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Abstract 

Environmental protection and the need for accurate pollutant forecasting have become increasingly 

important as worries about environmental issues and the harmful effects of pollution have grown. 

Predictive accuracy of air pollutants is generally unsatisfactory due to the fact that conventional 

methodologies prioritise time series analysis over the important spatial transmission dynamics 

among neighbouring locations. To address this inherent limitation, our proposed solution 

introduces an innovative Time Series Prediction Network, augmented by the auto-optimization 

capabilities of a Spatio-Temporal Graph-based Neural Network. This groundbreaking network 

comprises distinct spatial and temporal modules. The spatial module harnesses a Graph Sampling 



 

 

and Aggregation Network to extract essential spatial information from the data. Simultaneously, 

the temporal module integrates a Bayesian approach with a Complex Valued Graph Gated 

Recurrent Unit (BCV-GRU), seamlessly incorporating a graph network into the Gated Recurrent 

Unit (GRU) to capture temporal intricacies. Moreover, to manage the challenge of model 

inaccuracy stemming from inappropriate hyperparameters, Bayesian optimization was employed. 

The efficacy of our proposed method was validated using real PM2.5 data from the USGS website, 

showcasing a significant enhancement in prediction accuracy. This study puts forth a robust and 

effective approach for forecasting PM2.5 concentrations, bridging gaps in existing methodologies 

and contributing substantially to the evolution of environmental prediction models. 

 

Keywords: Environmental Protection, Pollutant Prediction, Spatio-Temporal Data, Graph-Based 

Neural Network, Bayesian Optimization and PM2.5 Forecasting. 

1. Introduction 

Urban air pollution, an escalating issue rooted in urbanization and economic conditions, substantial 

risks towards the ecosystem, wellness of humans, including global warming [1]. The surge in 

human and industrial activities, coupled with ongoing fossil fuel usage, results in the emission of 

harmful air pollutions like NO2s, O3s, SO2s, & COs. These pollutants substantially degrade air 

quality, impacting health and the environment. 

Exposure to elevated NO2s & SO2s has a negative impact on the airways, particularly in young 

infants and older people. Short-term exposure to NO2s can trigger asthma attacks, emergency 

room visits, and hospitalizations, while prolonged exposure can lead to respiratory infections 

[2].Additionally, NO2 contributes to acid rain and SO2 generates harmful tiny particles when 

interacting with other atmospheric elements, posing risks to human health and ecological balance 

(EPA, 2022a; EPA, 2022b). Elevated O3 concentrations affect groups like children, the elderly, 

outdoor enthusiasts, and asthma patients. Research has connected repeated inhalation of O3 to a 

number of health problems, such as chronic pulmonary inflammatory processes, difficulty inhaling 

when outside, and irritation in the airways [3]. Elevated CO levels deplete oxygen and have an 

impact on vital tissues such as the cerebral cortex and heart (EPAs, 2022s). 



 

 

Notably, city air pollution exceeds WHO threshold limits (WHO, 2021), intensifying its impact on 

human health. Consequently, constant monitoring and predictive analysis of urban air quality, 

especially in emerging nations like Vietnam, are crucial. Emerging technology likes the IoTs & 

ICTs play pivotal roles. Finding a dependable solution to mitigate risks posed by poor air quality 

in urban areas is imperative. Forecasting the condition of the air is difficult, though. Although 

conventional techniques such as self-regressive techniques, average movement, and exponentially 

smoothed variables have been used [4], their efficacy is restricted because of the complex interplay 

among air pollution and weather variables.  Thus, there's a growing need for more accurate, 

adaptable models that can continuously learn and update with new data. 

Fig. 1:  Monitoring stations observing air quality from USGS website (https:// earth explo 

rer. usgs. gov) 

Several recent comprehensive reviews [5-11] highlight the utilization of various machine learning 

methods to check the pollutions. It constructed the individual methods; each pollutant requires 

substantial effort in deployment, maintenance, and monitoring. 

