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GRAPHICAL ABSTRACT 

 

 

Abstract: The emission of carbon dioxide is the major cause of the greenhouse effect, which 

has a negative impact on human survival and sustainable economic development; therefore, it 

is very significant for discovering the underlying influential factors of carbon dioxide 

emissions. In this paper, an extreme learning machine ensemble based on particle swarm 

optimization approach (PSO-ELM Ensemble) are applied to predict the emission of carbon 

dioxide, which provide estimated values as well as the corresponding reliability. In addition, 

the particle swarm optimization approach is used to optimize the connection weights of 

extreme learning machine. The performance of the proposed PSO-ELM Ensemble is 

experimentally validated by carbon dioxide emissions data during the period 1978-2016 by 

using state-of-the-art comparative method, where the proposed approach outperforms the 

others in achieving the best trade-off between accuracy and simplicity. 
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1. Introduction 

With the development of economy and the progress of the society, human beings are now 

facing more and more global and severe environmental problems. Carbon dioxide emitted 

from fossil energy combustion is the main cause of greenhouse effect, which seriously 

threatens the safety of human life [1]. Facing the demands of the development of low-carbon 

economy and the realistic pressure of the consumption of domestic energy resources, the 

control of greenhouse gas emission has become a prominent problem in the sustainable 

development of China [2-3]. 

In recent years, the study of carbon emission has attracted more and more attention from 

researchers. The existing literatures about carbon emissions can be mainly divided into two 

parts, discussion on influential factors [4] and study on prediction models [5-6]. As for the 

influential factors, studies related to this part include the methods such as index 

decomposition [7] and input-output structural analysis [8-13]. With respect to forecasting 

techniques, there are many methods to analyze the influencing factors of carbon emissions 

and forecast carbon emissions. The summary of recent works in this field of the prediction of 

CO2 emissions is collected in Table 1.  

Utilizing time series analysis, grey models, and artificial neural networks (ANN) for 

carbon emissions forecasting each have their unique advantages and limitations. 

Time series analysis excels in identifying and leveraging historical trends and patterns in 

data, making it effective for short-term forecasting. It's particularly adept at incorporating 

seasonal and cyclical variations. However, its reliability hinges on the quality of historical 

data and it may struggle with abrupt changes or external shocks, often assuming past trends 

will continue. 

Grey models are valuable when dealing with limited or incomplete data. They can 

generate useful predictions even with small datasets and are good at capturing the inherent 

uncertainty in environmental data. The downside is their lower accuracy compared to other 

models, especially when data availability improves, and their basic assumption that systems 

are relatively stable over time. 

Artificial Neural Networks, on the other hand, offer powerful capabilities in handling 

non-linear relationships and complex patterns in large datasets. They are adaptable to new 

information, making them suitable for dynamic scenarios. However, ANNs require substantial 

data for training and are often seen as "black boxes" due to their lack of interpretability. They 

also demand significant computational resources and expertise in model tuning and 

validation. 

Applying Fuzzy rules, Principal Component Analysis-Support Vector Machine 

(PCA-SVM), and Genetic Programming for carbon emissions forecasting each have distinct 

advantages and limitations. 

Fuzzy rules are beneficial for dealing with the imprecision and uncertainty inherent in 

environmental data. They can model complex, non-linear relationships in a way that is 

intuitive and easy to understand. However, their effectiveness largely depends on the quality 

of the rule sets developed, and they may not perform well with very large or complex datasets. 
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PCA-SVM combines the dimensionality reduction capability of PCA with the advanced 

classification and regression abilities of SVM. This method is effective in extracting key 

features from large datasets, improving the efficiency and accuracy of SVM in forecasting. 

The limitation lies in the choice of kernel and parameters in SVM, which requires expertise 

and can significantly impact model performance. Genetic Programming offers a flexible and 

powerful approach, evolving programs to solve problems, including forecasting. It is 

especially good at discovering underlying relationships and generating novel models. The 

drawbacks include its computational intensity, potential for overfitting, and the challenge of 

interpreting the evolved programs, which can become quite complex. 

Each of these methods brings a unique set of tools to carbon emissions forecasting, with 

their effectiveness varying based on the specific data and context of the problem. 

Table 1. Carbon dioxide emissions forecasting. Summary of recent papers. 

