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ABSTRACT 31 

Cyanide compounds are widely used in some electroplating, chemical, and metallurgical industries. 32 

They are often found in their liquid discharges. This work highlights the performance of an 33 

activated alumina-supported copper catalyst in the removal of cyanide by oxidation with hydrogen 34 

peroxide in aqueous solution. The influence of catalyst dose, initial molar ratio of hydrogen 35 

peroxide/cyanides, temperature, and catalyst reuse was studied. The activated alumina-supported 36 

copper significantly enhanced the reaction rate showing a good catalytic activity. The efficiency of 37 

cyanide elimination was increased after 30 minutes of oxidation from 48% to 98% by increasing the 38 

catalyst dose from 1 to 10 g/L. Rising the temperature from 30°C to 40°C promoted cyanide 39 

removal. The catalyst can be recycled four times and show good stability. The kinetics of cyanide 40 

oxidation was revealed to be pseudo-first-order regarding cyanides. The rate constants as well as the 41 

activation energy were determined. 42 

Keywords: Cyanide; Oxidation; hydrogen peroxide; Catalysis; Activated alumina-supported 43 

copper. 44 
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1. Introduction 47 

Today, the industry is experiencing an increasing use of chemicals. Some products, although very 48 

useful in production or transformation processes, are considered very dangerous and end up in the 49 

discharges of the industries that use them. Cyanides are among these compounds. They are found in 50 

the liquid effluents of a large number of industries, namely chemical, metallurgical, and even food 51 

(Somboonchai & Nopharatana 2008; Kuyucak & Akcil 2013; Anupong et al, 2022; Costa et al, 52 

2022).  Cyanides can be in the form of stable metal complexes (Strong Acid Dissociable SADs), 53 

nonstable metal complexes (Weak Acid Dissociable WADs), or free cyanides (Akcil 2010).  The 54 

latter two forms are the most dangerous because they have the ability to release very toxic cyanide 55 

ions (Kuyucak & Akcil 2013; Uppal et al, 2016). The removal of cyanides from industrial effluent 56 

can be done by different processes, like hydrogen peroxide oxidation (Yubo et al, 2018; Amaouche 57 

et al, 2019), Alkaline chlorination oxidation (Kuyucak & Akcil 2013; Kamrani et al, 2019), electro-58 

oxidation (Berenguer et al, 2017; Dobrosz-Gomez et al, 2020; Ken & Sinha 2021), ozone oxidation 59 

(Morillo Esparza et al, 2019), photo-oxidation (Núñez-Salas et al, 2019; Chegini et al, 2020) 60 

biological oxidation (Singh & Balomajumder 2016), precipitation (Liu et al, 2021) and adsorption 61 

on activated carbon (Halet et al, 2015; Ravuru et al, 2019; Eskandari et al, 2021; Chergui et al, 62 

2022). 63 

The hydrogen peroxide oxidation catalyzed by dissolved copper Cu (II) is currently widely used and 64 

is very effective. It allows cyanides to be oxidized to much less toxic cyanates (Knorre & Griffiths 65 

1984; Akcil 2010). This process has the advantage of not producing dangerous by-products. 66 

However, copper is not recoverable and is itself a heavy metal that should be removed. To 67 

circumvent this, heterogeneous catalysis could be the right alternative. Indeed, much work on the 68 

elimination of pollutants by oxidation proposes to use heterogeneous catalysts based on oxides of 69 

transition metals (Hussain et al, 2020; Magalhães et al, 2020). These oxides can be supported on 70 

materials such as activated carbon (Ruimei et al, 2018), activated alumina (Covinich et al, 2016; 71 



 

 
 

Bousalah et al, 2021), and even on natural supports (Kitis et al, 2005). Following several works to 72 

improve cyanide hydrogen peroxide oxidative removal using heterogeneous catalysts (Yeddou et al, 73 

2010; Chergui et al, 2015; Amaouche et al, 2019; Tu et al, 2019; Behnami et al, 2021) we propose 74 

here to prepare a catalyst having both good stability and high efficiency. We thus suggest using 75 

activated alumina-supported copper. Activated alumina is renowned for its great surface area and 76 

surface characteristics, while copper is chosen for its catalytic performance. The study addresses the 77 

influence of different parameters such as catalyst dose, the initial molar ratio of hydrogen 78 

peroxide/cyanides, and temperature on catalyst efficacy, and studies catalyst stability. 79 

2. Materials and Methods 80 

2.1. Reagents and Analytical Procedure  81 

The chemicals employed in this study are of analytical reagent grade and are utilized as obtained 82 

without additional purification (sourced from Merck, Darmstadt, Germany, and Sigma-Aldrich, St. 83 

