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Abstract 

Potable water is essential in various aspects of daily life. 
Converting brackish water to drinkable water using 
traditional methods is costly and has environmental 
impacts. Solar energy is preferred over fossil fuels and 
other energy sources due to its cost and environmental 
benefits. Solar stills are increasingly popular due to the 
growing need for drinkable water, but their performance 
requires improvement. The study examines the pyramid 
solar still (PSS) productivity using different operating 
parameters, such as solar intensity (350-950 W m-2), water 
inlet temperature (30-50°C), water depth (4-8 cm), and 
insulation thickness (0.05-0.15m). The response surface 
technique (RSM) was used to examine the performance of 
the still under different operating conditions. The RSM 
approach optimized the process for maximum output and 
reduced testing time and effort. To verify the optimum 
response derived from RSM, the artificial neural networks 
(ANN) model was implemented. The comparative studies 
of the ANN and RSM models demonstrates a strong 
correlation with the outcomes achieved in maximizing the 
productivity of PSS. It found that the ideal values for solar 
intensity, water intake temperature, water depth, and 
insulation thickness are 950 W m-2, 50°C, 4 cm, and 0.15 
m, respectively. These parameters contribute to the 
production of 2.585 kg/m2 of distillate. 

Keywords: Response surface methodology, artificial 
neural network, productivity, insulation, pyramid solar 
still, analysis of variance 

1. Introduction 

Our needs have been met since the beginning of time and 
will continue to be met. Water is an important life-saving 
natural resource. Merely 1% of the total water supply 
comprises freshwater, which is acceptable for household 
use. Due to the exponential increase in population and 
industrialization, the existing freshwater supply is 
transitioning from a renewable source to a limited one, 
posing a significant threat. In order to prevent this 
situation and meet the needs and desires of the 
population, it is necessary to transform the abundant salt 
water into potable water via the process of desalination 
utilizing solar stills (Hammoodi et al. 2023a; 
yuvaperiyasamy et al. 2023b). In research today, the 
management and recreation of freshwater resources are 
emphasized. One significant achievement that provides us 
with confidence to fulfill the increasing need is the ability 
to produce fresh water via means other than the natural 
hydrological cycle. Numerous studies on transforming 
saltwater into freshwater are being conducted globally 
(Singh et al. 2023). Most research studies indicate that 
desalination technology based on solar energy is the most 
efficient method for producing cheap freshwater 
(Abdullah et al. 2023a). Hameed et al (2023) created the 
pyramid solar still and single slope solar still (SSSS) to 
compare thermal performance, productivity, and 
efficiency. In remote areas with limited access to 
electricity and other resources, the solar desalination 
process is the most effective means of producing 
freshwater from seawater. The yearly average daily 
productivity was determined using Dunkle relations, 
which was found to be 2.7 L m-2 per day. Annual average 
daily efficiencies for the PSS and SSSS are 30 and 33 
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percent, respectively. Arunkumar et al. (2012) created a 
PSS that was connected to the basin's parallel multi-shelf 
configuration. Compared to corrugated or horizontal 
beds, the experimental setup generated 90–95% 
freshwater. Another solar still designed by Taamneh and 
Al-Abed Allah (2020) has a concave wick evaporation 
surface and a collector fashioned like a tetrahedral 
pyramid. It produced 4.1 L of fresh water per day per m2, 
which is 200 % more than what a conventional solar still 
could with an average daily efficiency of 30 %. For a 
comparison investigation, Peng and Sharshir (2023) built a 
passive and active pyramid solar still (PPSS and APSS).  The 
only difference between the two stills is a little fan at the 
side wall of the APSS that runs at a very low power. The 
research found that at an 8 cm water level, the APSS 
produced 3.14 and 1.89 L m-2 in the summer and winter, 
respectively. Abdullah et al. (2023b) examined the PSS 
mounted at the collector surface with and without a fan. 
Because of the air circulation within the solar still, the PSS 
with a fan produced a yield that was 25% greater than the 
PSS without a fan.  Muthukumar et al. (2020) examined 
the PSS alone, PSS in conjunction with the concentrated 
coupled collector (CPC), and the hemi-spherical solar still 
(HSS) (HSS).  PSS generated 3300, 6928, and 2730 mL m-2 
of freshwater every day, correspondingly, along with PSS - 
CPC and HSS.  Hammoodi et al. (2023b) compared the PSS 
and SBSS and found that the PSS produced 7368 mL m-2 
per day of fresh water, while the SBSS produced 
approximately 5570 mL m-2 per day of distillate water. 
Hussen et al. (2023) reported that since the PSS received 
more direct sunlight than the SSSS and DSSS, it produced a 
larger yield. Many improvement methods require 
additional components that increase costs. The solar still's 
thermal efficiency may be increased by optimizing its 
working conditions without adding to its cost (Ellappan 
and Madhavan., 2023; Yuvaperiyasamy et al.2023c). Wind 
speed, outside temperature, sun insolation, intake water 
temperature, water depth, insulation thickness, and other 
variables still affect solar production. There are still a 
number of variables that affect solar productivity, such as 
wind speed, surrounding temperature, sun insolation, 
water depth, input water temperature, insulation 
thickness (Tariachaicahn et al.2023). The primary element 
influencing solar still production is sun intensity. 
Numerous studies have examined how sun insolation 
affects the productivity of solar stills. Changes in sun 
intensity have an impact on solar still production, 
according to the research (Jamil et al. 2023; Cherraye et 
al.2020). Jathar et al. (2021) examined the effects of 
varying water depths on solar still evaporation rates in 
both passive and active modes. Research indicates that an 
increase in water brine depth causes a drop in the 
freshwater production of solar stills. Response Surface 
Methodology (RSM), a statistical and mathematical 
technique, is used to identify the ideal circumstances for 
multivariate systems. It is well known that this is a useful 
tool for process optimization (Chen et al.2022). RSM is 
commonly used to analyze how different operating 
parameters interact and optimize the response. 
Regression correlation between many parameters and 