Method References 

Time Series(viz. ARIMA, VAR,etc) [14]; [15]; [16]; [17]; [18]; [19]. 

Grey Models [20]; [21]; [22]; [23]. 

Artificial Neural Network [24]; [25]; [26]; [27]; [28]; [29]; [30]. 

Fuzzy rules [31]. 

Principal Component Analysis-Support Vector 

Machine (PCA-SVM) 

[32]. 

Genetic programming [32]. 

 

As it can be seen, a wide variety of techniques have been applied to the prediction of 

carbon dioxide emissions, such as time Series methods, grey models, artificial neural network, 

and the others. Despite their strengths in handling nonlinear relationships and adapting to new 

data, these methods fall short in providing an assessment of how reliable or trustworthy their 

predictions are. This includes not just the precision of their forecasts but also the consistency, 

robustness to external changes, and the clarity in understanding the uncertainty or confidence 

levels associated with their predictions.  

Aiming the evident on demands on analyzing the underlying influence factor of carbon 

emissions and being motivated to capture both the future tendency and the corresponding 

reliability, an extreme learning machine ensemble based on particle swarm optimization 

approach is proposed in this study. The particle swarm optimization approach is used to 

optimize the connection weights of extreme learning machine. Moreover, an ensemble 

structure based PSO-ELM is adopted to implementation of interval prediction. In addition, the 

main influence factor of carbon emissions is obtained by the bivariate correlation and the 

significance test in the SPSS. In order to verify the overall performance and effectiveness of 

the proposed method, an empirical analysis of carbon dioxide emissions and influential 

factors was carried out in China during the period 1978-2016. The result show that the 

proposed approach outperforms the others in achieving the best trade-off between accuracy 

and simplicity. 

The rest of this paper is organized as follows. Section 2 outlines the development of 

extreme learning machine ensemble based on particle swarm optimization, and an empirical 
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analysis of carbon dioxide emissions and influential factors during the period 1978-2016 is 

presented in Section 3. Our results and discussions appear in Section 4. 

2. Extreme learning machine ensemble based on particle swarm optimization 

Extreme learning machine is a single layer feed-forward neural networks, which is the 

random initialization of the input weights and hidden biases without iterative adjustments 

during the learning process (Huang G B, Zhu Q Y, Siew C K., 2004; Liang N Y, Huang G B, 

Saratchandran P, et al., 2006). The salient property of ELM lies in the learning speed and 

avoiding numerous problems in terms of local minima and learning rate faced by others.  

Given a training sample is ( ), u S

i iX y R R  .Here, ( )1 2, uX x x x= is a 1u input vector 

and 1

T
T T

SY y y =    is a 1S  target vector. Assuming that ELM with  hidden nodes 

can approximate the S  samples with zero error, therefore, the output of ELM can be define 

by 

( ) ( )
1

, , , 1, ,j i i i j ji
f x G a b x y j S



 
=

= = =                                        (1) 

( ) ( ), , =i i j i iG a b x g b x a−                                                      (2) 

Where ia and ib are the learning parameters of hidden nodes and i the weight connecting the 

i-th hidden node to the output node. ( ), ,i i jG a b X is the output of the i-th hidden node with 
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where H is called the hidden layer output matrix of the network, the i-th column of H is the 

i-th hidden node’s output vector with respect to inputs respect to inputs 1 2, SX X X  and the 

j- th row of H  is the output vector of the hidden layer with respect to input jx . 

When the number of hidden neurons is equal to the number of training samples, viz. 

S = ，the matrix H is square and invertible; therefore, ELM can approximate these training 

samples with zero error. However, the number of hidden neurons usually is much less than the 

number of distinct training samples, S  , H is a nonsquage matrix and there may not 

exist ( )
-1

T TH H H T = . Thus, the way to find the specific , ,i i ib a  can be define by 

( )1 1, , ,v vH a a b b Y −                                                     (4) 

The minimizing the cost function can be define by 

( )( )1 1

S v

i i j i ij i
E G x b y 

= =
= + −                                                (5) 

The particle swarm algorithm (PSO) is a classical artificial intelligence algorithm inspired by 

the foraging behavior of bird flocks (He S, Prempain E, Wu Q H ,2004) .Due to the simple 

concept, easy implementation, and quick convergence, PSO has gained wide research in many 



