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GRAPHICAL ABSTRACT 

 

ABSTRACT 

Water quality (WQ) is hugely important for animals, humans, plants, industries, and the 

environment. In the past few years, the WQ has been compressed by pollution and 



 

 

contamination. Usually, WQ is assessed utilizing costly laboratory and arithmetical processes, 

making real observation ineffective. Whereas, the poor WQ wants a more real and cost-

effective resolution. Water pollution is a critical problem, so, it is vital to generate a method 

that estimates WQ in order to manage water pollution and notify users on the occasion of the 

recognition of poor water superiority. For effectual WQ management, it is vital to precisely 

estimate the WQ type. We use the advantage of machine learning (ML) models to build a model 

proficient in forecasting the WQ index and class. Therefore, this paper presents an automated 

Water Quality Index Prediction and Classification using Hyperparameter Tuned Deep Learning 

(WQIPC-HTDL) Approach. The purpose of the WQIPC-HTDL technique is to estimate WQI 

and classify the WQ into multiple levels. In the WQIPC-HTDL technique, the linear scaling 

normalization (LSN) approach is used. Besides, the long short-term memory (LSTM) 

technique is employed for the prediction and classification process. To enhance the efficacy of 

the LSTM model, the grasshopper optimizer algorithm (GOA) can be used. To point out the 

enhanced performance of the WQIPC-HTDL technique, a detailed simulation analysis was 

made. The obtained values inferred the rule of the WQIPC-HTDL technique when equated to 

other models.  

Keywords: Water Quality Index; Deep Learning; Grasshopper Optimization Algorithm; 

Linear Scaling Normalization; Machine Learning   

1. Introduction 

Water is a major source of life, essential for helping the life of most present creatures and 

human beings. To continue their lives, living organisms require water with sufficient quality 

[1]. There are specific restrictions on pollution that aquatic types are tolerated. These 

restrictions affect the presence of such living beings and threaten their survival. The majority 

of the environment's water bodies like streams, lakes, and rivers have particular quality values 

that show their quality [2]. Additionally, water conditions for other utilization retain their 

standards. For example, irrigation water should be neither too salt water nor comprise 

poisonous materials, which will be transported to soil or plants and therefore destroy the 



 

 

environment [3]. Water quality (WQ) for industries also needs various aspects dependent upon 

the particular industrial methods. A few of the lower-cost resources of pure water namely 

surface and groundwater are real water resources. However, these sources could be polluted by 

manufacturing activities or humans and alternative natural methods [4]. 

Accordingly, fast industrial expansion will influence the degradation of WQ at a disturbing rate 

[5]. Additionally, surroundings with the lack of public awareness, and lesser hygienic qualities, 

mainly affect the quality of drinking water. Indeed, the significance of contaminated drinking 

water will be more risky and seriously affect the environment, infrastructure, and health 

[6].  Consequently, it is very significant to suggest a novel method for analysing and predicting 

the WQ. This can be suggested to analyze the temporal dimensions to predict the WQ patterns 

to ensure the observing of the seasonal variant of the WQ [7].  Nevertheless, WQ could be 

analyzed employing conventional methods like gathering manually the water samples followed 

by examining them in a laboratory [8]. Then, it is considered expensive and time-consuming. 

Sensors are also categorized as alternative traditional methods. But, with the help of sensors 

can be deliberated expensive to test each WQ sample and frequently indicate lower accuracy 

[9]. One more solution for monitoring WQ can be predictable modeling using machine 

learning (ML) and deep learning (DL) models. By comparison with other traditional 

techniques, it has numerous benefits: fewer costs, effective with respect to the time needed for 

travel and assortment, allows prediction on diverse stages of a method, and forecasts required 

values while retrieving a location will be difficult [10].  

This research develops an automated Water Quality Index Prediction and Classification using 

the Hyperparameter Tuned Deep Learning (WQIPC-HTDL) Approach. The purpose of the 

WQIPC-HTDL technique is to estimate WQI and classify the WQ into multiple levels. In the 

WQIPC-HTDL technique, the linear scaling normalization (LSN) approach is used. Besides, 

the long short-term memory (LSTM) method is employed for the prediction and classification 

process. To enhance the efficacy of the LSTM approach, the grasshopper optimizer algorithm 

(GOA) can be used. To point out the enhanced performance of the WQIPC-HTDL technique, 

a detailed simulation analysis was made. The obtained values inferred the supremacy of the 

WQIPC-HTDL technique compared to other models. 

