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Abstract 

In recent years, air pollution has increased with 
industrialization and urbanization globally. It is an 
important hazardous factor that causes severe health 
issues to community’s health. Among the number of 
pollutants in air, PM2.5 is very dangerous due to its very 
small, 2.5µm, diameter. The PM2.5 concentration in air 
causes severe life-threatening to humans. In this paper, 
RFBIGRU model is proposed to predict PM2.5 in the 
atmospheric air. RFBIGRU improves PM2.5 prediction 
accuracy using Random Forest (RF) feature selector and 
Bidirectional Gated Recurrent Unit (BIGRU) deep neural 
network. The PM2.5 concentration in air depends on 
other pollutants' concentration in the air. However, the 
consideration of several other pollutants increases the 
curse of dimensionality and overfitting issues. So, in 
RFBIGRU, first, the relevant pollutants to PM2.5 are 
identified using random forest feature importance. Then 
the nonlinear and temporal patterns of the time series air 
pollutant data are extracted both in forward and 
backward direction using Bidirectional GRU. The RFBIGRU 
reduces the curse of dimensionality, overfitting and 
improves the PM2.5 prediction accuracy compared to 
other deep learning methods. The experimental result 

proves RFBIGRU outperforms others by producing least 
Root Mean Square Error of 42.217 and 6.813 for Delhi and 
Amaravathi regions. 

Keywords: Air pollution, air quality index, deep learning, 
machine learning, random forest 

1. Introduction 

In modern era, the rapid development of technology, 
industry, population and the urbanization of cities raises 
air pollution. The global ecosystem is also affected by the 
emission of greenhouse gases due to anthropogenic 
activities. The amount of air pollutants increases every 
day and causes major environmental issues. It affects 
humans indirectly by penetrating through agricultural 
food products. It causes discomfort for the living 
organisms and citizens (Alegria et al., 1991, Ercilla-
Montserrat et al., 2018). It threatens human being health 
and the country’s economy very worse. The air quality 
depends on many factors such as weather, every day 
behavior of human beings and the usage of land in the 
surroundings. It creates the situation for the people to 
breathe the worst polluted air every day. Hence, the 
metropolitan development pattern is assessed that 70% 
of the total populace will live in metropolitan urban areas 
in 2050 (Obando Bobadilla et al., 2018). The growth of 
urbanization increases the air pollution that becomes a 
major challenge for the growth of developing countries 
like India and China. Many steps are taken by 
governments and private organizations to establish air 
quality monitoring stations. But, still it requires some 
scientific predictions to control air pollution, to protect 
human beings by initiating an early warning system and 
planning outdoor activities (Ma et al., 2019). 

The environmental air comprises of a different type of 
poisons as pollutants like particulate matter PM2.5, 
particulate matter PM10, sulfur dioxide (SO2), Ozone (O3), 
carbon monoxide (CO) and Nitrogen dioxide (NO2). The 
concentration of these pollutants has a direct relationship 
with the healthiness of human beings. The level of air 
pollution increases in the atmospheric air when there is 
an increase of the concentration of the pollutants level in 
the air which in turn increases the severity of the human 
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beings' health issues (Ding et al., 2022, Aliyu et al., 2014). 
Among all pollutants, particulate matter (PM) creates a 
worse effect on human beings when they are exposed to 
contaminated air. The major origins of the particulate 
matter are industries, wood-burning heaters and smoke 
from motor vehicles. The PM consists of a variety of 
components like organic chemicals, dust particles, metals, 
sulfates and nitrates. The concentration of PM increases 
when dust storm and bushfires occur. 

There are two types of particulate matter namely, PM10 
and PM2.5 based on the size of the particle. The size of 
PM10 is 10 micrometers in diameter whereas the PM2.5 
size is about 2.5 micrometers in diameter. PM10 can enter 
into lungs through the nose and throat due to its small 
size. PM2.5 is so small compared to PM10. It can enter 
into bloodstream through the nose, throat and lungs. It 
causes adverse health problems for humans. The increase 
in the concentration of particulate matter increases heart 
diseases and lung diseases which increases the ratio of 
human death. Even if a human is exposed to the 
particulate matter for a short duration, it creates severe 
irritations in the nose, throat and eye, worsens lung 
diseases, triggers heart attacks and increases per-mature 
deaths. For the long term exposure, reduces lung 
functionality, develops cardiovascular diseases and 
reduces life expectancy. So, it mandates the necessity of 
forecasting the particulate matter (Aliyu et al., 2014). The 
nomenclature utilized in this paper is given in Table 1.  

