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Abstract 

The emission of carbon dioxide is the major cause of the 
greenhouse effect, which has a negative impact on human 
survival and sustainable economic development; therefore, 
it is very significant for discovering the underlying 
influential factors of carbon dioxide emissions. In this 
paper, an extreme learning machine ensemble based on 
particle swarm optimization approach (PSO-ELM Ensemble) 
are applied to predict the emission of carbon dioxide, which 
provide estimated values as well as the corresponding 
reliability. In addition, the particle swarm optimization 
approach is used to optimize the connection weights of 
extreme learning machine. The performance of the 
proposed PSO-ELM Ensemble is experimentally validated by 
carbon dioxide emissions data during the period 1978-2016 
by using state-of-the-art comparative method, where the 
proposed approach outperforms the others in achieving the 
best trade-off between accuracy and simplicity. 

Keywords: Extreme learning machine; carbon dioxide 
emissions; particle swarm optimization; influential factors 

1. Introduction 

With the development of economy and the progress of 
the society, human beings are now facing more and more 

global and severe environmental problems. Carbon 
dioxide emitted from fossil energy combustion is the main 
cause of greenhouse effect, which seriously threatens the 
safety of human life (Aldy 2006). Facing the demands of 
the development of low-carbon economy and the realistic 
pressure of the consumption of domestic energy 
resources, the control of greenhouse gas emission has 
become a prominent problem in the sustainable 
development of China (Assareh et al. 2012; Baareh 2013). 

In recent years, the study of carbon emission has 
attracted more and more attention from researchers. The 
existing literatures about carbon emissions can be mainly 
divided into two parts, discussion on influential factors 
(Baareh 2018) and study on prediction models (Behrang et 
al. 2011; Chitnis and Hunt 2012). As for the influential 
factors, studies related to this part include the methods 
such as index decomposition (Coondoo and Dinda,2008) 
and input-output structural analysis (SILVA S.E 2013; Feng 
and Zhang 2012; He et al. 2004; Huang et al. 2005; Hunt 
and Ninomiya 2005; Khashman et al. 2016). With respect 
to forecasting techniques, there are many methods to 
analyze the influencing factors of carbon emissions and 
forecast carbon emissions. The summary of recent works 
in this field of the prediction of CO2 emissions is collected 
in Table 1. 

Utilizing time series analysis, grey models, and artificial 
neural networks (ANN) for carbon emissions forecasting 
each have their unique advantages and limitations. 

Time series analysis excels in identifying and leveraging 
historical trends and patterns in data, making it effective 
for short-term forecasting. It's particularly adept at 
incorporating seasonal and cyclical variations. However, 
its reliability hinges on the quality of historical data and it 
may struggle with abrupt changes or external shocks, 
often assuming past trends will continue. 

Grey models are valuable when dealing with limited or 
incomplete data. They can generate useful predictions 
even with small datasets and are good at capturing the 
inherent uncertainty in environmental data. The downside 
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is their lower accuracy compared to other models, 
especially when data availability improves, and their basic 
assumption that systems are relatively stable over time. 

Artificial Neural Networks, on the other hand, offer 
powerful capabilities in handling non-linear relationships 
and complex patterns in large datasets. They are 
adaptable to new information, making them suitable for 
dynamic scenarios. However, ANNs require substantial 
data for training and are often seen as "black boxes" due 
to their lack of interpretability. They also demand 
significant computational resources and expertise in 
model tuning and validation. 

Applying Fuzzy rules, Principal Component Analysis-
Support Vector Machine (PCA-SVM), and Genetic 
Programming for carbon emissions forecasting each have 
distinct advantages and limitations. 

Fuzzy rules are beneficial for dealing with the imprecision 
and uncertainty inherent in environmental data. They can 
model complex, non-linear relationships in a way that is 
intuitive and easy to understand. However, their 
effectiveness largely depends on the quality of the rule 

sets developed, and they may not perform well with very 
large or complex datasets. PCA-SVM combines the 
dimensionality reduction capability of PCA with the 
advanced classification and regression abilities of SVM. 
This method is effective in extracting key features from 
large datasets, improving the efficiency and accuracy of 
SVM in forecasting. The limitation lies in the choice of 
kernel and parameters in SVM, which requires expertise 
and can significantly impact model performance. Genetic 
Programming offers a flexible and powerful approach, 
evolving programs to solve problems, including 
forecasting. It is especially good at discovering underlying 
relationships and generating novel models. The drawbacks 
include its computational intensity, potential for 
overfitting, and the challenge of interpreting the evolved 
programs, which can become quite complex. 

