linear interpolation. Then, the DL 
model optimal deep belief network (ODBN) is utilized for 
flood forecasting time series prediction.  ODBN is the 
integration of DBN and Sinh-Cosh algorithm (SCA). The 
experimental analysis is carried out on the real-time 
dataset and achieved better MSE and RMSE values of 0.75 
and 0.94 respectively. The findings suggest that the use of 
an ODBN is an effective method of accurately forecasting 
floods.  

Keywords: Flood prediction, time series data, deep 
learning, optimal deep belief network 

1. Introduction 

Floods are commonly influenced by a multitude of factors, 
including rainfall, evaporation, exposure to sunlight, 
surface conditions, and air movement in the atmosphere. 
Hakim et al. (2023) exhibit complex characteristics 
characterized by strong nonlinearity and high levels of 
uncertainty. Flooding constitutes a significant portion, 
approximately 84%, of global natural disaster deaths. 
Chenmin et al (2024) dicusssed various nations are 
grappling with recurrent floods that result in substantial 
direct economic losses of around US$ 60 billion annually, 
in addition to numerous casualties and injuries. In recent 
times, the increasing impacts of climate variation and 
changes in socioeconomic conditions have increased the 
frequency and intensity of floods. Consequently, this has 
imposed a pressing need on managers and engineers to 
delineate landscapes in both temporal and spatial 
dimensions, assessing the likelihood of flood events. 

Farahmand et al (2023) implement the initial step in flood 
management schemes involves conducting an analysis of 
flood hazards for flood-prone areas. Linh et al (2021) 
analysis aims to determine landscapes with a high or very 
high probability of experiencing floods, providing crucial 
guidance for the development of effective management 
plans and the allocation of resources for the response to 
floods. Surendran R et al (2023) achieve this, it is 
imperative to employ robust and reliable tools that allow 
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engineers to accurately assess the anticipated time, 
location, and future flood extent. Precise and timely flood 
prediction facilitates effective decision-making for flood 
control and mitigating potential losses. Currently, there 
are several methodologies to predict floods.  

Onen et al (2017) find the conventional statistical 
approaches operate on the fundamental principles of 
flood formation. Jain et al. (2018) approaches 
demonstrate considerable predictive potential across a 
spectrum of flooding strategies, they frequently require 
extensive hydrological monitoring databases. The 
computational demands of these models hinder short-
term predictions and require significant resources and 
time for development. Like numerical and statistical 
approaches, data-driven approaches have a long history in 
flood modelling. Han et al (2017) dicussed the deep 
learning (DL) has emerged as a prominent datadriven 
approach and it is used for predicting floods using factors 
like wind, rainfall, and temperature. Recent advances in 
DL models have improved the performance of different 
researchers to improve flood prediction precision.  

Piadeh et al (2022), Nevo et al (2022), and Das et al (2022) 
introduced machine learning (ML), these DL models 
possess the ability to derive patterns from extensive data 
sets. Identification and forecasting of hydrological 
disasters employing DL models are closely linked to the 
availability of sufficiently large historical datasets. These 
substantial historical data are crucial to present well-
informed strategic decisions for the future. Bentivoglio et 
al (2022), Zhong et al (2023), Luppichini et al (2022) and 
Ebtehaj et al (2022) discussed time series predictive 
approaches based on DL models used in hydrology have 
exhibited superior performance and cost-effectiveness. 
Some of the DL approaches such as convolutional neural 
network (CNN), recurrent neural network (RNN), and long-
short-term memory (LSTM) are utilized in the construction 
of hydrological models. The foremost contributions of the 
work are: 

• Present an automated, optimized deep learning-
based model for flood forecasting in time-series 
data. 

• To introduce an algorithm optimal deep belief 
network (ODBN) for flood forecasting by 
considering MSE as fitness. 

• Execute different measures to analyze the 
performance of the suggested flood forecasting 
model. 

The scope of optimized DL model is utilised in flood 
prediction to increase the promptness and efficiency of 
flood level predictions. The objective of the optimized DL 
model is to forecast floods using time series data while 
considering different parameters. The following sections 
are as follows: Section 2 provides an overview of existing 
flood prediction methods. Section 3 outlines the proposed 
flood prediction, while Section 4 presents the simulation 
results, and finally, Section 6 offers concluding remarks for 
the paper. 