responses is estimated using this method. RSM has been 
successfully used to optimize engineering systems in 
various applications (Chen et al.2021). 

The main emphasis of earlier research was examining 
different factors that influence solar still production. 
However, no optimization research was conducted for the 
parameter that significantly affects the performance of 
solar stills.  There has been a lack of research devoted to 
the development of a regression model that can forecast 
the daily production of a solar still using RSM. 
Furthermore, the research does not yet examine the 
effect of the factors that affect daily distilled water 
production on other parameters. This study aims to 
investigate the impact of four input factors on a pyramid 
solar still's daily productivity: solar intensity, water intake 
temperature, water depth, and insulation thickness. 

 

Figure 1. Pyramid solar still without insulation 

 

Figure 2. Pyramid solar still with insulation 

2. Experimental setup and procedure 

Figures 1 and 2 depict the schematic of the PSS with and 
without insulation, respectively. The 0.30 m2 still basin is 
constructed of galvanized iron, and the collector surface is 
acrylic. Two percent more light passes through acrylic 
compared to glass. Compared to glass, it offers a stronger 
impact strength and clarity. The experiment examines the 
productivity using different operating input process 
parameters such as solar intensity, water inlet 
temperature, water depth, and thickness of the insulation. 
For the purpose of reducing heat loss from the solar still 
to the atmosphere, insulating thermocol was used. The 
properties of thermocol used in the experiment is given in 
Table 1. The duration of the experiments was from 9:00 
am to 5:00 pm. A little glass barrier situated on the inside 
surface of the collector is used by the PSS to gather 
freshwater. Transporting condensed water to a measuring 
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jar is accomplished by a flexible hose connection. Basin, 
water, glass, and environmental temperatures are all 
measured via thermocouples. An anemometer is used to 
determine wind speed, whereas a solar power meter is 
employed to quantify solar intensity. The instrument 
types and percentages of error are detailed in Table 2 
(Yuvaperiyasamy et al. 2023a). 

3.  Response surface methodology (RSM) 

A statistical and mathematical method called Response 
Surface Methodology (RSM) is used to help with process 
creation, optimization, and improvement. In the context 
of solar stills, RSM aids in identifying the optimal 
combination of operating conditions, such as solar 
intensity, water inlet temperature, water depth and 
insulation thickness by creating a mathematical model 
from experimental data. This efficient approach reduces 
the number of experiments needed, saves resources, and 
allows for pinpointing conditions that yield maximum 

distillate output. RSM's significance lies in its ability to 
streamline exploration of operating conditions, identify 
optimal parameters, and provide insights for efficient 
solar still design and performance enhancement. RSM is 
useful for creating an accurate model that demonstrates a 
link between the response variable and the independent 
variables by using the analysis of variance (ANOVA) 
approach (Tgarguifa et al.2017). The correlation between 
the response and independent variables is often unknown 
in the majority of RSM scenarios (Weremfo et al. 2022). 
The first step in Response Surface Methodology is to 
determine an approximation that faithfully captures the 
functional relationship between the independent variable 
"x" and the output response variable "y." (RSM). 
Generally, one applies a low-degree polynomial to a 
particular collection of independent variables. When a 
linear function of the independent variables accurately 
describes the response, the first-order model is used as 
the approximation function (Ahmed et al. 2023). 