2. Literature survey 

Arepalli and Naik [11] developed an improved Dilated Spatial-temporal CNN (DSTCNN) 

method. The WQ data taken by employing the IoT sensors are considered as per the WQ index 



 

 

values for exploration. The labeled data was efficiently categorized into 2 types by the 

developed DSTCNN method. Additionally, the developed technique utilizes a hybrid 

activation function that synchronously integrates ReLU and sigmoid function. In [12], an 

artificial ecosystem optimization with a DL-assisted WQ Prediction and Classification 

(AEODL-WQPC) system was introduced. In a primary processing step, the data normalization 

method was employed. Along with this, an optimum stacked BiGRU (OS-BiGRU) algorithm 

was employed for predicting, and the Adam optimizer was employed for tuning. AEO with an 

improved ENN (AEO-IENNs) system was implemented in the classification. Talukdar et al. 

[13] developed a stacking ensemble method dependent upon the DL method by incorporating 

3 techniques namely Gradient Neural Network (GNN), Generalized Linear Model (GLM), and 

Boosting Machine (GBM). The inclusion of a DNN method that could be employed for the 

primary time in water pollution exploration for executing the uncertainty and sensitivity 

analysis in forecasting WQI, included the novel dimensions for the workflow. 

Shin et al. [14] introduced an AI method by forecasting dissolved organic carbon (DOC) 

elimination and decontamination byproduct formations, and relatively examined present 

experimental systems and predicted outcomes for analyzing the utility of the AI method. This 

article improved experimental methods for forecasting DOC removal and disinfection 

byproduct formations. Six AI methods have been implemented and examined employing real-

time data. In [15], a DL–based BiLSTM (DLBL-WQA) technique was presented. The 

developed method exhibits a new model which comprises missing values attribution in the 

major phase, the secondary phase produces the feature maps from the specified input data, the 

last phase comprises a BiLSTM model for increasing the learning method. 

Moeinzadeh et al. [16] projected a DL-based method for reconstructing these seven factors 

from four parameters for estimating the WQI. The technique also enables the analysis of sample 

qualities by computing the WQI through 7 synthesized factors with verified possible hydrogen 

and complete dissolved solids values. Correct evaluation of these parameters will be crucial to 

estimating the correctness of water for diverse functions. In [17], a DNN method was 

developed for predicting WQI. Statistical modeling and unsupervised ML approaches have 

been employed. This modeling comprises the PCA or Factor Analysis (FA) that will be 

employed for interpreting the seasonal variations and sources of springs. Another modeling 

method was employed by using Hierarchical Cluster Analysis (HCA). 

3. The Proposed Method 



 

 

In this study, we have presented an automated WQIPC-HTDL model. The main intention of 

the WQIPC-HTDL approach is to estimate WQI and classify the WQ into multiple levels. It 

contains three different procedures namely LSN-based preprocessing, LSTM-based 

classification, and GOA-based parameter tuning process. Figure. 1 demonstrates the workflow 

of the WQIPC-HTDL method. 

 

Figure. 1. Workflow of WQIPC-HTDL methodology 

3.1. Preprocessing  

Initially, the WQIPC-HTDL technique undergoes the LSN approach is used. LSN is a data pre-

processing model generally employed in numerous areas, containing image processing and ML 

[18]. The main aim of LSN is to normalize the arithmetical range of features or pixel values 

within a database. This technique involves linearly altering the original values so that they 

decrease within a definite range, normally between 0 and 1. By using a linear scaling alteration, 



 

 

LSN certifies that all data points are evenly adjusted, averting the dominance of definite 

features with higher arithmetical scales and enabling the convergence of algorithms during 

model training. 

3.2. WQI Prediction using LSTM Model 

In this paper, the LSTM technique is applied for the prediction and identification process. 

Though the RNN can develop sequential data, it is prone to gradient explosion or disappearance 

problems [19]. To solve these problems, the LSTM model is introduced. In comparison to 

RNN, LSTM comprises three logic gates (forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡) along 

with memory unit 𝐶𝑡. It defines the output data at the present moment via the output data at the 

prior moment and the input data at the present moment and utilizes output data at the existing 

moment as input data. Using three logic gates and a memory unit, LSTM decides what amount 

of data and the input data at present to be kept, which can better abandon and transmit the data. 