PM2.5 can be predicted using statisticall models, machine 
learning and deep learning models. Initially, the statisticall 
models depended on numerical prediction, statistics and 
probability. They are more complicated and less efficient. 
Next, artificial intelligence based machine learning models 
like artificial neural network (ANN), radial basis function 
(RBF), Multilayer perceptron (MLP), support vector 
machine (SVM), random forest (RF), linear regression (LR) 
and multiple linear regression (MLR) were utilized. The 
machine learning-based PM2.5 prediction is more 
efficient and reliable. The consideration of more 
environmental factors guarantees an improved prediction 
of PM2.5. The advent of deep learning models greatly 
helps to improve PM2.5 air pollutant forecasting by 
handling the time series nonlinear air pollutant data with 
numerous other factors related to air pollution. Now a 
days, many researchers in the literature utilized deep 
learning-based recurrent neural networks and their 
variants. They handled incompleteness, uncertainty and 
non-stationary issues of the time series air pollutant data. 
The researchers also employed the benefits of utilizing a 
bidirectional network for improving accuracy. The 
accuracy can also be increased by considering many 
features as input (Kiruthika et al., 2014, Swaroop et al., 
2014). When the number of features increases the curse 
of dimensionality issue also increases. It will result in a 
serious overfitting issue. 

In this paper, PM2.5 is forecasted using the history of 
PM2.5 and other pollutants. Among all pollutants, the 
relevant pollutants for PM2.5 are identified by using 
random forest for reducing the overfitting and curse of 

dimensionality issues. The non-linearity, uncertainty and 
sequence dependency characteristics remains in the time 
series PM2.5 pollutant is analyzed. Then the similar 
patterns which is hidden in the historical pollutant data 
are extracted for improving the accuracy of PM2.5 
prediction using bidirectional gated recurrent unit. 

Table 1. Nomenclature 

 

The contribution of the paper is organized as follows, 

• Data Preprocessing (Remove incompleteness): To 
improve the input air pollutant data quality by finding 
missing values and filling it with mean values. 

• Feature Selection (Eliminate Curse of Dimensionality): 
To select the relevant features by employing a 
random forest model and finding the feature 
importance. 

• Deep Learning (Improve accuracy): To improve 
accuracy by handling temporal dependency at the 
next and previous steps using bidirectional gated 
recurrent unit 

• Performance Evaluation (Proving Superiority): To 
prove the superiority of the proposed RFBIGRU model 
against the regression-based state-of-the-art deep 
learning models such as MLP, RNN, LSTM and GRU in 
terms of RMSE and Friedman test 

The rest of the present paper is structured as follows. 
Section 2 reviews the related works done and finds the 
research gap in air pollution prediction. Section 3 
discusses the proposed RFBIGRU architecture and 
describes the competing methodologies. Section 4 
presents the experimental results using Delhi and 
Amaravathi air pollutants datasets. Section 5 concludes 
the present research. 

2. Related Works 

This section discusses the research work that has been 
done by various researchers in the field of air quality 
prediction. It is categorized into the research done using 
statistical and machine learning techniques. The widely 
used statistical methods are Autoregressive Integrated 
Moving Average (ARIMA) (Kumar and Jain 2010, Bedekar 
et al., 2021), Autoregressive Moving Average (ARMA) (Box 
et al., 2015) and multiple linear regression (MLR) (Li et al., 
2011). The simple linear regression (LR) was the widely 
used statistical model in earlier days for predicting the 
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PM2.5 concentration. Mani and Viswanadhapalli (2022) 
designed an air quality prediction model using two time 
series models namely multiple linear regression and 
ARIMA. The author predicted the air quality index (AQI) 
for the next 15 days using the data collected from 
Chennai, India. The result shows that MLR achieved 92% 
and ARIMA achieved 95% accurate prediction of air 
quality. Amelia et al. (2022) developed a PM2.5 prediction 
model using seasonal ARIMA and triple exponential 
smoothing time series models. The experimental result 
shows the seasonal ARIMA produced better prediction 
than exponential smoothing. It can handle the data with a 
linear relationship between dependent and independent 
attributes. But in reality, the concentration of PM2.5 does 
not have a linear nature. Mostly it is an irregular sequence 
and non-linear nature. The mixed logic regression model, 
ARMA, ARIMA and MLR produce an accurate forecast only 
when the concentration of fine particles is in a linear 
nature. So these statistical models fail to produce an 
accurate prediction of PM2.5 with large datasets of a 
nonlinear nature (Kumar and Pande 2022, Xu et al., 2022). 

After the advent of artificial intelligence (AI) techniques, 
many researchers have contributed by designing a variety 
of machine learning (ML) models of single and hybrid 
category to handle nonlinearity of air pollutant data and 
improve the accuracy of PM2.5 prediction (Zhan et al. 
2017, Lu et al., 2021, Li et al., 2021, Xiao et al., 2018). The 
artificial neural network (ANN), support vector regression 
(SVR) and random forest (RF) are the widely utilized 
methodologies to predict PM2.5 concentration in the air 
(Yu et al., 2016, Lin et al., 2011, Wang et al., 2015). Saiohai 
et al. (2023) presented a study and compared the 
prediction of PM2.5 using multilayer perceptron (MLP) 
and multiple linear regression (MLR). Masood and Ahmad 
(2020) presented a model for predicting PM2.5 
concentration daily using two machine learning models 
namely SVM and ANN. The two years of air pollutants and 
meteorological data were utilized for the experimental 
analysis. The results produced by ANN show better 
improvement than SVM. Even though the ML models 
handle the nonlinearity nature of air pollutant data, it is 
not free from some limitations like overfitting and local 
optimization. When the dataset size and attributes count 
in the dataset increases it will increase the network 
complexity, overfitting and the gradient decent problems.  