Table 1. Properties of thermocol 

S. No Properties Range 

1 Density 14-29 kg m-3 

2 Tensile strength 2.5-7 kg cm-2 

3 Compressive strength 0.7-1.5 kg cm-2 

4 Thermal conductivity 0.033 W m-1 k-1 

Table 2. Measuring instruments and % of Error (Yuvaperiyasamy et al. 2023a) 

S.No Instruments Accuracy Range % of Error 

1 Thermocouple ± 0.1 °C 0–100 °C 0.357 

2 Solar power meter ±1 W m-2 0–2500 W m-2 3.33 

3 Anemometer ±0.1 m s-1 0–15 m s-1 10 

4 Measuring jar ±10 mL 0–1000 mL 10 

 

    + ++ +0 1 1 2 2y =   +  k kx x x  (1) 

In the presence of system curvature, employing a higher-
degree polynomial model, such as the second-order 
model, is necessary. The quadratic polynomial regression 
model is used (Ahmed et al. 2022). 

    
= = 

= + + +  +  
2

0
1 1

 
k k

i i ii i ij i j
i i i j

y x x x x

 

(2) 

The method of least squares is employed for parameter 
estimation in approximating polynomials. The fitted 
surface is used to perform response surface analysis. An 
examination of the fitted surface will provide outcomes 
comparable to those obtained from an analysis of the real 
system, if it precisely reflects the response function. 
Optimal estimation of model response relies on using 
appropriate experimental designs for data collection 
(Khayet et al.2010). In the construction of response 
surfaces, the designs used are referred to as response 
surface designs. RSM is a step-by-step procedure that is 
used to identify a system's ideal operating circumstances 
or to define a region of the factor space where the 
essential operational requirements are met (Mahadeva et 
al. 2023). Analysis of various replies is typically necessary 
for response surface problems. To consider several 
responses at once, one must first build response surface 
models for every response and then identify the operating 

parameters that maximize all responses or keep them 
within the appropriate ranges. Figure 3 shows the design, 
modeling, and optimization pattern of distillate water 
production in RSM. 

 

Figure 3. The suggested system's design, modelling, and 

optimization in RSM 

This analysis examines four input parameters: solar 
intensity, water inlet temperature, depth, and insulation 
thickness. The chosen low-level and high-level values of 
these parameters are shown in Table 3 (Liu et al. 2021). 

The study employs Central Composite Design (CCD) in 
RSM to systematically vary input parameters like solar 
intensity, water inlet temperature, water depth and 
insulation thickness. CCD involves a factorial design at 
different levels, allowing for the estimation of quadratic 
effects and interactions. This design facilitates the 
construction of a response surface model to optimize the 
pyramid solar still's productivity. The resulting 
mathematical model aids in predicting optimal conditions 
for maximum productivity. The study evaluates the 
impacts of process parameters using the central 
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composite design (CCD) in the traditional response surface 
methodology (RSM) design. The Central Composite Design 
is often a 2k factorial design with nF runs, 2k axial or star 
runs, and nc center runs (CCD).  The face-centered central 
composite design, often known as the face-centered cube, 
is a useful variation of the central composite design with α 
= 1. This design identifies the star or axial points at the 

cube's face centers. More center runs in the RSM face-
centered cube design may be employed with the same 
input parameters to estimate experimental error. This 
improves resilience against outliers or missing numbers 
and aids in evaluating internal error (Al-Balushi et al. 
2023). This is also valuable for constructing an accurate 
prediction model. 