Each of these methods brings a unique set of tools to 
carbon emissions forecasting, with their effectiveness 
varying based on the specific data and context of the 
problem. 

 

Table 1. Carbon dioxide emissions forecasting. Summary of recent papers 

Method References 

Time Series (viz. ARIMA, VAR, etc) Liang et al. 2006; Lin and Moubarak 2013; Lin et al. 2011; Liu et 

al. 2014; Lotfalipour et al. 2013; Lotfalipour et al. 2013. 

Grey Models Nabavi-Pelesaraei et al. 2016; Pao and Tsai 2011; Pao and Tsai 

2011; Pauzi and Abdullah 2014. 

Artificial Neural Network Pérez-Suárez and López-Menéndez 2015; Sheikhalishahi et a. 

2013; Soytas and Sari 2009; Sun and Sun 2017; Sun and Xu 2016; 

Wang et al. 2015; Wang et al. 2013. 

Fuzzy rules Wu et al. 2015. 

Principal Component Analysis-Support Vector Machine (PCA-

SVM) 

Yousefi et al. 2013. 

Genetic programming Zhang et al. 2014. 

As it can be seen, a wide variety of techniques have been 
applied to the prediction of carbon dioxide emissions, 
such as time Series methods, grey models, artificial neural 
network, and the others. Despite their strengths in 
handling nonlinear relationships and adapting to new 
data, these methods fall short in providing an assessment 
of how reliable or trustworthy their predictions are. This 
includes not just the precision of their forecasts but also 
the consistency, robustness to external changes, and the 
clarity in understanding the uncertainty or confidence 
levels associated with their predictions. 

Aiming the evident on demands on analyzing the 
underlying influence factor of carbon emissions and being 
motivated to capture both the future tendency and the 
corresponding reliability, an extreme learning machine 
ensemble based on particle swarm optimization approach 
is proposed in this study. The particle swarm optimization 
approach is used to optimize the connection weights of 
extreme learning machine. Moreover, an ensemble 
structure based PSO-ELM is adopted to implementation of 
interval prediction. In addition, the main influence factor 
of carbon emissions is obtained by the bivariate 
correlation and the significance test in the SPSS. In order 
to verify the overall performance and effectiveness of the 
proposed method, an empirical analysis of carbon dioxide 

emissions and influential factors was carried out in China 
during the period 1978-2016. The result show that the 
proposed approach outperforms the others in achieving 
the best trade-off between accuracy and simplicity. 

The rest of this paper is organized as follows. Section 2 
outlines the development of extreme learning machine 
ensemble based on particle swarm optimization, and an 
empirical analysis of carbon dioxide emissions and 
influential factors during the period 1978-2016 is 
presented in Section 3. Our results and discussions appear 
in Section 4. 

2. Extreme learning machine ensemble based on 
particle swarm optimization 

Extreme learning machine is a single layer feed-forward 
neural networks, which is the random initialization of the 
input weights and hidden biases without iterative 
adjustments during the learning process (Huang G B, Zhu 
Q Y, Siew C K. 2004; Liang N Y, Huang G B, Saratchandran 
P, et al. 2006). The salient property of ELM lies in the 
learning speed and avoiding numerous problems in terms 
of local minima and learning rate faced by others. 

Given a training sample is ( ), u S

i iX y R R  .Here, X = (x1, 

x2…xu) is a u  1input vector and 1

T
T T

SY y y =    is a s1 
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target vector. Assuming that ELM with hidden nodes can 
approximate the S samples with zero error, therefore, the 
output of ELM can be define by 

( ) ( )


 
=

= = = 1
, , , 1, ,j i i i j ji

f x G a b x y j S
 

(1) 

( ) ( )−, , =i i j i iG a b x g b x a
 

(2) 

Where ai and bi are the learning parameters of hidden 
nodes and βi the weight connecting the i-th hidden node 
to the output node. G (ai, bi, Xj) is the output of the i-th 
hidden node with respect to the input x. 