Louis, USA). Cyanide solutions were produced using potassium cyanide (99%). The pH of the 84 

solution was adjusted with NaOH solution (1 N) or HCl solution (1 N).  85 

The cyanide concentration was assessed through two methods: a titrimetric approach utilizing silver 86 

nitrate, and a potentiometric method employing a cyanide-specific electrode (Orion 96-06, Boston, 87 

USA) (Baird et al, 2017). pH measurement was conducted with a pH meter (HI 221, HANNA 88 

instruments). Cyanates concentration was determined by quantifying the ammonia resulting from 89 

their acid hydrolysis (1.5-2.0) through a potentiometric method (Baird et al, 2017) using the 90 

ammonia-specific electrode WTW NH 500/2. Copper (Cu2+) in the aqueous solution was analyzed 91 

using an atomic absorption spectrophotometer (Perkin Elmer, Model A Analyst 700). 92 

2.2. Preparation and characterization of the activated alumina-supported copper 93 

The catalyst support utilized in this study was neutral activated alumina obtained from Sigma-94 

Aldrich (St. Louis, USA) with a particle size of 149-250 µm, BET surface area of 155 m²/g, and 95 

pores volume of 0.4 cm³/g. The activated alumina-supported copper, denoted as Al2O3-CuO, was 96 

prepared using the pore volume impregnation method (Zhao et al, 2004; Yeddou et al, 2011; 97 



 

 
 

Shelepova et al, 2017). This involved impregnating the activated alumina with an aqueous solution 98 

of copper (II) nitrate (Cu(NO3)2, 3H2O), followed by drying for 12 hours in ambient air at 50 °C, 99 

then at 110 °C for 12 hours, and finally calcination in air at 450 °C for 2 hours. The resulting Al2O3-100 

CuO catalyst holds 5 wt.% of copper. 101 

The analysis of Al2O3-CuO was performed by X-ray diffraction (XRD) (Inel cps 120, iron anti-102 

cathode, k=1.936 A°) allowing angular measurements in the range of 2θ = 5–125°. The surface 103 

morphology of the activated alumina-supported copper catalysts was determined using scanning 104 

electron microscopy (SEM, Philips ESEM XL 30). The mass titration method was used for the 105 

determination of the zero-charge point (pHzc). 106 

2.3. Experimental  107 

The experiments were conducted in a double-walled glass batch reactor containing 1 liter of cyanide 108 

solution. The solution was mixed with activated alumina-supported copper (Al2O3-CuO) using a 109 

magnetic stirrer at a speed that allows a homogeneous suspension of the catalyst. At different times, 110 

the residual cyanide concentration was measured. The concentration of cyanate was analyzed at the 111 

time the experiments were completed. The studied parameters were the Al2O3-CuO dose, the initial 112 

molar ratio of hydrogen peroxide/cyanide concentration ([H2O2]0/[CN-]0), and the temperature. The 113 

study of catalyst stability was evaluated by measuring its activity when reused. 114 

3. Results and discussion 115 

3.1. Characterization of activated alumina supported-copper (Al2O3-CuO) 116 

Figure 1 illustrates the X-ray diffraction spectra of Al2O3-CuO. The presence of crystalline CuO is 117 

shown in our catalysts (peaks at 2Ɵ = 32.5°, 35.4o, 38.9o, 48.7o, 61.5°, 68.1°, and 72.3°). This 118 

crystalline structure is still present after four successive oxidation tests with no visible thinning or 119 

widening of the peak indicating good stability in time. 120 

The scanning electron micrograph (Figure 2) of Al2O3-CuO shows the appearance of aggregate 121 

particles (probably of CuO) on the surface of the alumina. They are distributed in a homogeneous 122 

way. The pH of zero charges (pHzc) for Al2O3-CuO is found to be 6.2. 123 
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 125 

Figure 1. XRD spectra of (a) fresh Al2O3-CuO, (b) Al2O3-CuO (fourth use) 126 

Figure 2. Scanning electron micrograph of Al2O3-CuO 127 

3.2. Effect of activated alumina supported-copper dose (Al2O3-CuO) 128 

The influence of the concentration of activated alumina-supported copper on the cyanide oxidation 129 

(Figure 3) was studied for doses of 0, 1, 2, 5, and 10 g/L, for an initial cyanide concentration of 10 130 

mM (260 mg/L), and for an initial molar ratio [H2O2]0/[CN-]0 equal to 3. Temperature and pH were 131 

maintained at 20°C and 11, respectively. In the case without an Al2O3-CuO catalyst (Figure 3), 132 

cyanide oxidation is very slow. The presence of Al2O3-CuO significantly improves the kinetics and 133 



 