Table 3. Lists the levels of the input process parameters 

Process parameters Notation Levels 

-1 0 +1` 

Solar intensity (W m-2) S 350 650 950 

Water inlet temperature (°C) T 30 40 50 

Water depth (cm) D 4 6 8 

Insulation thickness(m) W 0.05 0.10 0.15 

Table 4. Design of experiments with input and output response 

Run Solar intensity (W m-2) Water inlet temperature (°C) Water depth (cm) Insulation 
thickness (m) 

Productivity  
(kg m-2) 

1 650 40 6 0.1 0.68997 

2 350 50 4 0.05 0.42184 

3 650 40 6 0.1 0.67997 

4 350 30 4 0.05 0.70184 

5 350 40 6 0.1 0.19334 

6 950 50 8 0.15 1.98861 

7 350 50 8 0.05 0.35066 

8 350 50 4 0.15 0.80856 

9 350 30 4 0.15 0.99856 

10 650 40 6 0.1 0.67997 

11 350 30 8 0.15 0.50539 

12 950 50 8 0.05 1.70021 

13 650 40 6 0.1 0.87997 

14 650 40 8 0.1 0.63761 

15 950 30 8 0.15 0.4545 

16 650 30 6 0.1 0.33108 

17 650 40 6 0.1 0.67997 

18 650 50 6 0.1 0.67997 

19 950 50 4 0.05 2.53021 

20 950 30 4 0.05 1.99855 

21 650 40 6 0.15 0.68244 

22 950 30 4 0.15 1.94854 

23 950 40 6 0.1 1.07184 

24 650 40 6 0.05 0.67413 

25 650 40 4 0.1 1.38863 

26 950 50 4 0.15 2.58573 

 27 950 30 8 0.05 0.45005 

28 350 30 8 0.05 0.17523 

29 350 50 8 0.15 0.89856 

30 650 40 6 0.1 0.67997 

 

4. Artificial Neural Network (ANN) 

A neural network (ANN) is a model of statistics that tries 
to replicate the functions of neural networks (Mahadeva 
et al. 2023). One target neuron and three input neurons 
were used to make a multilayer perceptron (MLP). 
Experiments that look into important neurons in the 
hidden layer make predictions less accurate based on the 
results of the experiments. Using easily accessible data, 
the new model was built with at least 10 neurons, and the 

addition of more neurons investigated the potential for 
over-modelling.  The research results were used for 
modelling 90% of the time, and the rest of the results 
were properly divided up for model approvals and testing. 
A neural network is required to identify fitness concerns in 
order to ensure that target and input neurons are firing at 
the same time. Figure 4 shows the neural network design 
(Mahadeva et al. 2021). 

The Artificial Neural Network (ANN) in this study serves to 
model and predict the complex relationships within the 
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pyramid solar still system, capturing non-linearity’s. It 
complements Response Surface Methodology (RSM) by 
addressing intricate interactions and providing a more 
comprehensive understanding of the system's behaviour. 
While RSM is effective for analysing quadratic effects, 
ANN excels in capturing intricate patterns, enhancing the 
study's ability to optimize productivity under diverse and 
dynamic conditions. 

 

Figure 4. Artificial neural network designs 

5. Results and discussion 

Table 4 displays the experimental design using a face-
centered central composite design (CCD). It demonstrates 
conclusively that input process variables like insulation 
thickness, solar intensity, and water intake temperature 

have a favourable effect on the fresh water productivity of 
PSS. Water depth, on the other hand, has an adverse 
influence on production of distilled water (Abdullah et al. 
2023a). 

ANOVA studies determine if advanced models are 
appropriate for establishing a relationship between input 
and response parameters. Table 5 displays the ANOVA 
results for productivity. All process factors are relevant, 
according to the data in Table 5, with solar intensity being 
the most important input process parameter for the 
productivity of PSS. The model's significance is 
substantiated by the F-value (74.83).  The probability of 
obtaining an elevated number due to noise is very little, 
namely 0.01 percent. The model was considered 
statistically significant when the P-value was below 0.05 
(Ahmed et al. 2022). The R2 values that were predicted 
and adjusted are 0.9453 and 0.9727, respectively. The R2 
values show a substantial degree of concordance, with a 
deviation of no more than 0.2. A precision of 31.7657 is 
sufficient for design space navigation. 