However, the LSTM processes only the data in one direction. Thus, there is a need for data 

processing in the reverse and forward directions. Next, the Bi-LSTM is introduced so that the 

data in reverse and forward directions can be simultaneously processed. It implies the output 

of the Bi-LSTM network has context data. Where  𝑥𝑡 and ℎ𝑡  are the input and hidden vectors 

at time 𝑡, correspondingly, 𝑈 and 𝑊 are the weight matrices, and 𝑏 indicates the term bias. 

The forget gate expresses what amount of data to be forgotten by outputting the value within 

[0,1] as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓).                                       (1) 

The input gate decides what data to retain by evaluating 𝑖𝑡 and 𝐶𝑡 and combine them based on 

the subsequent: 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑋𝑡 + 𝑏𝑖)                                            (2) 

𝐶𝑡 = tanh (𝑊𝑐ℎ𝑡−1 + 𝑈𝑐𝑥𝑡 + 𝑏𝑐)                                        (3) 

𝐴𝑡 = 𝑓𝑡⊙𝐴𝑡−1 + 𝑖𝑡⊙𝐶𝑡.                                                (4) 

The output gate decides which part of the data to be outputted according to the equations: 

𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑋𝑡 + 𝑏𝑜)                                            (5) 

ℎ𝑡 = 𝑜𝑡⊙ tanh (𝐴𝑡).                                                        (6) 



 

 

Bi-LSTM fuses the reverse and forward hidden states as a last hidden representation at 𝑡 

moment. Thus, contextual information can be better learned, and it contributes to the 

information flow in both directions. 

3.3. Hyperparameter Tuning  

Finally, the GOA can be used to enhance the efficacy of the LSTM model. In the wild, 

grasshoppers exhibit the capability to find food sources and combine in clusters for 

reproduction and movement [20]. A distinguishing representative of GOA is its calculation of 

velocities and positions for virtual grasshoppers, each targeted at enhancing the main function 

value of the specified issue. The formula to upgrade the grasshoppers’s location can be given 

below: 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑗                                                          (7) 

𝑆𝑖 refers to the interaction of social which indicates the relationship among the 𝑖𝑡ℎ 

grasshopper; 𝑋𝑖 represents the position of the 𝑖𝑡ℎ grasshopper; 𝐺𝑖 describes the gravitational 

attraction applied under 𝑖𝑡ℎ grasshopper; 𝐴𝑖 refers to the effect of air and wind circulation in 

the 𝑖𝑡ℎ grasshopper. It should be noted that combines stochastic behavior, the mathematical 

formula could be expressed below: 

𝑋𝑖 = 𝑟1𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖                                                 (8) 

𝑟1, 𝑟2 and 𝑟3 denotes the random amount within the interval of [0,1]. 

The S element in Eq. (7) can be calculated through the following equation: 

𝑆𝑖 =∑𝑠

𝑁

𝑗=1
𝑗≠1

(𝑑𝑖𝑗)𝑑𝑖𝑗̂                                                         (9) 

𝑑𝑖𝑗 represents the distance among the 𝑖𝑡ℎ and 𝑗𝑡ℎ grasshopper, computed as below: 𝑑𝑖𝑗̂ =

|𝑥𝑗−𝑥𝑖|; 𝑠 signifies the power of social interface; 𝑑𝑖𝑗̂ =
𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
 shows the unit vector from the 𝑖𝑡ℎ 

to 𝑗𝑡ℎ grasshopper 

The magnitude of social interactive powers could be calculated by the function 𝑠 that has been 

calculated based on the next equation: 



 

 

𝑠(𝑟) = 𝑓𝑒
−𝑟
𝑙 − 𝑒−𝑟                                               (10) 

𝑟 refers to the distance value, 𝑙 denotes the amount at which the power of social interaction 

decreases with distance, and 𝑓 describes the strength of attraction of social interaction that 

affects the level of mutual attraction and interaction amongst grasshoppers. 