While traditional time series forecasting methods like VARs , VARMAs, VAR-MAXs, SVARs 

utilized the  multiple-series forecasted with a singularly techniques machine learning approaches 

have shown superiority over VAR-based methods [12]. Moreover, VAR-based approaches 

necessitate stationary period, it inadequate for non-stationary  qualities of air data. This paper 

presents a global prediction technique that makes use of the N-BEATS  in order to overcome these 



 

 

constraints. Comprising linked entirely interrelated levels with in both directions residual linkages, 

this framework seeks to forecast various air contaminants at the same time while accounting for 

connections underlying contaminants and variations in atmospheric scenarios. To understand 

temporal shifts and interrelationships across factors, geospatial and statistical correlation analyses 

were carried out. The key contributions of the proposed work is given below, 

• Developing distinct spatial and temporal modules which incorporates a Graph Sampling 

and Aggregation Network for essential spatial information extraction. 

• Temporal module integrates a Bayesian with Complex Valued Graph Gated Recurrent Unit 

(BCV-GRU) for capturing temporal intricacies. 

• Employing Bayesian optimization to address the challenge of model inaccuracy arising 

from inappropriate hyperparameters enhances the robustness and reliability of the 

predictive model. 

• Validating the proposed method using real PM2.5 data from the USGS website 

demonstrates a significant improvement in prediction accuracy compared to traditional 

methodologies. 

Fig. 2: Air quality patterns on a daily basis (spanning February 2021 to August 2022). 

2. Review of related works 

2.1 Traditional model for predicting PM2.5 

The conventional methods for predicting PM2.5 levels encompass statistical approaches and 

machine learning technologies. Statistical methods, due to their simplicity, focus primarily on 

understanding PM2.5 formation mechanisms and are extensively employed in air quality 

prediction. For example, [13] used ARIMAs with quantitative forecast to predictive daily and 

hourly levels of PM2.5 in Hong Kong. Using a period of twenty- and a generalized addition 

framework for forecasting, [14] investigated the relationship among PM2.5 and atmospheric 



 

 

conditions in Chengdu. However, these statistical methods have limitations due to the intricate 

nature of PM2.5 formation. 

Machine learning techniques, leveraging historical data, address the nonlinearities in actual air 

pollution data, resulting in improved prediction accuracy. [15] assessed hybrid models like 

ARIMAs, ANNs, SVMs, PCRs, DTs, & Catboosting, where Catboosting exhibited the most 

optimal evaluation. ARIMA-ANNs & DTs yielded satisfactory outcomes. [16] created and 

assessed an SVMs approach to PM2.5 in crowded areas intricate topography, showcasing SVM's 

forecasting capabilities in areas that are comparable to tropical ones. used a MLPs  to forecast and 

evaluate PM2.5 concentrations in eight major Chinese provincial cities, emphasizing the need of 

lowering gaseous emissions in PM2.5 control. 

Even the seemingly simple methodologies like machine learning and mathematical frameworks, 

however, are finding it difficult to meet the demands of large amounts of data due to the enormous 

rise in the amount of information. They tend to overfit and lack the sophisticated modeling 

capabilities needed for comprehensive analysis. 

2.2 Forecasting PM2.5 Using DL Techniques 

Deep learning has recently received a lot of attention for its skill in pollutants predictions because 

to its strong learning ability as well as capacity to represent nonlinear information. [18] used a 

hybrid model that combined two deep connections, CNN as well as LSTM. The CNNs extracted 

input data features, while the LSTM model accounted for pollutant dependencies over time. Their 

findings demonstrated enhanced prediction performance compared to traditional models. [19] 

utilized LSTM to forecast PM2.5 levels in Tehran, achieving an 80% explanatory capacity for 

PM2.5 variability. [20] also suggested a CNN network method for analyzing previous sensor data 

and forecasting air pollution concentrations, which outperformed several sophisticated prediction 

mechanisms in this sector. 

Despite the widespread application of these networks in air quality prediction, most fail to 

comprehensively capture data characteristics across both temporal and spatial dimensions. Several 

deep learning algorithms emphasize Euclidean space, however air quality observation points are 

typically not Geometrical. 