 

Table 5. Analysis of variance (ANOVA) for productivity (kg/m2) 

Source Sum of squares df Mean square F-value p-value  

Model 12.59 14 0.8996 74.83 < 0.0001 Significant 

S 5.20 1 5.20 432.52 < 0.0001  

T 1.08 1 1.08 89.50 < 0.0001  

D 2.15 1 2.15 178.89 < 0.0001  

W 0.1939 1 0.1939 16.13 0.0011  

S*T 0.9286 1 0.9286 77.24 < 0.0001  

S*D 0.7520 1 0.7520 62.55 < 0.0001  

S*W 0.0997 1 0.0997 8.30 0.0114  

T*D 0.4402 1 0.4402 36.62 < 0.0001  

T*W 0.0304 1 0.0304 2.53 0.1327  

D*W 0.0145 1 0.0145 1.21 0.2891  

S² 0.0066 1 0.0066 0.5455 0.4716  

T² 0.0153 1 0.0153 1.27 0.2775  

D² 0.4809 1 0.4809 40.01 < 0.0001  

W² 0.0239 1 0.0239 1.99 0.1791  

Residual 0.1803 15 0.0120    

Lack of Fit 0.1476 10 0.0148 2.25 0.1915 Not significant 

Pure Error 0.0328 5 0.0066    

Cor Total 12.77 29     

   Std. Dev. 0.1096 R² 0.9859 

   Mean 0.9489 Adjusted R² 0.9727 

   C.V. % 11.56 Predicted R² 0.9453 

     Adeq Precision 31.7657 

 

The second-order regression model that was created 
throughout the investigation is shown in Eq. (3).  

 
= + + − 

 

− − + −

− +

+ + +

− −

2

2 2

  5.46170 0.000547 S 0.024822 T

1.59236 D   7.47703 W  0.000080 S * T 

0.000361 S *W  0.005263 S * D  0.008294 T *

 D  0.087152 T * W  0.301225 D * W  5.58990E

07 S 0.000768 T  

kg
Productivity

m

+ +2 2 0.107710 D   38.40165  W

 

(3) 

Figure 5 displays the diagnostic plot acquired during the 
analysis of productivity. The residuals' normal probability 
plots show that they follow a linear pattern, indicating 
that the raw data doesn't need to be transformed in order 
to build the model. The residual versus run plot suggests 
that the process is under control since the residuals lie 
within the upper and lower control boundaries (Veza et al. 
2023). The plot comparing predicted and actual values 
indicates that experimental values are comparatively near 
to the expected values, roughly following 45° line. The 
perturbation figure demonstrates that higher values of 
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solar intensity, water inlet temperature, and insulation 
thickness correspond to increased rates of freshwater 
productivity. Additionally, the plot suggests that 
increasing water depth hurts water productivity. 
According to the research, the following factors have the 
most effects on the production of fresh water: solar 
intensity>water depth>water inlet temperature> 
insulation thickness. 

 

Figure 5. Diagnostic plots for productivity 

Figure 6 illustrates the relationship between solar 
intensity, water inlet temperature and water depth, 
insulation thickness of PSS. The solar intensity ranges from 
350 to 950 W m-2, while the water inlet temperature 
varies between 30°C and 50°C. The remaining parameters, 
including insulation thickness and water depth, are set at 
0.10 m and 6 cm, respectively. The solar intensity has a 
more major influence on the productivity of PSS 
compared to water inlet temperature (Al-Mezeini et al. 
2023). The productivity increases from 0.482 to 2.472 kg 
m-2 as the solar intensity increases from 350 to 950 W m-2, 
while maintaining a fixed water inlet temperature of 50°C. 

The water in the basin becomes warmer due to the 
increased solar intensity. The rate of evaporation is 
positively impacted by raising the water's temperature, 
leading to an increase in the yield of distilled water 
(ahanpanah et al.2021). 

Furthermore, with a solar intensity value of 950 W m-2, an 
increase in the water input temperature from 30 to 50°C 
results in a 2.472 kg m-2 increase in the distillate water 
productivity rate from 1.833 kg m-2. In contrast, higher 
water inlet temperature reduces heat losses in solar 
collectors. As a result, there is a temperature increase 
between the brine in the basin and the condensing glass 
cover, which increases the amount of distilled water 
produced. The insulation thickness is increased from 0.05 
to 0.15 m, while water depth is raised from 4 to 8 cm and 
remaining factors, water inlet temperature and solar 
intensity are fixed at 40°C and 650 W m-2 respectively. The 
water depth significantly influences solar still efficiency 
more than insulation thickness (Abdullah et al. 2023). The 
productivity decreases from 0.969 to 0.772 kg m-2 as the 
water depth increases from 4 to 8 cm. while keeping the 
insulation thickness fixed at 0.15 m. The temperature of 
the salty water in the basin decreases as the volumetric 
heat capacity increases when the temperature differential 
between the water and the glass cover is reduced.  As a 
result, the convective heat transfer coefficient rates 
between the salinized water and the glass cover decrease, 
which in turn leads to a decline in freshwater production.  
In the context of a constant input of solar energy, a 
decrease in water depth induces higher evaporation rates. 
In addition, it was found that when the insulation 
thickness increased from 0.05 to 0.15 m at a water depth 
of 4 cm, the distillate water productivity rate improved 
slightly from 0.664 to 0.969 kg m-2. Increasing insulation 
thickness reduces back heat losses, leading to higher 
water temperatures and increased productivity of distilled 
water. 
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Figure 6. Surface plots show the effect of input process parameters on productivity 