 

 5 

fields (Sheikhalishahi, Ebrahimipour, et al.,2013). Therefore, PSO method in this study is 

used to search the minimum of H Y − ,and the swarm is
( ) ( ) ( ) 1 2, ,=
t t t

v    ,the position of 

the i-th particle is represented by ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i is   = , and the velocity 

by ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i is   = . The optimal position of the i-th particle is ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i isp p p p= , 

which also can be called an individual extremum. Likewise, the best position of the whole 

particle swarm in the current search process is ( ) ( ) ( ) ( )( )1 2, ,
T

t t t t

i i i isg g g g= ,which is named as the 

global extremum. The structure of extreme learning machine ensemble was illustrated in Fig. 1. 

The search process can be define by 

( ) ( )( ) ( ) ( )( )1

1 1 2 2

t t t tt t

is is is is is isV V c r p c r p  + = + − + −                                       (6) 

( ) ( )t t t

is is isV = +                                                              (7) 

Where  is inertial weight coefficient, maxt is the maximum number of iterations, 1c and 2c is the 

learning factors, which are equal to 1.9 and 2.1, respectively. 1r and 2r  are independent random 

numbers in [0,1]. 

Based on the proposed structure of the ensemble, the ELM-ensemble can be formulated as 

1

1 N

mean i

i

y y y
N

 
=

= +  +                                                        (8) 

( )  ( )
2 22

1

1

1i

N

y i i

i

E y y y y
N


=

 −  −
−
                                              (9) 

Where  is Gaussian white noise with mean zero. meany is the mean value of the output. 

2

iy
 denotes the error calculated by the squared residuals between iy  and y . The flowchart of 

PSO-ELM was illustrated in Fig. 2. 
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Fig. 1. The structure of extreme learning machine ensemble 
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Fig.2 The flowchart of PSO-ELM 

3. An empirical analysis of carbon dioxide emissions and influential factors in China 
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3.1 Data source and conversion 

This study selects energy consumption as well as other relevant data in China during the 

period 1978-2016 for analysis. As the statistical data of carbon dioxide emissions cannot be 

directly obtained, the formula for the conversion of the relevant data can be define by 

1
= a aa
E


 

=                                                              (10) 

Where  is the number of energy category, a is the type of energy in terms of raw coal, 

crude oil, natural gas, primary electricity. a is the coefficients of carbon dioxide emissions 

for different energy sources. In addition, primary energy consumption and the source of 

energy in China during the period 1978–2016 is listed in table 2, and the coefficients of 

carbon dioxide emissions for different energy sources is listed in table 3.  

Table. 2 Primary energy consumption and the source of energy in China over the years 1978–2016. 

Year Primary energy consumption 

(10,000 tons of SCE) 

As percentage of total energy production (%) 