2.3 Forecasting PM2.5 Utilizing GNNs Techniques 

A technique known as GNNs uses a NNs to find, extracts, and interpret patterns and characteristics 

in graph-structured information. It may be used for a variety of graph teaching applications, such 

as differentiation, forecasting, grouping, and categorization.  Typically, a graph having G = (V, 

E), where V = {V1, V2 . . . Vn} node , E = {E1, E2 . . . Em} edge set. GNNs excel in adapting to 

complex structures by delineating relationships between multiple concepts and delineating 

intricate nonlinear structures. 



 

 

Compared to other neural network models, GNNs possess the capacity to model data 

characteristics from two facets: structure and function. Consequently, they offer enhanced 

versatility in modeling spatiotemporal data and extracting information. 

In recent years, GNNs have found widespread application in air quality prediction due to these 

characteristics. [21] presented a technique for predicting air pollution concentrations in Japan and 

China using MASTGNs. A PM2.5-GNN model that is skilled at detecting dependency over time 

was presented by [22]. [23] integrated the PM2.5 distribution partial differential equation with the 

DPGN framework in order to combine interpretability and information extraction. A thorough 

forecasting technique centered on spatial dispersion among nearby locations was presented by [24–

25].They fail to effectively combine GNNs' spatial information capture with recurrent neural 

networks' time series processing advantages. 

Hence, traditional and deep learning-based prediction methods encounter challenges in adequately 

extracting data features across spatial and temporal dimensions. This article integrates 

spatiotemporal networking controlled recurrent units to present a unique time period forecasting 

system. This combination includes the gradient problem-solving ability of recurrent neural 

networks that are used in historical prediction, the geographical data extracting ability of GNNs, 

and the powerful hyperparameter optimization abilities of Probabilistic techniques. 

3. Proposed BCV-GRU framework  

BCV-GRU comprises two modules: BGraphSAGEs & BGraphGRUs collaboratively leveraging 

spatio-temporal relationships within the data. As shown in Figure 1, BGGRU starts with the 

dimension of space component and makes use of BGraphSAGE to acquire geographical 

characteristics form the supplied information, create nodes embedded data, and combine regional 

characteristics. The time dimension modules is covered in the next section. BGraphGRU is used 

to represent spatio-temporal relationships while maintaining spatial features. In the end, the model 

uses two completely linked regions to forecast predicted PM2.5 concentrations. The model uses 

the Bayesian approach to adjust hyper parameter settings for each component and the entire model 

in order to maximize effectiveness. Additionally, Figure 2 depicts the learning process, detailing 

model training and testing stages. During training, the model preprocesses training and validation 

datasets, initializes network parameters randomly, and generates the graph's adjacency matrix 

based on geographic information. The BGGRU network extracts spatio-temporal features and 

predicts future PM2.5 concentrations, adjusting network weights based on the calculated 

prediction error until reaching the specified number of epochs. During testing, the trained BGGRU 

processes test data to predict PM2.5 concentrations, evaluated using a designated evaluation 

function. 

The model incorporates a skip connection between the spatial and temporal modules. In deep 

neural networks, deep layers often face challenges like overfitting and gradient issues, impeding 

parameter updates in shallow layers. The skip connection involves transmitting information from 

the current layer not only directly but also after nonlinear transformation, addressing overfitting 



 

 

and gradient issues to some extent. The model's bypass connection method is shown in Figures 3 

as well as 4, where results from both the first BGraphSAGE & BCV_GRU are received by the last 

entirely linked layer. This skip connection accelerates model stability and mitigates overfitting by 

incorporating information from different layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flow of the proposed framework 
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Figure 4:  Flow chart for BGGRUs 

 

3.1 The spatial aspect of BGGRU (BGraphSAGE) is its Spatial Dimension Module 

Conventional graph embedding methods, relying on matrix decomposition and random walk, 

necessitate utilizing all node information iteratively to acquire vector representations. These 

methods inherently operate in a transductive manner. GraphSAGE introduces a technique 

involving sampling and aggregation. Initially, it uses node connections to sample their neighboring 

nodes, followed by the continuous fusion of adjacent node information using a multi-layer 

aggregation function. GraphSAGE's organizational structure is seen in Fig. 5. This paper's method 

uses GraphSAGE within an analogous manner to combine local node characteristics, model every 

node in the network, & retrieve their properties from the collected information. 