 

5.1. Confirmation of test 

The main objective of the current research is to ascertain 
the parameter values that result in the highest level of 
production. Figure 7 displays the ramp plot, illustrating 
the optimal and predicted values. The ideal circumstances 
were acquired and used in a confirmation experiment. In 
order to validate the condition, the experiment used the 
same experimental configuration. The results of this 
experiment are presented in Table 6. Experimental values 
are compared with an error percentage of 0.80. 

5.2.  Artificial Neural Network 

The trainer's confidence in attaining retention serves as 
the model's motivation. The trainer provides a clear 
response for the individual parameters during the 
modelling process. The neural model developed in this 
study can function without a trainer due to its self-
association capabilities. For tackling technological 
problems, the neural model diagram is mainly used (Chan 
et al.2023 & Khazaai et al. 2023). The model includes 

comprehensive information about to the hidden neurons, 
their output characteristics, and input parameters. This 
method is a novel and comprehensive model that can be 
evaluated by monitoring the layers and neurons in a map 
(Khayet & Cajocaru,2013). In artificial neural network 
models, the learning rate, momentum coefficient, and 
training algorithm are crucial parameters influencing the 
training process. The learning rate determines the step 
size for weight updates, impacting the convergence 
speed; a too high rate may cause overshooting, while a 
too low one can lead to slow convergence. Momentum 
introduces a historical gradient term to accelerate 
optimization, aiding in navigating through flat regions of 
the loss landscape and enhancing convergence efficiency. 
The momentum coefficient, typically set between 0.8 and 
0.9, requires careful tuning to balance acceleration 
without causing overshooting or instability. The training 
algorithm, such as stochastic gradient descent (SGD) or 
Adam, plays a pivotal role in weight updates based on the 
loss gradient. The choice of algorithm influences 
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convergence speed and the ability to escape local minima, 
demanding experimentation to find the most effective 
approach tailored to the specific problem and dataset. 
Table 7 displays the results obtained from the ANN model. 
The average squared difference between the response 
and the target is measured by the Mean Squared Error, or 
MSE. Small estimations are quite precise, and the zero is 
perfect. The level of correlation between the terms and 
the output is shown by the regression values (R).  R has a 
value of 1, which denotes a positive link, while 0 denotes 
an unequal correlation. The limitations of mean squared 
error (MSE) and R are zero and sequential. It is 
recommended to ensure precise control over the 
installation of the curve. The network model was designed 
to have a balanced structure, and its introduction was 
carefully planned to accommodate any necessary 
modifications for the training exercise. The histogram 
inaccuracy of the neural model created for this 
investigation is shown in Figure 8. 

 

Figure 7. A ramp plot illustrating the state of maximum 

productivity 

 

Figure 8. Error histogram chart 

 

Figure 9. Regression graph for productivity 

 

Table 6. Comparison of experimental and predicted results 

Output response Predicted Experimental  % Deviation 

Productivity(kg/m2) 2.60673 2.58573 0.80 

Table 7. MSE and R values 

 Sample MAP R 

Training 16 1.82379e-2 9.83360e-1 

Validation 4 2.68588e-2 9.93866e-1 

Testing 4 2.86397e-1 9.93429e-1 

Table 8. Experimental and ANN predicted values 

Run order Solar 
Intensity(W/m2) 

Water Inlet 
Temperature (°C) 

Water Depth 
(cm) 

Insulation 
Thickness (m) 

Productivity 
experimental (kg m-2) 

Productivity ANN 
Predicted (kg m-2)  

5 350 40 6 0.1 0.19334 0.1963 

10 650 40 6 0.1 0.67997 0.6862 

15 950 30 8 0.15 0.4545 0.4578 

22 950 30 4 0.15 1.94854 1.9392 

25 650 40 4 0.1 1.38863 1.4064 

29 350 50 8 0.15 0.89856 0.9085 

 