( )

( ) ( )

( ) ( )




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(3) 

where H is called the hidden layer output matrix of the 
network, the i-th column of H is the i-th hidden node’s 
output vector with respect to inputs respect to inputs X1, 
X2   XS and the j- th row of H is the output vector of the 
hidden layer with respect to input xj. 

When the number of hidden neurons is equal to the 

number of training samples, viz. S = v，the matrix His 
square and invertible; therefore, ELM can approximate 
these training samples with zero error. However, the 
number of hidden neurons usually is much less than the 

number of distinct training samples, S«,H is a nonsquage 
matrix and there may not exist β = (HTH)−1HTT. Thus, the 

way to find the specific , ,i i ib a  can be define by 

( ) −1 1, , ,v vH a a b b Y
 

(4) 

The minimizing the cost function can be define by 

( )( ) 
= =

= + − 1 1

S v

i i j i ij i
E G x b y

 
(5) 

The particle swarm algorithm (PSO) is a classical artificial 
intelligence algorithm inspired by the foraging behavior of 
bird flocks (He S, Prempain E, Wu Q H ,2004) Due to the 
simple concept, easy implementation, and quick 
convergence, PSO has gained wide research in many fields 
(Sheikhalishahi, Ebrahimipour, et al.,2013). Therefore, 
PSO method in this study is used to search the minimum 

of H Y − ,and the swarm is ( ) ( ) ( ) 1 2= , ,
t t t

v    ,the position 

of the i-th particle is represented by ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i is   = , 

and the velocity by ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i is   = . The optimal 

position of the i-th particle is ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i isp p p p= , which 

also can be called an individual extremum. Likewise, the 
best position of the whole particle swarm in the current 

search process is ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i isg g g g= ,which is named as 

the global extremum. The structure of extreme learning 
machine ensemble was illustrated in Figure. 1. 

The search process can be define by 

( ) ( )( ) ( ) ( )( )  + = + − + −1
1 1 2 2

t t t tt t
is is is is is isV V c r p c r p  

(6) 

( ) ( ) = +
t t t

is is isV  
(7) 

Where  is inertial weight coefficient, tmax is the 
maximum number of iterations, c1 and c2 is the learning 
factors, which are equal to 1.9 and 2.1, respectively. r1and 
r2 are independent random numbers in [0,1]. 

 

Figure 1. The structure of extreme learning machine ensemble 

 

Figure.2. The flowchart of PSO-ELM 

Based on the proposed structure of the ensemble, the 
ELM-ensemble can be formulated as 

 
=

= +  +
1

1 N

mean i
i

y y y
N  

(8) 

( )  ( )
=

 −  −
−


2 22

1

1

1i

N

y i i
i

E y y y y
N  

(9) 

Where ε is Gaussian white noise with mean zero. ym̅ean is 

the mean value of the output 2
yi denotes the error 

calculated by the squared residuals between yi and ȳ. The 
flowchart of PSO-ELM was illustrated in Figure 2. 

3. An empirical analysis of carbon dioxide emissions 
and influential factors in China 

3.1. Data source and conversion 

This study selects energy consumption as well as other 
relevant data in China during the period 1978-2016 for 
analysis. As the statistical data of carbon dioxide 
emissions cannot be directly obtained, the formula for the 
conversion of the relevant data can be define by 
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
 

= 1
= a aa

E
 

(10) 

Where  is the number of energy category, a is the type 
of energy in terms of raw coal, crude oil, natural gas, 

primary electricity. ais the coefficients of carbon dioxide 

emissions for different energy sources. In addition, 
primary energy consumption and the source of energy in 
China during the period 1978–2016 is listed in Table 2, 
and the coefficients of carbon dioxide emissions for 
different energy sources is listed in Table 3. 