2. Literature survey 

Hu et al. (2019) developed LSTM with ROM (reduced 
order model) to extract spatiotemporal features of the 
flood. Here, dimensionalityreducing approaches such as 
singular value decomposition (SVD) and proper 
orthogonal decomposition (POD) were performed. 
Prescriptive analysis was performed to estimate flood 
uncertainty on the Okushiri tsunami test data. Chen et al. 
(2022) employed ConvLSTM to capture spatio-temporal 
features inherent in hydrological information. Here, the 
designated area was partitioned into grids using data from 
the stations, longitude, latitude, and encompassing 
rainfall and discharge were amalgamated into tensors 
based on the station coordinates. The hydrological data 
was obtained in China and the peak discharge and arrival 
time values obtained were less than 20% and 30%. 

Panahi et al. (2021) presented CNN with an RNN model 
for spatial explicit identification and probability of flash 
flood mapping.  SWARA (stepwise weight assessment 
ratio analysis) was utilized to investigate spatial relations. 
A geospatial data set was considered and the precision 
and recall values achieved were 78.1% and 80.2%, 
respectively. Zou et al. (2023) developed a deep 
autoregressive recurrent model (DAR) model to forecast 
floods using time series data. Unlike the prevalent 
approach to generate deterministic flood predictions, it 
was essential to recognize that the hydrological properties 
of a basin constitute a complex and nonlinear system 
influenced by numerous terms. Therefore, addressing this 
complexity requires the adoption of probabilistic 
methodologies in modelling flood predictions. The 
accuracy of the peak flow prediction was approximately 
90%.  

Surendran R et al. (2023) presented deep neural network 
(DNN) to predict the occurrence of floods for rainfall and 
temperature. The DNN performance of the DNN was 
compared over different ML models and achieved better 
accuracy and recall values of 91.1% and 93%, respectively. 
The findings were based solely on monsoon parameters in 
the period prior to the occurrence of the flood. Löwe et al. 
(2021) presented the UFlood model to predict urban 
pluvial floods. This UFlood model was trained to extract 
topographic and hyetograph data. This existing approach 
demonstrated accurate water depth prediction for 
numerous rain factors and effectively discerned scenarios 
where flooding was not expected. However, the 
heightened prediction error observed highlighted the 
vulnerability in capturing the temporal dynamics of 
certain factors of the rain. 

Lei et al. (2021) developed two DL models CNN and RNN 
for urban flood forecasting in Seoul in the country of 
South Korea. Here, the CNN model achieved better AUC 
and RMSE values of 84% and 0.16; then, the CNN model 
achieved better AUC and RMSE values of 82% and 0.18; it 
was consistently found that the terrain ruggedness index 
emerged as the most crucial predictor, with slope and 
elevation following in significance. Hosseiny and Hossein 
et al. (2023) Santhanaraj R. K et al. (2023) developed 
UNetriver a model for identifying river automatically 
identifying rever geometry and predicting the depth of the 
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river. This existing work was provided with a combined 
image containing dual bands representing input as flood 
discharge and ground elevation, with the resulting output 
indicating the depth of the water. The model was 
analyzed in the Green River segment in Utah State. The 
UNetrivermodel achieved better training and validation 
losses of 0.0006 and 0.0012.  

Surendran R. et al. (2021) Previous studies have 
incorporated various DL models to improve flood 
prediction performance. However, these models do not 
consider the optimal feature extraction and flood 
prediction performance. Additionally, the DL models 
employed in these studies exhibited overfitting problems. 
Therefore, the proposed work addresses these 
shortcomings by utilizing ODBN for optimal feature 
extraction and prediction for improved weather 
forecasting. 

3. Proposed methodology 

The surge in rainfall poses multiple challenges in various 
states, especially in urban areas, where sewer systems 
often struggle to cope with a substantial influx of water in 
a short time frame. Concurrently, conventional flood 
prediction outcomes prove unreliable for intricate 
occurrences and struggle with large volumes of data. To 
address these limitations and improve the effectiveness of 
traditional flood prediction models, this work presents an 
optimal DL model for controlling floods. Figure 1 defines 
the framework of the proposed flood prediction model.  

 

Figure 1. Framework of the proposed flood prediction model 

3.1. Preprocessing 

Initially, in the pre-processing stages, the processes like 
missing data filling and normalization processes are 
carried out. The linear interpolation method is selected to 
fill in missing values due to the gradual difference 
observed in the time series. The expression to compute 
the linear interpolation is given as 
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where yl and tl are the range and information of missing 
value; yl−1 and yl+1 are the final and next known ranges; tl−1 
and tl+1 are the before and after the missing values.  