 

 

 



 

 

Figure 5:  A graphical depiction showcasing the methodology of GraphSAGE sampling and 

aggregation 

The graph, denoted as ς = (υ, ε), consists of a set of nodes (υ) and edges (ε). The each node collects 

surrounding embeddings of nodes in every repetition K by averaged such vectors. After that, the 

current embedded vectors and the aggregation vectors merge, and the output is computed using a 

linear layer of data with an activated sigmoid.  

3.2 The temporal aspect of BGGRU, known as BGraphGRU, focuses on handling time-

related dependencies within the BGGRU model 

The GRU, a variant of LSTM, addresses gradient issues in long-term memory & back propagation. 

It is often used for extracting behavioral characteristics from historical information and frequently 

performs similarly to LSTM, however with less complicated implementation and computations. 

The suggested BGraphGRU preserves the same chain structure as GRU, but instead of using linear 

transformations to extract details of structure from snapshots at every step, it uses GraphSAGEs. 

With this change, BGraphGRU can now manage LSTMs dependencies & efficiently learning their 

temporal properties of incoming graphs, simulating spatio-temporal connections while 

maintaining a geographic framework. 

The GRU introduces reset and update gates to alter how hidden states are calculated in recurrent 

neural networks. BGraphGRU follows a similar chain structure to GRU but uses GraphSAGE 

instead of the original data. The reset gate, akin to GRU, influences the hidden state, determining 

how much past information should be disregarded Here, At represents BGraphGRU's input at time 



 

 

t−1, Ht−1 represents the undetected state with moment t-1, and Wr & br represent the reset gate's 

weighted & bias vectors. 

BGraphGRU's updating gates combines LSTM's memory and inputs gating.  It influences both the 

current and previous hidden units, determining how much valuable information should be passed 

down. Its formula is: 

𝑟𝑡 = 𝜎(𝑊𝑟𝐴𝑡 + 𝐺𝑟𝑎𝑝ℎ𝑆𝐴𝐺𝐸𝑟
𝑘(ℎ𝑡−1, 𝐴𝑡−1) + 𝑏𝑟 

 

(1) 

At time t, At∈RN×N represents the input for GraphGRU, ℎ−1∈ ht−1∈RN×d stands for the hidden 

state at time t - 1, Wz∈RN×d and bz∈Rd denote the weight and bias matrices respectively for the 

update gate. 

𝑍𝑡 = 𝜎(𝑊𝑧𝐴𝑡 + 𝐺𝑟𝑎𝑝ℎ𝑆𝐴𝐺𝐸𝑟
𝑘(ℎ𝑡−1, 𝐴𝑡−1) + 𝑏𝑧 

 

(2) 

following this, BCV-GRU proceeds to compute the calculation for subsequent hidden state . 

ℎ̌𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝐴𝐴𝑡 + 𝑊ℎℎ(𝑟𝑡 ∗ 𝐺𝑟𝑎𝑝ℎ𝑆𝐴𝐺𝐸ℎ
𝑘(ℎ𝑡−1)) + 𝑏ℎ) 

 

(3) 

Given the formula previously, the gate that resets controls the transition from the prior time step's 

concealed status to the current time step's prospective concealed state. The concealed state at the 

final time step may include all previous data in the time sequence up to that point. As such, past 

data that may not be relevant to the forecast may be eliminated via the reset gate. Finally, 

calculating the hidden state hht at time step t entails utilizing the current timed step's updates 

gateway zt and combining the prior time step's concealed state h1ht1 with the candidate concealed 

version heht at the current time step. 