In recent years, the type of machine learning called deep 
learning (DL) models invented by researchers to overcome 
such an issue of machine learning (Siva Sankari and Senthil 
Kumar 2023). It is a large artificial neural network with 
multiple hidden layers that can handle complex problems 
like nonlinearity, uncertainty and overfitting (Senthil 
Kumar 2019). The historical air pollutant data can have a 
similar air pollutant concentration pattern in the future 
(Pruthi and Liu 2022). So it has a sequence dependence 
nature that can be effectively handled by the type of deep 
neural network called RNN and its variants called LSTM 
and GRU. Kim et al., (2023) presented a model to forecast 
PM2.5 for the next one hour using deep learning-based 
bidirectional LSTM with random forest. The author 

handled the imbalanced data well and produced an 
improved PM2.5 forecast than the state-of-the-art ML and 
DL methods. Huang et al. (2021) designed a PM2.5 
prediction model using empirical mode decomposition 
(EMD) and GRU. The author considered the non-
stationary characteristics of the air pollutants data and 
the meteorological data by decomposing the sequence 
using empirical mode decomposition (EMD) and then fed 
each decomposed sequence to the GRU along with the 
meteorological data for training and forecasting. The 
result shows the EMD-GRU reduced the forecasting error 
compared to a single GRU. Qing (2023) developed a model 
for forecasting PM2.5 using grey relational analysis (GRA) 
and GRU. First, the meteorological features are compared 
against PM2.5. Then the reference sequence was 
constructed from the PM2.5 of the monitoring stations 
and grey correlation analysis was employed to compare 
and construct a spatial weight matrix. Followed by, the 
weight matrix was utilized for extracting the spatial 
relationship. After that, the forecasting was performed 
using GRU. The result showed that the GRU achieved 
better accuracy in reduced time compared to LSTM. 

Most of the researchers in the literature utilized deep 
learning-based recurrent neural networks and their 
variants. They handled the incompleteness and non-
stationary issues of the time series air pollutant data. The 
researchers also employed the benefits of utilizing a 
bidirectional network for improving accuracy. The 
accuracy can also be increased by considering many 
features as input. The increase of input features will result 
the curse of dimensionality and a serious overfitting issues 
in the prediction process. Hence, the consideration of 
irrelevant features may slow down the learning process 
and prediction accuracy. So, identification of the relevant 
features is important to improve the accuracy by 
preventing from misguiding during the learning process. 
Similarly, instead of GRU, the considerations of 
Bidirectional GRU improves the accuracy by processing 
the input data in both forward & backward directions and 
utilizing both the previous and next computational 
information at every time step. In this paper, the issues 
such as overfitting and curse of dimensionality are 
addressed by identifying the relevant air pollutant 
features of PM2.5 using random forest. The accuracy of 
the pm2.5 prediction is improved by handling 
nonlinearity, uncertainty and sequence dependency in the 
air pollutant data using bidirectional gated recurrent unit. 

3. RFBIGRU model 

The objective of designing the RFBIGRU model is to 
predict the PM2.5 pollutant accurately. It comprises of 
data preprocessing, feature selection, deep learning and 
performance evaluation phases. The following sections 
discuss the significance of the proposed RFBIGRU model 
and its architecture. 

3.1. Significance of RFBIGRU 

The RFBIGRU is a hybrid model which combines feature 
selection and deep learning concepts for an accurate 
prediction of air pollutant PM2.5. It helps to handle issues 
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such as overfitting, curse of dimensionality, non-linearity 
and uncertainty during the prediction process. The real 
time air pollutant data may have some incompleteness. In 
addition to that the pollutant data is nonlinear and 
uncertain in nature. Hence, the number of features to be 
utilized as the determinant features for PM2.5 also plays a 
role in the accuracy of the prediction process. The 
increase of the number of supporting features will 
increase the accuracy of the prediction also. But it will 
create a chance for the curse of dimensionality. Due to 
the curse of dimensionality, the consideration of less 
important features may take down the accuracy and 
increase the complexity. In this paper, the RFBIGRU model 
performs data cleaning to remove the incompleteness and 
min-max normalization to transform all data to the unified 
range which is suitable for prediction process. Followed by 
the powerful task of identifying the relevant features to 
PM2.5 is carried out using random forest to eliminate the 
curse of dimensionality and reduce the overfitting issues. 
Finally, it handles the non-linearity, uncertainty of 
pollutants data and finds the patterns hidden inside using 
the dominant deep learning methodology, bidirectional 
gated recurrent unit. 