 
 

efficiency of the oxidation, especially at high doses. Indeed, after 30 minutes, cyanide 134 

concentrations of 255, 124, 58, 11, and 5 mg/L (elimination percentages of 2, 52, 78, 96, and 98%) 135 

are reached for the respective doses of Al2O3-CuO of 0, 1, 2, 5 and,10 g/L. As reported in the 136 

literature (Bradu et al, 2010; Covinich et al, 2016; Bousalah et al, 2021 ; Meng et al, 2021) copper 137 

oxide CuO was able to decompose the hydrogen peroxide and to produce highly reactive hydroxyl 138 

radicals that oxidize the pollutant. Therefore, it can be hypothesized that the activated alumina-139 

supported copper catalyst produces hydroxyl radicals according to reaction equation 1 which allows 140 

for the oxidation reaction of cyanide ions. 141 

  (1) 142 

 143 

Figure 3. Effect of Al2O3-CuO dose on cyanide removal by peroxide hydrogen oxidation: 144 

[H2O2]0/[CN-]0= 3, CN-
0 = 260 mg/L, T = 20 °C, pH = 11.0 145 

3.3. Initial concentration effect of hydrogen peroxide  146 

The effect of hydrogen peroxide dose was studied for initial molar ratios [H2O2]0/[CN-]0 varying 147 

from 1.5 to 20. The initial cyanide concentration was 10 mM (260 mg/L), the catalyst dose was 3 148 

g/L, and the temperature was fixed at 20° C. Figure 4 showed that after 30 minutes, the cyanide 149 

concentrations of 30, 20, 15, and 11 mg/L were reached for the molar ratios of 1.5, 5, 10 and 20, 150 

respectively. This corresponds to percentages of elimination of 88, 92, 94, and 96 %, respectively. It 151 

could be pointed out that for the range of hydrogen peroxide initial concentration studied, the 152 

cyanide elimination rate was high, thus showing the beneficial contribution of the catalyst even for 153 



 

 
 

low molar ratios, that is to say with molar ratios close to the stoichiometry of oxidation reaction. 154 

This is because, at a molar ratio of 1.5, the catalyst can produce enough OH° radicals to oxidize the 155 

cyanide ions. The presence of the catalyst significantly improved the rate and yield of cyanide 156 

oxidation. Yeddou et al. (2010) studied the removal of cyanides by hydrogen peroxide without, 157 

under the same conditions as the present work, they found the oxidation kinetics to be slow and they 158 

obtained an 80% of cyanide elimination for an initial molar ratio [H2O2]0/[CN-]0 of 20 after 8 hours. 159 

 160 

Figure 4. Effect of initial molar ratio [H2O2]0/[CN-]0 on cyanide removal by peroxide hydrogen 161 

oxidation: Al2O3-CuO (3 g/L), CN-
0 = 260 mg/L, T = 20 °C, pH = 11.0 162 

3.4. Effect of temperature 163 

The influence of temperature on the cyanides oxidation by hydrogen peroxide catalyzed by Al2O3-164 

CuO was performed for 20, 30, and 40° C. The initial cyanide concentration ions were 10 mM (260 165 

mg / L), the pH was maintained at 11.0, the initial molar ratio [H2O2]0/[CN-]0 was equal to 3 and the 166 

dose ofAl2O3-CuO was 3g/L. An improvement in yield and kinetics is observed (Figure 5) with 167 

increasing temperature. Indeed, after fifteen minutes removal rates of 62, 85, and 92% are achieved 168 

for temperatures of 20, 30, and 40° C, respectively. 169 



 

 
 

 170 

Figure 5. Effect of temperature on cyanide removal by peroxide hydrogen oxidation:  171 

[H2O2]0/[CN-]0 = 3, Al2O3-CuO (1 g/L), CN-
0 = 260 mg/L, pH = 11.0 172 

3.5. Reuse of catalyst 173 

The stability of Al2O3-CuO was studied by the reuse of the sample for four successive times. Before 174 

each use, the sample was washed with deionized water and dried at 60 °C for a few hours. The 175 

results (Figure 6) showed no major loss of activity between the first and the fourth use, indeed, after 176 

sixty minutes, the cyanide elimination yield was 98 and 93 %, respectively. The identical XRD 177 

patterns (Figure 1) for fresh under-reused reused four successive times catalyst confirmed the 178 

catalytic stability. 179 
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 192 
Figure 6. Cyanide removal by peroxide hydrogen oxidation: reuse of Al2O3-CuO (3 g/L), 193 