The G element in Eq. (7) can be estimated employing the following equation: 

𝐺𝑖 = −𝑔𝑒𝑔̂                                                             (11) 

Here, 𝑒𝑔̂ is the unit vector directed to the Earth's centre and 𝑔 denotes the gravitational constant. 

The A module in Eq. (7) is estimated by employing the subsequent formulation: 

𝐴𝑖 = 𝑢𝑒𝑤̂                                                               (12) 

Whereas,  𝑢 defines the constant drift; 𝑒𝑤̂ stands for unit vector combined with the path of the 

wind. 

With the help of replacing, 𝐺, and A into the equation given in Eq. (7), the mathematical 

expression can be described in Eq. (13): 

𝑋𝑖 =∑𝑠

𝑁

𝑗=1
𝑗≠1

(|𝑥𝑗−𝑥𝑖|)
𝑥𝑗−𝑋𝑖
𝑑𝑖𝑗

− 𝑔𝑒𝑔̂ + 𝑢𝑒𝑤̂                                    (13) 

Where,  𝑒𝑔̂ is the unit vector directed to the Earth center, 𝑑𝑖𝑗 denotes the distance amongst the 

𝑖𝑡ℎ and 𝑗𝑡ℎ grasshopper, 𝑔 refers to the gravitational constant; 𝑠 is the strength of social 

interaction forces; 𝑢 refers the constant drift; 𝑒𝑤̂ represents the unit vector united with the 

wind’s direction. 

Within the context of the optimizer method, Eq. (13) has been deliberately prevented because 

of its trend to constrain the method's capability to systematically discover and exploit the 

adjacent areas within the solution space. This particular nymph grasshopper system is 

complexly created to overcome a grasshopper swarm function in an infinite space. The 

significant mathematical model could not be directly implemented for solving optimization 

glitches, as the grasshoppers rapidly unite to their comfort regions and the group can not be 

changed to a singular point. An adapted version of Eq. (13) can be utilized to successfully 

overcome optimization challenges: 



 

 

𝑋𝑖
𝑑 = 𝑐

(

 
 
∑𝑐

𝑁

𝑗=1
𝑗≠1

𝑢𝑏𝑑 − 𝑙𝑏𝑑
2

𝑠(|𝑥𝑗
𝑑 − 𝑥𝑖

𝑑|)
𝑥𝑗 − 𝑥𝑖

𝑑𝑖𝑗

)

 
 
+ 𝑇𝑑̂                      (14) 

𝑐 indicates the coefficient value, 𝑢𝑏𝑑 represents the upper limit, 𝑇𝑑̂  is the desired value and 

𝑙𝑏𝑑 describes the lower limit. 

To calculate the following grasshopper position, data including the target’s location, the 

existing grasshopper’s places, and the location of each grasshopper will be employed. 

According to Eq. (14), the following place of a separate grasshopper could be resolved by an 

integration of its existing place, the global finest outcome, and the position information of other 

search agents. It denotes that the GOA needs an effective contribution of each search agent in 

modeling the path of all grasshoppers. Particularly, the initial measure of Eq. (14) considers 

the comparative positioning of the existing grasshopper with compared to complements within 

the field. On the other hand, the following segment bounds the level of movement near the 

target position. The opposition emphasizes the technique's search of both wide-ranging 

exploration and considered exploitation with the complete swarm cantered on the target. 

To simplify, 𝑐1 denotes the restriction level executed on grasshopper actions near the objective, 

attaining a stable equilibrium among exploitation and exploration in the group. Conversely, 𝑐2 

donates to the reduction of repulsion, comfort zones, and attraction amongst grasshoppers, 

efficiently decreasing the spatial range. Accordingly, 𝑐2 directs the grasshoppers to navigate 

the search space to the optimum outcome. 

Important is the adaptive nature of 𝑐1 that gradually diminishes the impact of repulsion and 

attraction forces between grasshoppers in ratio to the iteration count. Simultaneously 𝑐2 

progressively decreases the width of the comfort region with improving rounds. The tactical 

interaction arises, where 𝑐1 improves exploitation in the next optimization phases, and 𝑐2 

progressively contracts the zones for improving proximity to the optimum solution. Both 𝑐1 

and 𝑐2 are combined as only one parameter that can be considered to alteration as given below: 

𝑐 = 𝑐max − 𝑙
𝑐max − 𝑐min

𝐿
                                              (15) 



 

 

𝐿 states the total number of iterations, 𝑐min denotes the lower boundary of the parameter 

𝑐,  𝑐max describes the upper limit 𝑐; 𝑙 represents the existing iteration. Figure. 2 demonstrates 

the steps involved in GOA. 