3.2. RFBIGRU architecture 

The primary goal of RFBIGRU is to predict PM2.5 which is 
composed of four phases. The first phase is the data 
preprocessing phase. In this phase, the preliminary 
processes to enhance the quality of the input data are 
carried out. The missing values are identified and filled 
with the mean values. Followed by all the pollutant data 
are transformed using min-max normalization. Next phase 
is the feature selection phase. In this phase, the model 
complexity is reduced by selecting relevant features for 
the prediction process. All the features do not guarantee 
to improve the prediction accuracy. The minimal features 
that provide an efficient contribution to improving the 
prediction accuracy are identified before starting the 
prediction process. So the relevant features are selected 
by designing the random forest model. The feature 
importance calculated by the random forest feature 
selector is considered as the weight of those features 
towards the PM2.5. The features with high importance 
are selected as the relevant features.  

The third phase is the deep learning phase which 
performs the actual prediction of PM 2.5 pollutant in the 
atmospheric air. The recorded pollutant data is time series 
in nature. The temporal dependency in the recorded data 
retains the future trend of the pollutant data. Hence the 
uncertain and non-linearity of the data should also be 
analyzed properly for an accurate prediction of PM2.5. So, 
the deep learning-based bidirectional GRU is employed for 
the prediction of PM2.5. The regression-based deep 
learning methods such as MLP, RNN, LSTM and GRU are 
utilized as the competing models for BIGRU. The 
performance of these all models also can be improved by 
providing the required relevant features using random 
forest. The fourth phase is the performance evaluation 
phase. It measures the prediction performance of all 
methodologies and compares RFBIGRU performance 

against all other methodologies with and without random 
forest selected features in terms of RMSE and conducting 
the Friedman test. The architecture of RFBIGRU is given in 
Figure 1. 

3.2.1. Data Preprocessing 

The outcome of the prediction model depends on the 
input provided to the model. So, the accurate prediction 
results can be attained by providing the high quality data 
as an input. The air pollutant data may have 
incompleteness which will misguide the prediction 
process. So, the incomplete missing values in the dataset 
are replaced by the mean values of the past week's data. 
Then the data is transformed to a unified format by 
applying min-max normalization. It will transform all the 
data in the dataset to the range 0 to 1. Let ‘f’ denotes the 
feature, ‘minimumf’ denotes the minimum of feature ‘f’ 
and ‘maximumf’ denotes the maximum of feature ‘f’. The 
actual interval is denoted as [minimumf, maximumf] and 
the transformed new interval is denoted as [newMinf, 
newMAXf]. The data ‘d’ from the actual interval is 
transformed and mapped to the newly transformed data 
‘newDatad’ in the normalized interval [0, 1]. It is defined 
as follows, 

( )

f
d

f f

f f f

d minimum
newData

maximum minimum

newMAX newMin newMin

−
=

−

− +

 

(1) 

After normalization, the input air pollutant data is suitable 
for further feature selection and prediction processes. 

 

Figure 1. RFBIGRU Architecture 

3.2.2. Feature Selection 

The feature selection is an important dimensionality 
reduction technique. In this paper, the dimension of the 
dataset is reduced vertically. It identifies less important 
and irrelevant features and removing those features from 
the input dataset. Hence the complexity of the prediction 
process is reduced and the time taken for the 
computation also reduces with reduced input features 
(Subbiah and Chinnappan 2021). In this paper, the 
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reduction of dataset dimension is done by finding the less 
important features using random forest. It calculates the 
importance of each feature as node purity. In regression 
problems, the random forest calculates the MSE as the 
node purity. The increase in node purity represents the 
increase in the importance of the feature. So, the features 
with less node purity are identified as less important 
features and are not considered as input to the prediction 
process (Chen et al., 2020). 

Random forest: The random forest is one of the 
embedded categories of feature selection. It combines 
model-based (wrapper) and model-free (filter) feature 
selection concepts together. The model-free method finds 
the relevant features by calculating the weight of each 
feature using its inherent statistical characteristics. The 
weight is higher the relevance and importance of that 
feature are also higher. The model-based feature 
selection finds the subset of features that provides the 
highest model accuracy using the model as the internal 
feature selector. The subset with minimal error or highest 
accuracy is considered as the selected features (Subbiah 
et al., 2023)]. Thus, the random forest has both 
characteristics of feature selection. Random forest is the 
supervised category of machine learning model which 
follows the decision tree and bagging concepts. It builds 
the bag of samples by taking random samples and random 
features from the input dataset. Then it builds a decision 
tree using these bags. It calculates the importance of each 
feature and then builds the node for the decision tree. 
Likewise, for all the bags, it constructs decision trees. 
Normally, the tree with the topmost nodes has higher 
importance than the nodes at the bottom levels of the 
tree. Finally, it calculates the importance by measuring 
the average of all the trees constructed. As the random 
forest follows the bagging it is less prone to overfitting 
and contributes much to improving the prediction 
accuracy (Guo et al., 2023). 