ℎ𝑡 = (1 − 2𝑡) ∗ 𝐺𝑟𝑎𝑝ℎ𝑆𝑄𝐴𝐸ℎ
𝑘((ℎ𝑡−1) + 𝑧𝑡 ∗ ℎ�̌� 

 

(4) 

3.3 Optimization based on Bayesian Hyperparameter  

Although the GNNs  technique is a popular tool for predicting air quality, choosing a model's the 

hyperparameters is generally based on experience, much as when using different machine learning 

techniques. Nevertheless, this methodology not only necessitates significant time and resource 

investment but also bears no assurance about the achievement of ideal hyperparameters. 

Therefore, the first crucial step in solving these problems is selecting an approach that works well 

for determining the ideal collection of parameters for the model. Bayesian optimization for black 

box functional situations has become the standard hyperparameter calculation method in recent 

years. The aim function of Bayesian optimization must respect local smoothing requirements such 

as Lipschitz or equal continuous in order for it to work globally. By using an acquisition functional 

for efficient discovery and usage, Bayesian optimization may approximate complicated function 



 

 

objectives with faster evaluation times. Thus, we made use of the Bayesian technique to maximize 

the model's parameters, guaranteeing the accuracy of the model used to predict. 

Step 1 the hyperparameters losses the product where it is optimised to make a meaningful 

connection. 

𝜌∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑙𝑜𝑠𝑠(𝑝)𝑝𝜖𝑝 

 

(5) 

The ideal set of hyperparameters identified by the Probabilistic a hyperparameter optimization 

approach is denoted by the symbol p∗ in this formula. The input to the the hyperparameter set is 

denoted by p, the complete set of the hyperparameters is represented by P, and the function of goal 

that has to be optimized is indicated by loss(⋅).  Within our model, the hyperparameters slated for 

optimization encompassed the number of training epochs (ℎnum_epoch), the overall model's 

learning rate (learning_rate), the count of BGraphSAGE layers (num_layers of BGraphSAGE), 

the edges per node (edges_per_node) in the graph, and the count of BGraphGRU layers 

(num_layers of BGraphGRU).the mean absolute error, outlined in the following formula: 

𝑙𝑜𝑠𝑠(𝑝𝑗) =
1

𝑛
∑|𝑦�̌�  (𝑝𝑗 − 𝑦𝑖)|

𝑛

𝑗=1

 

 

(6) 

Within this equation, pj denotes the j-th hyper-parameter, y represents the actual range, and y^(pj) 

signifies their output utilizing the hype-rparameter  pj. The subsequent phase of the Bayesian 

approach involves constructing a datasetD={(x1,y1),(x2,y2),…,(xi,yi)}, where xi denotes the i-th 

hyper-parameter , and yi represents the fault associated with the output derived from the particular 

set of hyper-parameters. The Bayesian technique then moves on by estimating the function's 

distributions and deriving a substitution model M using a restricted amount of observations data. 

This model adheres to a Gaussian distribution G characterized by a variance denoted ask and a 

mean denoted as μ. The posterior probabilities p(xi,D) is derived from the datasetD.  

𝜌(𝑙𝑜𝑠𝑠) = 𝐺(𝑙𝑜𝑠𝑠; 𝜇, 𝑘) 

 

(7) 

𝜌(𝑙𝑜𝑠𝑠|𝐷) = 𝐺(𝑙𝑜𝑠𝑠; 𝜇𝑙𝑜𝑠𝑠|𝐷,   𝑘𝑙𝑜𝑠𝑠|𝐷) 

 

(8) 

The function responsible for establishing the guidelines for the subsequent observation point is 

termed the acquisition function a(p).  

𝜌∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑃, 𝑝(𝑦|𝑥)) 

 

(9) 

The primary aim of Bayesian hyperparameter optimization involves iteratively objective function 

loss(⋅) by gradually increasing observation points, guided by the acquisition function  a(p). Finding 

the lowest threshold for the target variable loss(⋅) is the primary objective for this process. Thus, 



 

 

the previously indicated procedures are repeated until the optimum amount of repetitions is 

achieved and the ideal parameters are found. 