To address the issue of varying data ranges among 
different flood prediction variables, it is crucial to 
normalize the raw data before feeding them into the DL 
model. A widely adopted normalization method is max-
min normalization, which involves mapping all data in the 
range of 0 to 1. The normalization equation is expressed 
as 
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=

−
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ma mi

z z
z
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where Z and Z are the original and the normalized data; 
Zma and Zmi are the maximum and minimum values.  

3.2. Feature extraction 

The ODBN is structured with a series of stacked restricted 
Boltzmann machine (RBM) layers, serving as fundamental 
components of the network, as shown in Figure 2. Each 
RBM comprises two layers of neurons: a visible layer (VL) 
and a hidden layer (HL). Bi-directional connections exist 
between every node in the VL and HL.  

 

Figure 2. Structure of DBN 

The training process involves unsupervised learning for 
every RBM, referred to as the pre-training phase. During 
RBM training, the primary objective is to determine initial 
parameters, including weights and biases, by maximizing 
likelihood estimation. This optimization aims to 
reconstruct the training samples effectively, forming the 
foundation for subsequent stages in network operation. 
The structure of RBM is shown in Figure 3. The HL and VL 

neurons have the ranges of h{0,1}M and v{0, 1} N. The 
energy term of the integrated HL-VL is given as: 
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where λj and αk are the biases of HL and VL neurons; ujk is 
the weight among VL (vj) and HL (hj) neurons. The 
probability joint distribution (v, h) is given as: 
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The term v, hexp−En (v, h) is the normalized term for 
every configuration of VL and HL neurons. The conditional 
probability distribution of HL and VL neurons of the vj and 
hj are given as: 
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where  is the sigmoid function. The RBM is based on the 
parameters like weights u and the biases like λ and α. 
These parameters are estimated using the maximum log 
like-lihood (LL) and it is given as: 

 =log ( ) log ( )m
m

LL p V  (8) 

where θ = {λ, α, u} and m is the training instances. The 
gradient of the LL based on the parameters of the model 
is given as: 
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(11) 

where En [] a and En [] r are the actual and reconstructed 
data. 

 

Figure 3. The Structure of RBM 

The learning variables of the network are indicated by the 

 (momentum) and β (learning rate) and they are given by 
the following expressions: 

   = + −[ ] [ ]j j j a j rEn v En v  (12) 
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In the last phase, the ODBN undergoes layer-by-layer 
training, using the initial variables established during the 
pre-training stage. This training is accomplished through a 
backpropagation model, which enhances the efficiency of 
variable adjustment. The objective of this fine-tuning 
process is to reduce the error, taking into account the 
results obtained from an extra layer on the above ODBN 
after every RBM training. The error term is described as: 

( )
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= −
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2
l l

l
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where yl and hl are the actual and reconstructed values of 
the lth node.  

To achieve better performance from the DBN, this work 
presents an SCA for optimizing the hyperparameters of 
the approach. This optimizer aims at minimizing error 
terms to predict the test set with a high MSE value. Here, 
the hyper-parameters of the DBN like learning rate, size of 
batch, and epochs are optimized by the SCA. This 
optimizer influences the mathematical behaviour of the 
properties of sinh and cosh. The stages like Initialization, 
Exploration, Exploitation and Switch model are performed 
in the SCA. 

Initialization: Similarly to various other metaheuristic 
optimizers, the SCA begins by initializing a set of candidate 
solutions Z in a random manner. Candidate solutions, as 
expressed in Equation (16), represent the initial state, 
with the best solution achieved throughout iterations 
being considered almost optimal. 
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(16) 

where M is the total number of candidate and the term Z 
is given as: 

= − +( ,dim)( )Z r M ul ll ll  (17) 

where r, dim, ul and ll are the random number, 
dimension, upper and lower limits. 

Exploration: The optimization process divides exploration 
into two phases between iterations, and the presence of 
exploration in the later iterations is crucial to overcome 
local optima. The decision to switch between these 
phases is estimated by the value specified in Equation 
(18). 
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where f is the floor function, Max_iter and C are the 
maximum iteration and constant term. The position 
update for the initial phase is given as: 
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where 1
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t
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t

i jZ are the present and further 

iterations, Zb
(j) and W1 are the best position and weight 

coefficient, r1 and r2 are the random numbers. The term 
W1 is computed by: 
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where a1 is the decreasing term, r3 and r4 are the random 
numbers. The term a1 is computed by: 
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where n is the sensitive term.  