Table 2. Primary energy consumption and the source of energy in China over the years 1978–2016 

Year Primary energy consumption (10,000 tons of SCE) As percentage of total energy production (%) 

Raw coal Crude oil Natural gas Primary electricity 

1978 57144 40400.808 12971.688 1828.608 1942.896 

1979 58588 41773.244 12772.184 1933.404 2109.168 

1980 60275 43518.55 12476.925 1868.525 2411 

1981 59447 43217.969 11889.4 1664.516 2675.115 

1982 62067 45743.379 11730.663 1551.675 3041.283 

1983 66040 49001.68 11953.24 1584.96 3500.12 

1984 70904 53390.712 12337.296 1701.696 3474.296 

1985 76682 58124.956 13112.622 1687.004 3757.418 

1986 80850 61284.3 13906.2 1859.55 3799.95 

1987 86632 66013.584 14727.44 1819.272 4071.704 

1988 92997 70863.714 15809.49 1952.937 4370.859 

1989 96934 73669.84 16575.714 1938.68 4749.766 

1990 98703 75211.686 16384.698 2072.763 5033.853 

1991 103783 78978.863 17746.893 2075.66 4981.584 

1992 109170 82641.69 19104.75 2074.23 5349.33 

1993 115993 86646.771 21110.726 2203.867 6031.636 

1994 122737 92052.75 21356.238 2332.003 6996.009 

1995 131176 97857.296 22955.8 2361.168 8001.736 

1996 138948 103794.156 25010.64 2501.064 7642.14 

1997 137798 98525.57 28110.792 2342.566 8543.476 

1998 132214 92020.944 28426.01 2908.708 8858.338 

1999 130119 88480.92 30187.608 2862.618 8587.854 

2000 128000 85760 30208 3200 8832 

2001 155547 105771.96 32975.964 3733.128 13065.948 

2002 169577 116160.245 35611.17 3900.271 13905.314 

2003 197083 138352.266 39613.683 4532.909 14584.142 

2004 230281 161657.262 45825.919 5296.463 17501.356 

2005 261369 189231.156 46523.682 6272.856 19341.306 

2006 286467 207402.108 50131.725 7734.609 21198.558 

2007 311442 225795.45 52945.14 9343.26 23358.15 

2008 320611 229236.865 53542.037 10900.774 26931.324 

2009 336126 240666.216 55124.664 11764.41 28570.71 

2010 360648 249568.416 62752.752 14425.92 33900.912 

2011 387043 271704.186 65023.224 17803.978 32511.612 

2012 402138 275464.53 68363.46 19302.624 39007.386 

2013 416913 280999.362 71292.123 22096.389 42525.126 

2014 425806 279328.736 74090.244 24270.942 48116.078 

2015 429905 273849.485 78672.615 25364.395 52018.505 

2016 436000 270320 7978.8 2790.4 5798.8 

Table 3. Coefficients of carbon dioxide emissions for different energy sources 

Type Coal Petroleum Natural gas Hydropower, Nuclear power 

C/(t/t) 0.7476 0.5825 0.4435 0 

 

The dataset on China's primary energy consumption from 
1978 to 2016 reflects significant aspects of the nation's 
economic and environmental evolution. A key observation 
is the substantial increase in energy consumption over 
these years, correlating with China's rapid industrial 
growth and urbanization. This trend is emblematic of the 
broader developmental trajectory experienced by China, 

characterized by increasing industrial activity, urban 
development, and a growing demand for energy 
resources to fuel these expansions. The ELM was used for 
model training, and the activation function in terms of 
Sigmoid and relu was selected in different ensemble 
learning structure; the number of neuron nodes in the 
input layer is set as 5, respectively. Furthermore, the 
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proposed method was built upon the ensemble structure 
learning, we increase the diversity of predicted output 
results by selecting different hidden parameters with the 
randomized strategy at the interval between 50 and 500. 

Within this overarching growth, the changing composition 
of energy sources is particularly noteworthy. Initially 
dominated by raw coal, which aligns with China's 
abundant coal reserves and its historical reliance on coal 
for energy, there appears to be a gradual shift towards a 
more diverse energy mix. This transition likely includes 
increased utilization of crude oil, natural gas, and primary 
electricity, reflecting global trends towards diversifying 
energy sources and the increasing importance of 
environmental considerations. The shift towards cleaner 
energy sources like natural gas and electricity could be 
driven by environmental concerns, highlighting China's 
response to global climate change imperatives and its own 
domestic environmental challenges. 