[H2O2]0/[CN-]0 = 3, CN-
0 = 260 mg/L, T = 20 °C, pH = 11.0. 194 

3.6. Kinetics of cyanide oxidation and determination of the activation energy 195 

Kinetics of cyanide elimination in the presence of Al2O3-CuO, for different doses, were studied 196 

using the pseudo-first-order (Eq.2) and the pseudo-second-order (Eq. 3) models with regard to 197 

cyanide: 198 

Pseudo-first order model 199 

(2) 200 

Pseudo-second order model 201 

(3)                          202 

Where C0, C, and Kapp are the initial cyanide concentration, cyanide concentration at time t, and 203 

apparent rate constant, respectively. 204 

Plotting the curves representing   and   ) versus time (figures not shown) showed that the 205 

cyanide oxidation kinetics data are fitted well by the pseudo-first-order model with highly 206 

determination coefficients R2 values. The values of the apparent kinetic constants as well as the 207 

coefficients of determination R2 for each model are given in Table 1. It is noted that the Kapp values 208 

calculated under different conditions increase significantly with the presence of activated alumina-209 

supported copper, supporting its role as a catalyst. 210 



 

 
 

The activation energy of the cyanide elimination by hydrogen peroxide catalyzed with Al2O3-CuO 211 

is determined from the linearized Arrhenius equation (Eq.4) 212 

(4) 213 

 214 

 215 

Where Ko is the pre-exponential factor and Ea is the apparent activation energy (kJ/mol). 216 

The apparent activation energy value is determined from the plot of ln Kapp versus 1/T (Figure 7). 217 

It is 32.36 kJ/mol for cyanide oxidation in the presence of 3 g/L Al2O3-CuO. In a previously 218 

reported study, Yeddou et al. (2010) found values of 82.7 and 46.2kJ/mol in the absence of a 219 

catalyst and the presence of 10 g/L of activated carbon, respectively. Chergui et al. (2015) reported 220 

a value of 55.7 kJ/mol with 10 g/L of alumina (Al2O3). Amaouche et al. (2019), with similar 221 

working conditions, found a value of 32.2 kJ/mol by using copper oxide CuO (1 g/L) as a catalyst. 222 

The activated alumina-supported copper Al2O3-CuO, with a dose of 3 g/L, significantly reduced the 223 

value of activation energy, demonstrating its role as a catalyst. 224 

 225 
Figure 7. Validation of the Arrhenius law for cyanide removal in the presence of Al2O3-CuO: 226 

[H2O2]0/[CN-]0 = 3, Al2O3-CuO (3 g/L), CN-
0 = 260 mg/L, pH = 11.0. 227 

 228 

Al2O3-CuO 

dose (g/L) 

Initial molar 

ratio 

[H2O2]0/[CN-]0 

Temperature 

(°C) 

Pseudo-first-order Pseudo-second-order 

Kapp 

(min-1) 
R2 

Kapp 

(L.mmol- R2 



 

 
 

1.min-1) 

0 3 20 0.0005 0.960 0.0001 0.614 

1 3 20 0.031 0.928 0.004 0.882 

2 3 20 0.058 0.934 0.023 0.555 

5 3 20 0.117 0.913 0.094 0.614 

10 3 20 0.143 0.932 0.571 0.341 

3 3 20 0.067 0.989 0.027 0.893 

3 3 30 0.109 0.953 0.053 0.912 

3 3 40 0.155 0.954 0.087 0.954 

3 1.5 20 0.054 0.957 0.080 0.815 

3 5 20 0.069 0.962 0.122 0.883 

3 10 20 0.078 0.960 0.184 0.772 

3 20 20 0.093 0.961 0.275 0.865 

Table 1. Kinetic model parameters for cyanide removal in oxidation by hydrogen peroxide, pH = 229 

11.0, [CN-]0= 10 mM (260 mg/L) 230 

 231 
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 241 

4. Conclusion 242 

This study consists of the oxidation of cyanides by hydrogen peroxide in the presence of the 243 

activated alumina-supported copper Al2O3-CuO as the catalyst, prepared by the impregnation 244 

method. The characterization of Al2O3-CuO shows the presence of copper oxide CuO on the surface 245 

of the catalyst. The alumina-supported copper considerably enhanced the reaction rate indicating 246 

good catalytic activity. The rate of cyanide removal is improved by increasing the catalyst dose, 247 

initial hydrogen peroxide concentration, and temperature. In almost all cases, over 90% of the 248 

cyanides are removed within 30 minutes. Good stability was observed after four consecutive reuses 249 

of the catalyst. The kinetic study showed that the oxidation of cyanides with hydrogen peroxide 250 

catalyzed by Al2O3-CuO is of pseudo-first order. 251 

The benefit of the proposed process is that it avoids the use of soluble catalysts, whose disposal 252 

after treatment can be problematic. In another aspect, this process allows for rapid cyanide removal 253 

kinetics and, at the same time, only consumes hydrogen peroxide as a chemical. Good cyanide 254 

removal rates can be achieved even with lower initial molar ratios [H2O2]0/[CN-]0. 255 
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