During the next stage of exploration, the search agent 
exhibits minimal influence from the better solution 
attained, leading them to explore the next position 
nondirectionality for the present position. The calculation 
for updating the position is determined by the following: 
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where α is the small number and W2 is the weight 
coefficient. The term W2 is computed by: 

= 2 6 2W r a  (23) 

where a2 is the decreasing term and r6 is the random 
number. The term a2 is computed by: 
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Exploitation: To maximize search space utilization, the 
exploitation process is split into two stages and occurs 
during all iterations. In the initial exploitation stage, 
emphasis is placed on exploiting the proximate space of Z, 
and the exploitation is formulated as: 

+
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where r7 and r8 are the random numbers and W3 is the 
weight coefficient and it is given as: 

=   + 3 9 1 (cosh 10 sinh 10)W r a r v r  (26) 

where r9 and r10 are the random numbers. During the 
next stage of exploitation, the candidate solutions engage 
in a thorough exploitation around the current optimized 

solution. The level of exploitation of the better solution 
attained intensifies with each subsequent iteration.  
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Figure 4. SCA flow diagram 

Bounded Search Model: To satisfy the complete search 
space, see Figure 4. SCA incorporates a model similar to 
the hunting of animals during the further phase and it is 
called as known as the Bounded searching model. This 
involves identifying the searching space by overall 
exploration of the searching region in the initial iteration. 
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where BSl+1 is the total iterations that begin the present 
and further bounded searching, β is the sensitive term.  If 
SCA utilizes the bounded searching model for all time, 
then the lower lll and upper ull limits are computed as: 
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where Zs
(j) is the sub-optimized term.  

Switch model: In the SCA framework, a switch model 
incorporates sinh and cosh is introduced to alternate 
between exploration and exploitation. The primary 
emphasis of the switch model is on exploration during 
subsequent iterations to navigate the entire search space 
and overcome local optima. The expression to compute 
the switch model is given as: 
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(31) 

where r13 is the random number, u and v is the balancing 
term Figure 2 shows the SCA flow chart.  

4. Results analysis 
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In this section, we delineate the experimental setup 
conducted on the Python platform, along with the 
description of the datasets exploited. Subsequently, a 
comparative analysis is carried out to show the efficacy of 
the suggested ODBN network against several existing 
models. Table 1 delineates the hyperparameters of the 
suggested ODBN network. 

Table 1. Hyper-parameters 

Hyper-parameters Values 

Learning rate 0.0001 

Epochs 100 

Number of HL 18 

Size of batch 32, 64 

Iterations 100 

Population size 50 

4.1 Dataset detail 

The dataset considered is Light Detection and Ranging 
(LiDAR), which has parameters like aspect, altitude, 
Topographic Roughness Index (TRI), slope, Sediment 
Transport Index (STI), curvature, Stream Power Index (SPI) 
and Topographic Wetness Index (TWI). There are 144 
flood events from 1920 to 2023.  

4.2 Performance measures 

The assessment metric for regression approaches is used 
to gauge the effectiveness of the model in predicting the 
output values based on the given input data. The metrics 
such as mean absolute error (MAE), mean absolute 
percentage error (MAPE), mean square error (MSE), root 
MSE (RMSE) and R-squared (R2) are measured to analyze 
the performance of the flood. 

MAE: This metric acts as an alternative measure to 
analyze the differentiation among Zl and Ẑl. Its calculation 
entails finding the absolute value of the differentiation 
among zl and Ẑl and subsequently means the absolute 
differentiation. 



= −
1 p

l l
l

MAE z z
p  

(32) 

MAPE: This metric, expressed as a percentage, 
characterizes the model's performance. To calculate it, 
the absolute value of the differentiation among Zl and Ẑl, 
divided by Zl, and the resulting percentages are then 
averaged. 
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MSE: This measure is the differentiation of predicted 
Zland actual values Ẑl and the squared value of MSE is the 
RMSE. 
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R2: It serves as an indicator of how well a model is set up 
with the data set. To calculate it, the sum of the squares 
of the differentiation among Zl and Ẑl. is determined, and 
this total is then divided by the sum of the squares of 

differentiation among the mean of Zl and lz
→

. 
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Cohen’s kappa index: It is the proportion of observed 
value Ao over predicted value Ap and it is defined as: 

−
=

−1

o p

p

A A
kappa

A  
(37) 

4.3 Comparative analysis 

In this section, an examination and comparison of the 
evaluation metrics for the proposed ODBN approach are 
conducted in comparison to several DL approaches like 
RNN, LSTM and DBN. Evaluation represents a crucial stage 
in model evaluation, providing valuable insights to identify 
the optimal approach based on performance results.  