Moreover, the fluctuations in the energy mix and 
consumption patterns might be influenced by significant 
policy shifts and global events. These include China's 
economic reforms, international agreements on climate 
change, and its integration into global trade systems. Such 
events often act as catalysts for changes in national 
energy strategies and consumption behaviors. 

In conclusion, this dataset offers a comprehensive 
overview of China's evolving energy landscape, mirroring 
its economic growth, policy shifts, and increasing 
environmental consciousness. The transition from a coal-
dominated energy mix to a more diversified one marks a 
critical stage in China's development, with implications for 
both global energy markets and environmental policies. 

The data reveals that coal, with a coefficient of 0.7476, is 
the most carbon-intensive energy source among those 
listed. This aligns with global understanding that coal 
combustion is a major contributor to CO2 emissions, due 
to its high carbon content and prevalent use in energy 

production, especially in countries like China with 
substantial coal reserves. 

Petroleum, with a coefficient of 0.5825, also presents 
significant carbon emissions, although less than coal. Its 
widespread use in transportation and industry makes it a 
major contributor to global CO2 emissions. The relatively 
lower coefficient compared to coal reflects its different 
chemical composition and burning efficiency. 

Natural gas, with a coefficient of 0.4435, emerges as a 
cleaner alternative to coal and petroleum. Its lower 
carbon content and higher efficiency in energy production 
result in fewer emissions per ton consumed. This makes it 
an attractive option for countries seeking to transition to 
cleaner energy sources while balancing their energy needs 
and environmental goals. 

Interestingly, the coefficient for hydropower and nuclear 
power is listed as 0, emphasizing their role as clean energy 
sources. These methods of energy production do not 
directly emit CO2, highlighting their potential in reducing 
overall carbon emissions in the energy sector. However, 
it's important to note that while these sources have 
minimal direct CO2 emissions, other environmental and 
safety considerations are associated with their use, such 
as the impact of dam construction on ecosystems and the 
management of nuclear waste. 

In summary, this dataset provides a clear and quantitative 
illustration of the varying environmental impacts of 
different energy sources. It underscores the challenges 
and opportunities in managing energy consumption and 
CO2 emissions, particularly for a rapidly developing and 
industrializing country like China. The data is a valuable 
tool for policymakers and researchers in assessing the 
environmental impact of energy choices and strategizing 
for a more sustainable energy future. Annual carbon 
dioxide emissions of China during 1978-2016 was 
displayed in Table 4. 

 

Table 4. Annual carbon dioxide emissions of China during 1978-2016 (10,000 tons) 

Year CO2 emissions Year CO2 emissions Year CO2 emissions 

1978 38570.63997 1991 70302.71836 2004 149897.5482 

1979 39526.93907 1992 73831.36532 2005 171351.2686 

1980 40630.96763 1993 78051.53891 2006 187685.8448 

1981 39973.54197 1994 82292.88787 2007 203788.9583 

1982 41719.02920 1995 87577.04600 2008 207400.2101 

1983 44299.34803 1996 93274.43071 2009 217249.6957 

1984 47856.07339 1997 91071.18049 2010 229528.7214 

1985 51840.50569 1998 86643.02056 2011 248898.1417 

1986 54741.21461 1999 85002.18854 2012 254319.7118 

1987 58737.33633 2000 83129.53600 2013 261402.5332 

1988 63052.86807 2001 99939.25859 2014 262747.8929 

1989 65590.73037 2002 109314.6759 2015 261805.7824 

1990 66691.61343 2003 128517.4696 2016 260943.1660 

The data shows a more pronounced increase in emissions 
in the late 20th and early 21st centuries, corresponding 
with China's accelerated economic growth post-economic 
reforms and its integration into the global market. This 
period is marked by large-scale industrialization and 

urbanization, leading to heightened energy consumption 
and, consequently, higher CO2 emissions. 