4. Investigational Results  

It's critical to determine which characteristics or parameters have the most predictive power over 

the Radio Frequency once it has been trained. High relevance % factors are important predictors 

of the algorithm's result, having a big influence on the algorithm's results. Analyzing and 

quantifying variable importance aids in selecting pertinent features for the model.  

For this study, different sets of variables, specifically 10 variables, were Variable relevance varied 

significantly among various air quality classes—good, mild, unhealthy delicate, and danger. The 

distance away from the road, LSTs and SAVIs were found to be the most important factors among 

the ten variable inputs in the present model. Band 4 was eliminated since its significance did not 

alter, suggesting that it had little bearing on the entire significance of the model. 

4.1 Variables of Independent LSTs 

Usually, when solar radiation and solar power cross paths with the earth, the earth warms. 

LSTs thereby measures the thermal radiation that the land area emits. The LST provides an average 

annual depiction of land surface temperatures (refer to Fig. 6) measured in degrees Celsius via 

spectroradiometer imaging (LandSat 8). The research region has a prevailing sequence of mild to 

high surface-level temperatures, with LST ranging from 27.68 to 46.44 degrees Centigrade. LST 

may be calculated analytically with the use of the following formula (Eq. 10): 

𝐿𝑆𝑇 = (
𝐵𝑇

1 + (0.00115 ∗
𝐵𝑇

1.4388) ∗ 𝐿𝑛(∈)
) 

 

(10) 

4.1.1 Band of Landsats: Images with nine different spectral bands were captured by the Landsat 

(8) OLIs and TIRSs. Organizations 1 though seven and nine have a field of view of thirty meters. 

Over a span of five years, five Landsat (8) bands (B2-B6) were obtained at no cost through the 

http://earthexplorer.usgs.gov. In the R these spectrum underwent correction & calibration 

procedures to prepare them for subsequent utilization in index estimation. 

4.1.2 SAVIs:  In regions where vegetation cover is sparse, the Soil-Adjusted Vegetation Index 

(SAVI) serves to mitigate the impact of soil brightness on the NDVIs. Within these specific areas, 

SAVI values typically span between -0.77 and 0.69. SAVI's mathematical calculation is derived 

from the following equation (Eq. 11), where 'L' represents the soil brightness correction factor, 

typically assigned a value of 0.5 for various land cover types. 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
∗ (1 + 𝐿) 

 

(11) 

 

http://earthexplorer.usgs.gov/


 

 

4.1.3 BU indices: By deducting the NDVI (Eq. 12) from an NDBs index (Eq. 11), the 

BUs indicator (Eq. 3) is derived. The NDBs list, also known as the normalization differential built-

up directory, may be determined with the equations (Eq. 12).The Built-up index varies from -

0.69 to 0.52 within the study area, indicating an average to high dispersal tendency over the region, 

as shown in Figure 6.. 

𝐵𝑈 = 𝑁𝐷𝑉𝐼 − 𝑁𝐼𝑅 

 

(12) 

𝑁𝐷𝐵 =
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 

 

(13) 

4.2 Proximity from the roads 

The region’s primary road network was taken from OpenStreetMap (www.openstreetmap.org). 

The resulting vector layers depicting the roadways have been processed in the ArcMap program 

to generate an abstract level that shows the separation from the road network (see Fig. 6). The 

Euclidean spacing function in ArcMap estimated distances between pollutants in the air detection 

sites and measurement locations (Fig. 6). 