Figure 9 displays the regression plot for the combined 
training, validation, and test runs of the artificial neural 
(ANN) network. The obtained regression value of 0.99218 is 
highly satisfactory. The trend line in the artificial neural 
network (ANN) model connects the data points during 

training to provide the best fit for the training data. 
Validation data is utilized for parameter tuning, while test 
data is employed for performance assessment. The 
regression graphs obtained during training demonstrate 
that the ANN model produces favourable outcomes (Salem 
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et al. 2022). Table 8 presents the predicted productivity 
values obtained using Artificial Neural Networks (ANN) 
alongside the corresponding experimental values 
determined for the test conditions. Figure 10 compares the 
productivity of experimental values with productivity 
predicted by ANN and RSM models. The predicted values 
closely align with the experimentally determined values, 
indicating a reliable model for predicting the productivity of 
pyramid solar stills (Park et al. 2017). 

 

Figure 10. Comparing the productivity values predicted by RSM 

and ANN with experimental data  

6. Validation 

The divergence of the outcomes from the RSM and ANN 
was evaluated by a comparative study. Table 9 displays 
the data's comparative analysis. Based on the RSM-based 
desirability method, the difference between the expected 
and actual productivity was 0.80%. The testing using RSM-
based methodology has effectively determined the ideal 
combination of parameters to maximise the production of 
the PSS, as shown by the minimal variance. To verify the 
correctness of the RSM-based optimum parametric 
configuration, the ANN model was created. The best 
parametric parameters for the ANN model were used to 
perform the experiment. The findings show that 2.602 kg 
m-2 was the estimated productivity by ANN. There was a 
0.65 percent difference between the predicted and real 
values. The little divergence shows that the created model 
is accurate and that it is in good accord with the 
productivity of the pyramid solar still that has been 
observed. The study found a strong correlation between 
the outcomes obtained from Response surface 
methodology (RSM) and Artificial neural network (ANN) 
models. Both approaches exhibited similar predictive 
accuracy in optimizing input parameters for maximizing 
the pyramid solar still (PSS) performance, emphasizing the 
reliability of both RSM and ANN in achieving optimal 
conditions for distillate productivity. 

Table 9. Comparative analysis of optimum values 

Methodology Process parameters Productivity (kg m-2) 
(Predicted) 

Productivity (kg m-2) 
(Actual) 

Deviation (%) 

RSM Solar intensity (950 W m-2) 

, water inlet temperature(50°C),  

water depth (4cm) and insulation 

thickness (0.15m) 

2.606 2.585  0.80 

ANN  2.602  0.65 

 

7. Conclusion 

The following findings were drawn from the carried out 
experiments and the validation that followed:  

• Input process parameters like solar intensity, 
water intake temperature, and insulation 
thickness improve the productivity of pyramid 
solar stills (PSS). Water depth negatively affects 
the pyramid solar still's output.  

• Using a statistical response surface methodology 
(RSM) model, the interactions and cumulative 
impacts of the parameters on the daily 
production of distilled water are investigated. 
The predicted R2 and Adjusted R2 values are 
0.9453 and 0.9727, respectively. The polynomial 
model yields precise prediction outcomes with 
excellent fit. 

• The influences on daily distilled water production 
are ranked in order of significance: solar 
intensity, water depth, water intake 
temperature, and insulation thickness. 

• The polynomial statistical model enables 
calculating and optimizing daily production from 
a solar still by using four input variables. 

• The research found that the optimal combination 
of factors for reaching the highest production 
level in a pyramid solar still consists of a solar 
intensity of 950 W m-2, a water input 
temperature of 50°C, a water depth of 4 cm, and 
an insulation thickness of 0.15m. The 
experimental, RSM optimization and ANN model 
yielded distillate production rates of 2.585, 2.606 
and 2.602 kg m-2, respectively.  

• The neural network was created using MATLAB, 
resulting in a divergence of 5.78% compared to 
the findings obtained using RSM-based design.  

• The research discovered that using an artificial 
neural network (ANN) model may efficiently 
provide optimum results in the productivity of 
pyramid solar stills. 

• Pyramid solar stills are effective in arid and 
remote areas, providing decentralized water 
solutions and Coastal regions with brackish 
water. 
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