In an academic context, this dataset is invaluable for 
studying the relationship between economic development 
and environmental impact. It provides a case study of how 



UNCORRECTED PROOFS

6  YAO and LI 

rapidly developing economies face the challenge of 
balancing growth with sustainability. The data can also be 
used to model future emission scenarios, informing policy 
decisions and international negotiations on climate 
change. 

In summary, the dataset on China's annual CO2 emissions 
from 1978 to 2016 offers a detailed account of the 
country's growing environmental footprint, reflecting its 
economic transformation and the resulting challenges and 
opportunities in achieving sustainable development. 

 

Figure 3. (a) Primary energy consumption and the source of 

energy in China over the years 1978–2016. (b) The 3D illustration 

of main sources consumption of energy in China over the years 

1978–2016 

Figure 3 show that the total energy consumption is 
increasing year by year. however, since 2010, a series of 

policy and regulations is adopted to reduce carbon 
emissions involving reducing the use of fossil energy (viz. 
coal, crude oil, natural gas and so forth) and increasing the 
use of clean energy power (primary electricity) thereby 
the growth rate of total energy consumption is slowing 
down. From Figure 4, the total amount of carbon dioxide 
emissions obtained by the conversion formula can be seen 
that China's energy saving and emission reduction 
measures have achieved initial results, and the growth 
rate of carbon dioxide emissions has slowed down 
significantly. 

 

Figure 4. The total of CO2 emissions in China over the years 

1978–2016 

Table 5. Bivariate correlation 

Factor Pearson coefficient Significant (bilateral) 

Total energy production 0.999** 0.000 

Total population 0.874** 0.000 

Coal consumption 0.999** 0.000 

Oil consumption 0.990** 0.000 

Gross national income 0.873** 0.000 

GDP 0.962** 0.000 

The tertiary industry 0.724** 0.000 

Note: ∗∗indicates a significant correlation at the bilateral significance level of 0.01. 

Table 6. A statistical analysis of prediction intervals results 

Method CWCmedian(105) CWCsd(105) MAPE(%) Time(s) 

MVE MLP 0.0303 0.0056 6.78 2.14 

Delta MLP 0.0334 0.0037 5.498 2.34 

PSO-ELMEnsemble 0.028 0.0035 2.17 1.52 

3.2. SPSS analysis for influence factor of the carbon 
dioxide emissions 

The influence factor for prediction of the emission of 
carbon dioxide emissions was selected from the statistical 
yearbook of China. The influence factor mainly contain 
total energy production, total population, coal 
consumption, oil consumption, gross national income, 
GDP and the tertiary industry. Pearson correlation 
coefficient and the bilateral significance of the above-
mentioned factors can be obtained by SPSS analysis. From 
Table 5, the Pearson correlation of the selected influence 
factors are above 0.7, therefore, we can conclude that 
highly significant correlation exist between the above-
mentioned influence factor and carbon dioxide emissions. 

3.3. Evaluation criteria of model performance 

In order to verify the learning performance of the 
proposed algorithm, mean absolute percentage error 
(MAPE) is adopted, which can be define by 



 =

−
= 

*

1

1 i i

i
i

y y
MAPE

y  

(11) 

Where yi and yi* are the prediction and real-value of the 
CO2 emissions, ζ refer to the number of samples to be 
predicted. The smaller the values of MAPE, the better the 
forecasting performance of the proposed method. 

As for the evaluation criteria of prediction intervals, CWC 
is a kind of combined index based on prediction interval 
coverage probability (PICP) and the mean prediction 
interval width(MPIW), which can be define as 

( )

  

=

= =

= −

     
+ − −       

     


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1

1 1

1

1 1
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test test

n

i ii
test

n n

i ii i
test test

CWC U L
n

c c
n n

 

(12) 

Where ci equal 1 when the target is placed in the interval 
range, otherwise, ci equal 0. η and µ are two hyper-
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parameters that control the location and the amount of 
CWC jump; γ is given by 







=

=





= 
 






1

1

1
0,

1
1,

test

test

n

ii
test

n

ii
test

c
n

c
n

 

(13) 

Assuming that the experiments are conducted repeatedly, 
CWCmedian and CWCSD are the mean value and standard 
deviation of CWCs, respectively. CWCmedian denotes the 
average results and can be used to measure the quality of 
the prediction intervals. The smaller the CWCmedian, the 
better the performance. CWCSD denotes the distribution 
of the CWCs around the CWCmedian and can be used to 
measure the variability. The CWCmedian and can be used to 
measure the variability. The smaller the CWCmedian, the 
lower the variability Together, these smaller the 
CWCmedian, the lower the variability Together, these two 
indicators reflect the performance of the prediction 
intervals. two indicators reflect the performance of the 
prediction intervals. 