3.2.3. Deep learning 

Deep learning methods can handle non-linear, seasonal, 
sequence-dependent air pollutant data effectively (Drewil 
and Al-Bahadili 2022, Subbiah and Chinnappan 2020). The 
time series air pollutant data has the internal sequence 
dependency behavior between different pollutants. 
Similar patterns of air pollutant data in history may 
appear in the future. It will be utilized to predict the air 
pollutant levels (Bouktif et al., 2020, Vijayanti et al., 2023). 
The following section discusses the deep learning 
methodologies such as MLP, RNN, LSTM, GRU and BIGRU 
employed for predicting the air pollutant PM2.5. 

Multilayer perceptron: MLP creates complex non-linear 
models which is suitable for predicting the air quality. It 
simulates the functionalities of the human brain. It has 
one input and one output layer and several hidden layers. 
Every layer has several neurons to process the data. For 
each input, there is one neuron at the input layer. 
Similarly, there is one neuron at the output layer for each 
output. The data processed in each layer is forwarded to 
the next layer in the forward direction (Manan et al., 
2021). The data provided at the input layer is processed 

and flows through the hidden layer to the output layer. 
The error is calculated at the output layer by comparing 
the generated output against the expected output. Then 
the calculated error is propagated in backward direction 
and the weight is adjusted in each layer (Xiaogang and Xin 
2022). Let X = (X1, X2, X3,…, XN-1, XN) be the input at the 
input layer and ‘O’ be the output. The H = (H1, H2, H3, … 
HN-1, HN) be the hidden vector sequence. The output at 
the hidden layer ‘OH’ is as follows, 

( )   O f X=
 

(2) 

1

 
N

H ih ho

i

O XW W
=

= +
 

(3) 

0

1

 
k

i ho l

i

O z w w
=

= +
 

(4) 

Where ‘f’ represents the activation function that triggers 
the neurons in the network and ‘N’ represents the total 
number of units. The ‘Wih’ and ‘Who’ are the weight 
matrices. The ‘Who’ and ‘Wlo’ are biases at hidden and 
output layers (Xiaowei 2022). 

Recurrent neural network: The RNN is the deep neural 
network that is designed to process the time series data 
which has the sequence dependency. The RNN 
architecture provides the looping facility for looping the 
hidden state information to maintain the sequence 
dependency at every computation in hidden unit. Thus, by 
considering the past input and past computation, it 
generates the present output at each time step. Unlike 
MLP, the RNN utilizes the recurrent relations and back 
propagation through time during forward pass and 
learning respectively (Zhao et al., 2018). The recurrence 
relation that updates the hidden state is as follows, 

( )1, t w t th f x h −=
 

(5) 

After applying the activation function ‘ht’ is as follows, 

( )1t hh t xh th tanh W h W x−= +
 

(6) 

The output ‘yt’ is as follows 

t hy ty W h=  

t hy ty W h=
 

(7) 

Where ‘x’ is input, ‘t’ is time step, ‘h’ is hidden state and 
‘y’ is output. 

Long short term memory: The LSTM is the advanced 
architecture of RNN which can handle long term 
dependencies that exist in time series data effectively 
(Ayturan et al., 2018). It overcomes the limitations of RNN 
network like gradient decent and short term memory 
capacity. It maintains the longer sequences of hidden 
state information in each unit for a long period. Hence it is 
free from gradient issues and keeps longer sequences of 
hidden state information. It is a powerful logic to analyze 
and process the sequence dependency. It maintains only 
the required information and removes the unwanted 
information in each unit by using three gates namely 
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forget, input and output (Li et al., 2017, Bekkar et al., 
2021). Let ‘t’ be the time, ‘xt’ be input at ‘t’, ‘ht’ be hidden 
state at ‘t’ and ‘yt’ be output at ‘t’. The ‘ft’, ‘it’ and ‘ot’ be 

forget, input and output gates. The ‘ct’, ‘ct-1’ and '' tc be 

the new cell, previous cell and the candidate. The ‘W’ and 
‘b’ are weight matrices and biases respectively. 