4.2.1 NDVIs: As per equation (Eq. 5), the NDVIs is computed, with its values consistently falling 

within the range of -1 to +1. While NDVI scores close to 0 are often linked to urban environments, 

a value of +1 indicates a significant probability of thick vegetation. Generally speaking, green 

vegetation is more reflective in the NIRs with green light frequencies than in other wavelength 

ranges. The research site's mean NDVIs score, which varies from -0.25 to +0.30, shows a lack of 

dense greenery in this region. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  The significance of parameters for several categories: 'a' stands for excellent, 'b' 

for moderate, and 'c' for hazardous 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Mean LST (a), mean spectrum 2 (b), mean spectrum 3 (c), mean spectrum 4 (d), 

mean spectrum 5 (e), mean spectrum 6 (f), mean SAVI (g), average BU (h), average NDVI 

(i), proximity to highways (j), and proximity from stations (k) are the factors that affect the 

mapping of pollutants in the air 

 



 

 

Figure 8: Four different classes of air quality have predictive models: the danger class (d), 

the excellent class (a), the intermediate class (b), and the random forest class (d) 



 

 

 

Figure 9: Validity structure for a database 

4.3 Forecasting Air pollution  

PM10 data spanning four years (2018–2021) were collected from 5 region situated in the North 

Ras Gharib region for analysis. The collected spatial dataset underwent preparation, stacking, and 

normalization to establish separate datasets for model training and testing. In order to guarantee 

uniform random distributions throughout every algorithm's procedure loops and avoid 

optimization breakdown, it was imperative to provide a seed value. 

Among the stations, the East Arta station fell into the "good" air quality class, exhibiting average 

PM10 measurements within the clear and good air limits outlined by the EPA in 1997. Three sites, 

however—Hana feld, Hoshia feld, and Northwest Gharib feld—were placed in the "average" 

category as they PM10 analysis findings remained in line with the EPA's moderate air pollution 

criteria (1997). However, the Arta feld station was classified as "hazard" class, with its highest 

recorded PM10 value exceeding the EPA-recommended threshold of 424 µgm−3 (1997). 

3 PM10 index classes—good, reasonable, with hazardous—and 10 variables were incorporated to 

create a BCVs framework (Fig. 7). Differential sensitivity patterns to all PM10 categories were 

identified across the Landsat 8 spectrum bands (2, 3, 4, 5, and 6) lacking considerable predictive 

ability. In the model, bands 2 and 5 showed very little reaction, but band 6 showed significant 

sensitivity in the majority of the predicted classes. Additionally, the thematic layer depicting 

distance from roads and LSTs demonstrated heightened sensitivity within the prediction model. 

Spatially, lower values were concentrated in the western parts across all classes (Fig. 8), suggesting 

a similarity in prediction model performance across different regions. 

Table 1: Overview of the percentage distribution of prediction subclasses in the RG area. 



 

 

Category Area (km2) % 

GOOD 86 6 

MODERATE 437 28 

HAZARD 1096 69 

 

Table 2: Data on the accuracy & Kappa scores of the predictive techniques 

Machine Learning 

Techniques 

Details of ACC 
SD with ACC 

ACC Kappa 

RFs 99.30 97.56 0.0067 

 

The land cover indexes, specifically SAVIs & BUs, exhibit diverse patterns within the predictive 

subcategory. Notably, SAVIs shows comparatively lower responsiveness across these subclasses 

among the various land cover indices. Meanwhile, the proximity of stations within petroleum 

activity areas demonstrates a pronounced correlation with the intensity of PM10. 

The predictive model outcomes pertaining to PM10 classes highlight that a substantial portion of 

the area falls within the hazard class (Table 1). Notably, the PM10 values from the Arta station 

significantly impact the surrounding area according to the predictive model. 

Although fine-tuning the modeling hyperparameters has marginally improved the results, 

enhancing the model's accuracy, the final predictive outcomes align with measurement 

expectations. Long-term uncertainty may, however, exacerbate the situation, making it necessary 

to precisely classify land cover, land use, industrial development, and other distinct variables in 

order to make reliable projections. 

4.4 ROC evaluation 

The model's is most appropriate is usually measured by AUC ROC result reliability. Al does, 

however, issue a warning: a good showing on data that has been seen does not always imply a 

comparable showing on data that has not. Many researchers, such as have employed the ROC 

approach to assess air quality pollution model performance. Consequently, ROC is frequently 

considered the primary accuracy measure in much of the literature. 