 

Figure. 2. Steps involved in GOA  

The fitness function (FF) is the significant factor manipulating the GOA performance. The 

hyperparameter range method contains the solution encoding technique for evaluating the 

efficiency of the candidate solution. In this work, the GOA reflects accuracy as the main 

standard to propose the FF, which can be expressed below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                               (16) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                       (17) 

From the above formulae, 𝑇𝑃 and 𝐹𝑃 denotes the true positive and false positive values. 

4. Result Analysis 

The WQI detection outcomes of the WQIPC-HTDL system can be assessed on the WQ dataset 

from Kaggle [21]. It includes 1600 samples with two classes as defined in Table 1. 

Table 1. Details on database 

Classes No. of Samples 

WQI-Not Safe 800 

WQI-Safe  800 



 

 

Total Samples 1600 

 

 

Figure. 3. Confusion matrices of (a-b) 80:20 of TRAPH/TESPH and (c-d) 70:30 of 

TRAPH/TESPH 

Figure. 3 establishes the confusion matrices formed by the WQIPC-HTDL approach below 

80:20 and 70:30 of TRAPH/TESPH. The outcomes specify that the WQIPC-HTDL has 

effective detection of the WQI-Not Safe and WQI-Safe samples under all classes. 



 

 

The WQI recognition of the WQIPC-HTDL technique is demonstrated under 80% of TRAPH 

and 20% of TESPH in Table 2 and Figure. 4. The results demonstrate the proficient capability 

of the WQIPC-HTDL system in the detection of the WQI.   

Table 2. WQI recognition of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 MCC 

TRAPH (80%) 

WQI-Not Safe 84.48 97.47 84.48 90.51 83.07 

WQI-Safe 97.82 86.38 97.82 91.75 83.07 

Average 91.15 91.93 91.15 91.13 83.07 

TESPH (20%) 

WQI-Not Safe 89.51 94.77 89.51 92.06 84.52 

WQI-Safe 94.94 89.82 94.94 92.31 84.52 

Average 92.22 92.30 92.22 92.19 84.52 



 

 

 

Figure. 4. Average of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 

With 80% of TRAPH, the WQIPC-HTDL technique gains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 

𝐹1𝑠𝑐𝑜𝑟𝑒, and MCC of 91.15%, 91.93%, 91.15%, 91.13%, and 83.07%, respectively. 

Additionally, with 20% of TESPH, the WQIPC-HTDL model gains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒, and MCC of 92.22%, 92.30%, 92.22%, 92.19%, and 84.52%, correspondingly.  

The WQI detection of the WQIPC-HTDL method is verified below 70% of TRAPH and 30% 

of TESPH in Table 3 and Figure. 5. The results determine the proficient capability of the 

WQIPC-HTDL model on the recognition of the WQI.  With 70% of TRAPH, the WQIPC-

HTDL method acquires average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒, and MCC of 90.14%, 90.16%, 

90.14%, 90.19%, and 80.30%, correspondingly. Moreover, with 30% of TESPH, the WQIPC-

HTDL system gains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒, and MCC of 91.55%, 91.75%, 

91.55%, 91.62%, and 83.30%, respectively.  

Table 3. WQI recognition of WQIPC-HTDL approach under 70:30 of TRAPH/TESPH 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 MCC 



 

 

TRAPH (70%) 

WQI-Not Safe 87.78 92.46 87.78 90.06 80.30 

WQI-Safe 92.50 87.85 92.50 90.12 80.30 

Average 90.14 90.16 90.14 90.09 80.30 

TESPH (30%) 

WQI-Not Safe 89.43 92.69 89.43 91.03 83.30 

WQI-Safe 93.68 90.80 93.68 92.22 83.30 

Average 91.55 91.75 91.55 91.62 83.30 

 

The performance of the WQIPC-HTDL technique below 80:20 of TRAPH/TESPH is 

graphically offered in Figure. 6 in the method of training accuracy (TRAA) and validation 

accuracy (VALA) curves. The figure displays a beneficial analysis into the behavior of the 

WQIPC-HTDL technique over numerous epoch counts, representing its learning procedure and 

generalization abilities. Remarkably, the figure infers a stable development in the TRAA and 

VALA with a development in epochs. It safeguards the adaptive nature of the WQIPC-HTDL 

system in the pattern recognition procedure on both TRA and TES data. The rising trend in 

VALA sketches the ability of the WQIPC-HTDL technique to adjust to the TRA data and also 

excels in providing precise classification of hidden data, indicating strong generalization skills. 