( )1. ,t f t t ff W h x b −
 = +   

(8) 

 ( )1. ,t i t t ii W hta x b −= +
 

(9) 

 ( )1. ,t o t t oo W h x b −= +
 

(10) 

( )t t th o tanh c=
 

(11) 

Where ‘ 'tc  is defined as follows,  

1t t t t tc c Cf i−= +
 

(12) 

Where ‘C̃t is defined as follows,  

 ( )1. ,c t t ct nh W hC x b−= +
 

(13) 

 

Figure 2. Structure of Gated Recurrent Unit 

Gated recurrent unit: The GRU is another extended variant 
of RNN that also can maintain the hidden state 
information for a long period and supports the analysis of 
the time series data (Guo et al., 2023, Subbiah and Senthil 
Kumar 2022). It can produce better results than LSTM by 
using the extended architecture in each cell in the 
network. Instead of three gates as LSTM, it utilizes only 
two gates namely update and reset, for maintaining the 
long sequences of hidden state information for a long 
period. The reset gate finds the unwanted information to 
be removed and finds the required information from the 
input. The update gate provides the current input and the 
previous hidden state information when the sigmoid 
function is triggered (Athira et al., 2018)]. The architecture 
of GRU is given in Figure 2. Let ‘x’ be the input, ‘h’ be the 
hidden state, ‘u’ be the update state, ‘r’ be the reset state, 
‘W’ be the weight matrix, ‘b’ be the bias weight matrix 

and ' '  be the sigmoid function. The update state at the 

period ‘t’ is  

( )1t u t u t uu W x W h b −= + +
 

(14) 

( )1t r t r t rr W x W h b −= + +
 

(15) 

( ) 11 * *t t t t th u h u h−= − +
 

(16) 

Where ′h̃t′ is defined as follows, 

 ( )1. * .t t t ttanh W r h W xh −= +
 

(17) 

Bidirectional gated recurrent unit: The BIGRU is a 
sequence model composed of two GRUs. One GRU 
processes the input in a forward direction from the 
beginning of the sequence whereas another one 
processes in a backward direction from the end of the 
sequence simultaneously (Xu et al., 2022, Ghose et al., 
2022). So, the network can learn the patterns from the 
previous and subsequent data to process the current 
input. Figure 3 shows the structure of BiGRU (Liu et al., 
2021, Andre Gensler 2019). Let the input be ‘x’, the 
hidden state be ‘h’, the hidden state of the forward GRU 

at time ‘t’ be 
'

' th  and the hidden state of the backward 

GRU be ‘ th ’. The BiGRU is defined as follows, 

( )1,t forward t th GRU x h −=
 

(18) 

( )1,t backward t th GRU x h +=
 

(19) 

t t th h h= 
 

(20) 

 

Figure 3. Structure of Bidirectional Gated Recurrent Unit 

3.2.4. Performance Evaluation 

The performance of the air pollutant PM2.5 prediction can 
be done in numerous ways. In this paper, the 
performance of the proposed RFBIGRU model is evaluated 
by measuring the root mean square error (RMSE). In 
addition to that the non-parametric significance test 
namely the Friedman test (multiple comparison test) is 
also conducted to show the improved performance of 
RFBIGRU compared to others.  

RMSE: The model’s goodness can be evaluated by 
measuring the difference between the actual value and 
the model’s predicted value. Let the total number of 
samples be denoted as ‘N’, the actual observed value is 
denoted as ‘actualValue𝑡’ and the forecasted value is 
denoted as ‘forecastValue𝑡 ’. The RMSE is defined as 
follows, 

( )

t 1

2

t t

1

RMSE

actualValue forecastValue

N

N ==

−



 

(21) 

Friedman Test: The Friedman test is the nonparametric 
type of the statistical test. It compares the proposed 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Andr%C3%A9+Gensler%22
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RFBIGRU model with all other models. It calculates the 
difference in forecasting error produced between two or 
more models. First, it sets the null hypothesis as the same 
mean value of the error produced by two or more models. 

Then the Friedman statistics is calculated as follows, 

( )

( )
2

2

1

112

1 4

K

j

j

K Kn
F R

K K =

 +
= − 

+   


 

(22) 

where ‘F’ denotes the Friedman Statistics, ‘K’ denotes the 
count of the forecasting models utilized for the 
comparison, ‘n’ denotes the number of forecasting values 
utilized and ‘Rj’ denotes the average rank sum of the jth 
forecasting model on the forecasting error ’r’. 

1

1 n
j

j i

i

R r
n =

= 
 

(23) 

Finally, the Friedman statistics is compared against 
Friedman critical value and the p-value is compared 
against the significance ‘α’. If the Friedman statistics is 
high and the p-value is less then the null hypothesis is 
rejected (Ghiasi et al., 2019, Hong 2018, Dong et al., 
2018). It shows that the proposed RFBIGRU model 
outperforms other compared models. 

4. Results and discussion 

The datasets utilized for the experiment and the 
forecasting results are presented in this section. It also 
discusses the results of random forest in finding the 
relevant features to PM2.5 for improving the forecast 
performance by reducing the complexity. Hence, it proves 
the superior performance of proposed RFBIGRU model in 
terms of root mean square error (RMSE) and Friedman 
test. 