 

Figure 4. Comparison of (a) MAE, (b) MAPE, (c) MSE, (d) 
RMSE and (e) R2 

Figure 4 and Table 3 show the comparison of metrics such 
as MAE, MAPE, MSE, RMSE and R2. It is noted that MAE 
values achieved by RNN, LSTM, DBN and the proposed 
ODBN are 1.62, 1.41, 1.10 and 0.732. Then, the MAPE 
values achieved by the RNN, LSTM, DBN, and the 
proposed ODBN are 9.27, 7.05, 6.73 and 5.047. Similarly, 
for the better flood forecasting model, the MSE and RMSE 
values must be very low, and the proposed ODBN 
achieved the better values of 0.752 (MSE) and 0.948 
(RMSE). The value of the R2 values must be very high, and 
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it is noted that the proposed ODBN achieved a better R2 value of 0.985. 

 

Table 2. Comparison of the different approaches 

Methods RNN LSTM DBN Proposed (ODBN) 

MAE 1.62 1.41 1.10 0.732 

MAPE 9.27 7.05 6.73 5.047 

MSE 1.11 1.11 1.04 0.752 

RMSE 1.05 1.03 1.05 0.948 

R2 0.80 0.84 0.87 0.985 

 

 

Figure 4. Accuracy and loss by varying the size of batch (a) 
32 and (b) 64 

Figure 4 depicts the accuracy and loss by varying the sizes 
of batches of 32 and 64 respectively. It is observed that 
the accuracies increase after the 60th epoch of training. 
Similarly, it is observed that losses decrease after the 60th 
epoch of training. Graphs are generated to visualize the 
train and validation values, revealing that the model does 
not exhibit under- or over-fitting. The model 
demonstrates superior generalization, which confirms the 
efficacy of the suggested ODBN in the flood forecasting 
process. 

 

Figure 5. Water flow prediction of the proposed ODBN 

Figure 5 shows the water flow prediction of the suggested 
ODBN model. The analysis is carried out between the 
years 1920 and 2023. When the performance of the flood 
is forecasted, the predicted flood and the actual flood are 

compared. In particular, the predicted flow generated by 
the suggested ODBN corresponds correctly to the actual 
flood values. 

 

Figure 6. PC of the proposed ODBN 

PC (Pearson correlation) is visualized in a square table, 
and this matrix provides the calculated PC for every set of 
columns within a set of parameters. Figure 6 shows the 
Pearson coefficient of the proposed ODBN considering 
factors such as aspect, altitude, TRI, STI, curvature, slope, 
SPI and TWI. It is observed that the Pearson coefficient 
value is almost 1 for all the factors.  

Table 4. Analysis of Cohen’s Kappa Index 

Factors Cohen’s kappa index 

Not considering aspect 89 

Not considering altitude 71 

Not considering TRI 77 

Not considering STI 89 

Not considering curvature 75 

Not considering slope 74 

Not considering SPI 83 

Not considering TWI 83 

Table 4 presents the analysis of Cohen’s kappa index and 
the results reveal that the highest precision is observed 
when altitude and slope are not considered. This suggests 
that these factors have the greatest influence on flood 
occurrence. 

4. Conclusions 

This work presented an ODBN model for flood foresting 
considering different parameters. Initially, the data set 
was preprocessed by linear interpolation. Then the ODBN 
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DL model was presented for automated feature extraction 
and flood forecasting. Here, the hyper-parameters of the 
standard DBN were optimized by the SCA. The 
experimental analysis was carried out on the real-time 
dataset and achieved better MAE and R2 values of 0.732 
and 0.985 respectively. The findings suggest that the 
prediction performance of the ODBN model was 
improved. In addition, this ODBN model gives precedence 
to essential data, providing more precise flood 
predictions. They adeptly capture intricate features, 
positioning them as potential leaders in advancing flood 
forecasting systems. In future, the proposed work need to 
test in different cities with different paramenter.  
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