 

 

 

Figure. 5. Average of WQIPC-HTDL approach under 70:30 of TRAPH/TESPH 

 

Figure. 6. 𝐴𝑐𝑐𝑢𝑦 curve of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 



 

 

Figure. 7 exhibits a comprehensive representation of the training loss (TRLA) and validation 

loss (VALL) results of the WQIPC-HTDL approach below 80:20 of TRAPH/TESPH over 

different epochs. The progressive reduction in TRLA highlights the WQIPC-HTDL system 

enhancing the weights and minimalizing the classification error on the TRA and TES data. The 

figure specifies a clear understanding of the WQIPC-HTDL model's association with the TRA 

data, emphasizing its ability to take patterns within both datasets. Remarkably, the WQIPC-

HTDL method repeatedly increases its parameters in diminishing the alterations among the 

forecast and actual TRA class labels. 

 

Figure. 7. Loss curve of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 

Inspecting the PR curve, as exposed in Figure. 8, the results certified that the WQIPC-HTDL 

method below 80:20 of TRAPH/TESPH gradually achieves enhanced PR values under every 

class. It confirms the improved skills of the WQIPC-HTDL approach in the classification of 

dissimilar classes, demonstrating proficiency in the recognition of classes.  

Besides, in Figure. 9, ROC curves formed by the WQIPC-HTDL system under 80:20 of 

TRAPH/TESPH outperformed the classification of different labels. It delivers a comprehensive 

understanding of the tradeoff among TPR and FRP over dissimilar detection threshold values 

and epoch counts. The figure emphasized the higher classifier outcomes of the WQIPC-HTDL 

technique under all classes, outlining the efficacy in addressing many classification problems. 



 

 

 

Figure. 8. PR curve of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 

 

Figure. 9. ROC curve of WQIPC-HTDL approach under 80:20 of TRAPH/TESPH 

Table 4 and Figure. 10 report a detailed comparison study of the WQIPC-HTDL technique 

[22]. It is noticed that the KNN, DT, RF, and SVM models gain ineffectual results. Next to 



 

 

that, the MLP and LR models have reached considerable performance. But the WQIPC-HTDL 

technique demonstrates its superior performance with increased 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 92.22%, 92.30%, 92.22%, and 92.19%, respectively. Thus, the WQIPC-HTDL 

technique can be applied to the automated WQI detection process. 

Table 4. Comparative analysis of WQIPC-HTDL technique with other approaches  

Algorithm 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 

WQIPC-HTDL 92.22 92.30 92.22 92.19 

MLP Algorithm 85.09 56.60 56.42 56.51 

Logistic Regression 84.03 55.21 55.96 55.50 

KNN Model 72.72 47.36 47.84 47.52 

Decision Tree 79.51 53.00 52.52 52.69 

Random Forest 75.88 50.65 50.13 50.29 

SVM Model 79.80 51.88 53.28 52.30 

 

Figure. 10. Comparative analysis of WQIPC-HTDL technique with other approaches 



 

 

5. Conclusion 

In this research, we have presented an automated WQIPC-HTDL model. The main intention 

of the WQIPC-HTDL method is to estimate WQI and classify the WQ into multiple levels. It 

contains three different procedures namely LSN-based preprocessing, LSTM-based 

classification, and GOA-based parameter tuning process. Initially, the WQIPC-HTDL 

technique undergoes the LSN approach is used. Besides, an LSTM model is applied for the 

prediction and classification process. To enhance the efficacy of the LSTM model, the GOA 

can be used. To point out the enhanced performance of the WQIPC-HTDL technique, a detailed 

simulation analysis was made. The obtained values inferred the supremacy of the WQIPC-

HTDL technique compared to other models. 
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