 

Figure 5. PIs constructed by PSO-ELMEnsemble 

The experiment of CO2 emission prediction in China is 
carried out based on the aforementioned related data 
from 1978 to 2016.However, the obtained data of CO2 
emissions are always accompanied with noise, and the 
existing point-oriented predictions without any indication 
of the accuracy are less reliable for the real-world 
applications. In practice, the workers usually raise more 
concerns on prediction accuracy and the variation 
intervals of CO2 emission, with which they can design the 
appropriate policies. 

 

Figure 6. PIs constructed by Delta MLP 

 

Figure 7. PIs constructed by MVE MLP 

 

Figure 8. Comparative analysis of state-of-art PIs method 

In this study, the proposed PSO-ELMEnsemble is adopted 
to construct the PIs for CO2 emission. The activation 
function of neurons in the PSO-ELMEnsemble employs the 
line kernel function, and the ensemble structure has a 
better performance when the dimensionality equals 10. In 
addition, the issue of coverage probability in the proposed 
method is fully considered. A statistical analysis of 
prediction intervals results is listed in Table 6. The 
iterative prediction is adopted here for PIs construction, 
which is one-step ahead of the prediction with a rolling 
forecast origin. Figure 5 shows the results based on the 
proposed PSO-ELMEnsemble with the confidence level 
95%, in which the values can be completely covered by 
the constructed PIs. Figures 6 and 7 respectively shows 
the results of the other two methods where existing 
points are observed outside the interval range. Given that 
a comprehensive comparative analysis of these methods 
is visualized in the Figure 8, it can be seen that the 
proposed method exhibits an improved accuracy 
performance than the others for CO2 emissions. 

4. Conclusions 

Global climate change has become the greatest non-
traditional security challenge faced by human 
development, and achieving carbon peak and carbon 
neutrality is of significant importance. The main objective 
of this study is to select the correlative factor and 
construct the prediction intervals for carbon emissions in 
China. Therefore, an extreme learning machine ensemble 
based on particle swarm optimization approach (PSO- 
ELMEnsemble) is presented, which is the novelty of this 
work that is helpful to understand the trend and the 
corresponding reliability of CO2 emissions during the 
periods 1978-2016. Research shows that efficient carbon 
emission prediction models help better balance economic 
development with ecological environment. Since 2015, 
the rate of carbon emission growth in China has started to 
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slow down, largely due to the government's focus on 
carbon emission control as a key research area, coupled 
with active development of new energy sources and 
implementation of industrial energy conservation and 
emission reduction policies. In the future, by incorporating 
more influencing factors into the carbon emission 
prediction models, we can further improve their accuracy. 
As for achieving the goals of carbon peak and carbon 
neutrality, the following strategies can be adopted in 
terms of optimizing industrial structure, raising 
environmental access thresholds and increasing 
investment in technological innovation and research & 
development. Frist reducing the proportion of the 
secondary industry in the national economy while 
enhancing the development level of the tertiary industry. 
Specific measures include accelerating the elimination of 
outdated production capacity, restricting the 
development of high-energy-consuming and heavily 
polluting industries, and encouraging the growth of new 
energy, renewable energy, and high-end manufacturing. 
Furthermore, strengthen environmental access standards 
for investment projects, guiding more funds towards 
green technological innovation. Finally, technological 
innovation plays a vital role in reducing carbon emissions. 
Actively increase support for industries such as clean 
energy, green manufacturing, green buildings, and green 
transportation, as well as for the research and 
development of green low-carbon technologies and 
carbon-negative technologies (such as CCS/CCUS), to 
enhance the role of technology in energy conservation 
and emission reduction. 
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