Table 2. Statistical Characteristics of DDS dataset 

 

4.1. Dataset description 

The air quality data of two Indian cities Delhi and 
Amaravathi is considered for the experimental purpose. 
The air pollutants data of the Delhi region recorded daily 
from 1st January 2015 to 30th June 2020 and the air 
pollutant data of Amaravathi from 1st December 2017 to 
30th June 2020 are considered for forecasting the 

particulate matter 2.5 (PM2.5). The datasets consist of 13 
features like, date, PM2.5, PM10, NO, NO2, NOx, NH3, CO, 
SO2, O3, Benzene, Toluene and Xylene. The statistical 
characteristics like minimum, maximum, mean and 
standard deviation of the features of Delhi region dataset 
(DDS) and Amaravathi region dataset (ADS) are given in 
Table 2 and Table 3. 

Table 3. Statistical Characteristics of ADS dataset 

 

The visualization of the features of Delhi city air quality 
data is given in Figure 4. The features of Amaravathi city 
air quality data are visualized in Figure 5. The dataset is 
partitioned into training, validation and testing datasets 
with 70:15:15 instances. First 70% of instances are utilized 
for training, the next 15% instances are utilized for 
validation and the next 15% instances are utilized for 
testing. Totally the dataset has 13 features including the 
date. The date feature is used as an indexing feature. The 
PM2.5 is the target feature and the remaining 11 features 
are determinant features. 

4.2. Experimental results 

The experiment is conducted by using Python in the 
Tensorflow environment. All the features in DDS and ADS 
do not contribute to improving the performance of 
forecasting the air quality pollutant PM2.5. So, the 
random forest regression is employed to find the 
importance of features. It calculates the importance of 
each feature as node purity. In regression problems, the 
random forest calculates the MSE as the node purity. The 
increase in node purity represents the increase in the 
importance of the feature. The importance of DDS and 
ADS features in descending order is given in Table 4. It 
shows the order of high importance to less-importance 
features of PM2.5 as PM10, Benzene, NO, NH3, NO2, CO, 
SO2, Toluene, NOx, O3 and Xylene. 

The importance of features of DDS and ADS are 
graphically shown in Figure 6. It demonstrates that the 
feature importance drops steadily from CO feature (5th 
feature). After that no such major difference in the 
importance value for the remaining features in both DDS 
and ADS. So the topmost 5 features PM10, Benzene, NO, 
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NH3 and NO2 are taken into consideration for forecasting 
PM2.5. 

 

Figure 4. Features of DDS Dataset 

 

Figure 5. Features of ADS Dataset 

 

Table 4. Importance of DDS and ADS Features  

 

 

Figure 6. Importance of Features (a) Delhi Dataset (DDS) (b) 

Amaravathi Dataset (ADS) 

The particulate matter PM2.5 is forecasted by designing 
the bidirectional GRU with selected features using random 
forest (RFBIGRU). The model is configured as follows. The 
inputs is 5, the outputs is 1, the hidden layers are 3, the 
units in the first hidden layer are 30, the units in the 
second hidden layer are 20 and the units in the third 
hidden layer are 10, the optimizer is adaptive moment 
estimation (Adam) and the mean absolute error (MAE) is 
the loss function. The model is trained and then validated 
using the time series cross-validation on a rolling basis. 
RFBIGRU model is tested to forecast PM2.5 using the 
testing dataset. PM2.5 is also forecasted by using 
competing models such as MLP, RNN, LSTM, GRU and 
BIGRU. The forecasting results of MLP, RNN, LSTM, GRU 
and BIGRU with all features and selected features for DDS 
are shown in Figure 7.  

The PM2.5 forecasting graph of MLP with selected 
features of random forest in Figure 7(b) has less deviation 
from actual PM2.5 compared to the forecasting graph of 
MLP without feature selection in Figure 7(a). Similarly the 
PM2.5 forecasting graph of RNN, LSTM, GRU and BIGRU 
with random forest in Figure 7(d), Figure 7(f), Figure 7(h), 
Figure 7(j) is closer to the actual PM2.5 graph compared 
to forecasting graph of RNN, LSTM, GRU and BIGRU 
without feature selection in Figure 7(c), Figure 7(e), Figure 
7(g) and Figure 7(i). The example comparison of the 
PM2.5 forecast results of the proposed RFBIGRU against 
the actual, MLP, RNN, LSTM, GRU, BIGRU, RFMLP, RFRNN, 
RFLSTM and RFGRU for DDS is illustrated in Figure 8. 
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Figure 7. PM2.5 Forecasting Results of DDS without Feature 

Selection and with Feature Selection 

 