The evaluation of model performance utilizing ROC (Fig. 9) yielded an AUC of 99.30 over the 

four-year data measurement period. Despite this, while the model accuracy was high, the Kappa 

statistic showed reasonably good performance. 

4.5 Monitoring process and prospective research areas 

The absence of a comprehensive monitoring plan coupled with negligence toward environmental 

sustainability aggravates air pollution issues in the area, leading to extreme emissions from certain 

stations in this study. Achieving this necessitates ensuring the availability and reliability of air 



 

 

quality information across all levels without compromising pollution control efforts. There's a 

pressing need to enhance current air pollution monitoring capabilities by maintaining a 

comprehensive historical dataset. 

Integrating forecasting methods with real-time data could significantly enhance risk management 

strategies. Moreover, deploying low-cost air quality sensors can substantially improve data 

collection quality, thereby enhancing data aggregation and management (Table 2). 

Subsequent investigations in this field need to include a multitude of topics, such as the effects of 

air quality on the nearby ecology, detailed analyses of distinct contaminants, and a thorough 

discussion of any potential health hazards linked to air quality pollution. Beyond just disseminating 

recorded pollutant concentrations, communicating the health hazards caused by air quality 

contamination is critical. 

 

Figure 10: Comparative results of SVR, CR and proposed model  

In Figure 10, a comprehensive comparison of key metrics—R-SQUARE, MSE, RMSE, and 

MAE—across support vector regression, proposed model, and CatBoost regression is presented, 

specifically for an imbalanced dataset where the optimization algorithm has not been utilized. This 

analysis provides valuable insights into the performance of these regression models under such 

challenging conditions. Remarkably, the proposed model emerges as the standout performer, 

boasting the highest R-SQUARE at an impressive 84 percent. This signifies the model's 



 

 

exceptional ability to explain the variance in the data, indicating a robust predictive capability. 

Notably, a high R-SQUARE is indicative of the model's effectiveness in capturing the underlying 

patterns and trends in the imbalanced dataset. 

 

Equally noteworthy are the remarkably low error values associated with the proposed model. The 

lowest RMSE of 0.18 underscores the model's precision in predicting values, as it represents the 

square root of the average squared differences between predicted and observed values. Likewise, 

the MSE value of 0.28 and the MAE value of 0.21 further attest to the superior predictive accuracy 

of the proposed model. These findings collectively highlight the efficacy of the proposed 

regression model in handling imbalanced datasets without resorting to the optimization algorithm. 

The impressive R-SQUARE and minimal error metrics underscore its potential for practical 

applications where accurate and reliable predictions are paramount. This study not only contributes 

valuable insights into regression model performance but also emphasizes the significance of 

considering imbalanced datasets in real-world scenarios. 

 

5. Conclusion  

In this research, the scattering of PM10 in the North Ras Gharib region of Egypt and its environs 

was examined using the RF method. This method performs well when it comes to optimizing and 

displaying time-series information. The researchers wanted to look at the link between PM10 and 

Landsat 8 OLI spectral bands, as well as land use indices. A time series dataset that was gathered 

from five measurement sites in the research region and covered the years 2018 to 2021 was used. 

The predicted algorithm included ten factors, which included bands 2, 3, 4, 5, 6, LST, SAVI, BU, 

proximity to locations, and proximity from roadways. 

The research region has a high vulnerability or hazard level in relation to PM10 pollution, 

according to results provided by the RF model. The prediction susceptibility was significantly 

impacted by variables like land surface temperature and proximity from highways. According to 

the distribution map, Arta field's high PM10 concentration considerably impairs air quality. 

Landsat's bands 4 and 5 had little effect on PM10 dispersion. The primary distributors of PM10 

were found to be isolated locations with high levels of oil extraction and activity. 

Even with the small number of PM10 measurement sites, the model's accuracy was rather good. 

Future work might concentrate on increasing the number of data gathering locations around the 

region and adding other variables, such as wind velocity and acceleration, to improve the 

forecasting model. 
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