Figure 8. Sample Comparison of PM2.5 Forecasting Results of 

DDS 

Figure 8 proves the improvement of the proposed 
RFBIGRU PM2.5 forecast result compared to others. In 
Figure 8, the PM2.5 forecast (blue color) is much closer to 
actual PM2.5 (red color) compared to all other models. 
The selected features of the random forest help to 
improve the bidirectional gated recurrent unit 
performance in forecasting PM2.5 for DDS. The 
forecasting results of MLP, RNN, LSTM, GRU and BIGRU 
with actual features and random forest selected features 
for ADS are shown in Figure 9. The PM2.5 forecasting 
graph of MLP with selected features of random forest in 
Figure 9(b) has less deviation from actual PM2.5 
compared to the forecasting graph of MLP without 
feature selection in Figure 9(a). Similarly, the PM2.5 
forecasting graph of RNN, LSTM, GRU and BIGRU with 
random forest in Figure 9(d), Figure 9(f), Figure 9(h), 
Figure 9(j) is closer to the actual PM2.5 graph compared 
to forecasting graph of RNN, LSTM, GRU and BIGRU 

without feature selection in Figure 9(c), Figure 9(e), Figure 
9(g) and Figure 9(i). The example comparison of the 
PM2.5 forecast results of the proposed RFBIGRU against 
the actual, MLP, RNN, LSTM, GRU, BIGRU, RFMLP, RFRNN, 
RFLSTM and RFGRU for ADS is illustrated in Figure 10. 

 

Figure 9. PM2.5 Forecasting Results of ADS without Feature 

Selection and with Feature Selection 

Figure 10 proves the important role played by feature 
selection in improving PM2.5 forecasting results of MLP, 
RNN, LSTM, GRU and BIGRU. Among all, the PM2.5 
forecasts of the proposed RFBIGRU (blue color) is much 
closer to actual PM2.5 (red color) compared to all other 
models. The selected features of the random forest 
helped to improve the bidirectional gated recurrent unit 
performance in forecasting PM2.5 for ADS. The 
performance of the proposed RFBIGRU model is also 
tested by using RMSE. 

 

Figure 10. Sample Comparison of PM2.5 Forecasting Results of 

ADS 
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Table 5 shows the comparison of the forecasting results of 
DDS and ADS PM2.5 prediction models in terms of RMSE. 
The RFBIGRU outperformed other models by producing 
the least RMSE of 6.813. It also proves that all models 
with random forest selected features achieved better 
results than the models with all actual features. The MLP 
with selected features produced an RMSE of 6.880 which 
is less than 7.258 of the MLP with all actual features. The 
RNN with random forest selected features achieved an 
RMSE of 6.861 which is less than 7.089 of the RNN with all 
actual features. The LSTM with random forest selected 
features produced an RMSE of 6.843 which is less than 
7.025 of LSTM with all actual features. The GRU with 
random forest selected features achieved a good result 
with the RMSE of 6.835 which is less than 6.936 of the 
GRU with all actual features. The BIGRU with random 
forest selected features produced remarkable PM2.5 
forecasting results with an RMSE of 6.813 which is less 
than 6.901 of BIGRU with all actual features. In addition to 
that, the Friedman test is also performed and RFBIGRU 
performance is compared against all others. 

Table 5. Forecasting Results of DDS and ADS in terms of RMSE 

 

Table 6 and Table 7 provides Friedman test results for DDS 
and ADS datasets respectively. The generality of RFBIGRU 
is evinced using Friedman test for both DDS and ADS 
datasets. Table 6 shows the nonparametric Friedman test 
RESULTS for DDS. The RFBIGRU compared against all other 
models with the significance level as 0.10, 0.02 and 0.05.  

Table 6. Friedman Test Results for DDS 

 

In all cases, the null hypothesis is rejected. It proves that 
the proposed model achieved a better PM2.5 forecasting 
result than all other models. Table 7 shows that the 
Friedman test is conducted between RFBIGRU and all 

other models for ADS dataset with the significance levels 
as 0.10, 0.02 and 0.05. All the three cases demonstrates 
that the null hypothesis is rejected. It evinces the superior 
performance of RFBIGRU against all others. 

Table 7. Friedman Test Results for ADS 

 

5. Conclusion 

In this paper, the highly hazardous PM2.5 pollutant in the 
air is predicted using the RFBIGRU model to save 
communities' lives by protecting them from severe health 
issues. A precise prediction of PM2.5 is achieved by 
RFBIGRU by reducing challenges like incompleteness, the 
curse of dimensionality, overfitting and improving the 
accuracy by using random forest feature importance as 
feature selector and bidirectional gated recurrent unit 
deep neural network for analyzing the temporal sequence 
patterns in the historical air pollutant data. The model's 
generality is also tested by using two different 
characteristic air pollutant data collected from two 
different regions namely Delhi and Amaravathi in India. 
The proposed RFBIGRU performance is also compared 
with MLP, RNN, LSTM, GRU, BIGRU, RFMLP, RFRNN, 
RFLSTM and RFGRU by measuring root mean square error. 
RFBIGRU produces the least RMSE 42.217 for the Delhi 
region and 6.813 for the Amaravathi region. The Friedman 
statistical test is also conducted and evinced the 
superiority of RFBIGRU. This research still has a future 
scope for enhancing the PM2.5 prediction accuracy by 
considering meteorological and population data and also 
incorporating the nature-inspired optimization 
techniques. 
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