Raw coal Crude oil Natural gas Primary electricity 

1978 57144 40400.808 12971.688 1828.608 1942.896 

1979 58588 41773.244 12772.184 1933.404 2109.168 

1980 60275 43518.55 12476.925 1868.525 2411 

1981 59447 43217.969 11889.4 1664.516 2675.115 

1982 62067 45743.379 11730.663 1551.675 3041.283 

1983 66040 49001.68 11953.24 1584.96 3500.12 

1984 70904 53390.712 12337.296 1701.696 3474.296 

1985 76682 58124.956 13112.622 1687.004 3757.418 

1986 80850 61284.3 13906.2 1859.55 3799.95 

1987 86632 66013.584 14727.44 1819.272 4071.704 

1988 92997 70863.714 15809.49 1952.937 4370.859 

1989 96934 73669.84 16575.714 1938.68 4749.766 

1990 98703 75211.686 16384.698 2072.763 5033.853 

1991 103783 78978.863 17746.893 2075.66 4981.584 

1992 109170 82641.69 19104.75 2074.23 5349.33 

1993 115993 86646.771 21110.726 2203.867 6031.636 

1994 122737 92052.75 21356.238 2332.003 6996.009 

1995 131176 97857.296 22955.8 2361.168 8001.736 

1996 138948 103794.156 25010.64 2501.064 7642.14 

1997 137798 98525.57 28110.792 2342.566 8543.476 

1998 132214 92020.944 28426.01 2908.708 8858.338 

1999 130119 88480.92 30187.608 2862.618 8587.854 

2000 128000 85760 30208 3200 8832 

2001 155547 105771.96 32975.964 3733.128 13065.948 

2002 169577 116160.245 35611.17 3900.271 13905.314 

2003 197083 138352.266 39613.683 4532.909 14584.142 

2004 230281 161657.262 45825.919 5296.463 17501.356 

2005 261369 189231.156 46523.682 6272.856 19341.306 

2006 286467 207402.108 50131.725 7734.609 21198.558 

2007 311442 225795.45 52945.14 9343.26 23358.15 

2008 320611 229236.865 53542.037 10900.774 26931.324 

2009 336126 240666.216 55124.664 11764.41 28570.71 
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2010 360648 249568.416 62752.752 14425.92 33900.912 

2011 387043 271704.186 65023.224 17803.978 32511.612 

2012 402138 275464.53 68363.46 19302.624 39007.386 

2013 416913 280999.362 71292.123 22096.389 42525.126 

2014 425806 279328.736 74090.244 24270.942 48116.078 

2015 429905 273849.485 78672.615 25364.395 52018.505 

2016 436000 270320 7978.8 2790.4 5798.8 

The dataset on China's primary energy consumption from 1978 to 2016 reflects 

significant aspects of the nation's economic and environmental evolution. A key observation 

is the substantial increase in energy consumption over these years, correlating with China's 

rapid industrial growth and urbanization. This trend is emblematic of the broader 

developmental trajectory experienced by China, characterized by increasing industrial activity, 

urban development, and a growing demand for energy resources to fuel these expansions. The 

ELM was used for model training, and the activation function in terms of Sigmoid and relu 

was selected in different ensemble learning structure; the number of neuron nodes in the input 

layer is set as 5, respectively. Furthermore, the proposed method was built upon the ensemble 

structure learning, we increase the diversity of predicted output results by selecting different 

hidden parameters with the randomized strategy at the interval between 50 and 500. 

 

Within this overarching growth, the changing composition of energy sources is 

particularly noteworthy. Initially dominated by raw coal, which aligns with China's abundant 

coal reserves and its historical reliance on coal for energy, there appears to be a gradual shift 

towards a more diverse energy mix. This transition likely includes increased utilization of 

crude oil, natural gas, and primary electricity, reflecting global trends towards diversifying 

energy sources and the increasing importance of environmental considerations. The shift 

towards cleaner energy sources like natural gas and electricity could be driven by 

environmental concerns, highlighting China's response to global climate change imperatives 

and its own domestic environmental challenges. 

Moreover, the fluctuations in the energy mix and consumption patterns might be 

influenced by significant policy shifts and global events. These include China's economic 

reforms, international agreements on climate change, and its integration into global trade 

systems. Such events often act as catalysts for changes in national energy strategies and 

consumption behaviors. 

In conclusion, this dataset offers a comprehensive overview of China's evolving energy 

landscape, mirroring its economic growth, policy shifts, and increasing environmental 

consciousness. The transition from a coal-dominated energy mix to a more diversified one 

marks a critical stage in China's development, with implications for both global energy 

markets and environmental policies. 

 

Table 3. Coefficients of carbon dioxide emissions for different energy sources 

Type Coal Petroleum Natural gas Hydropower, Nuclear power 

C/(t/t) 0.7476 0.5825 0.4435 0 

The data reveals that coal, with a coefficient of 0.7476, is the most carbon-intensive energy source 

among those listed. This aligns with global understanding that coal combustion is a major contributor 
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to CO2 emissions, due to its high carbon content and prevalent use in energy production, especially in 

countries like China with substantial coal reserves. 

Petroleum, with a coefficient of 0.5825, also presents significant carbon emissions, although less 

than coal. Its widespread use in transportation and industry makes it a major contributor to global CO2 

emissions. The relatively lower coefficient compared to coal reflects its different chemical composition 

and burning efficiency. 

Natural gas, with a coefficient of 0.4435, emerges as a cleaner alternative to coal and petroleum. 

Its lower carbon content and higher efficiency in energy production result in fewer emissions per ton 

consumed. This makes it an attractive option for countries seeking to transition to cleaner energy 

sources while balancing their energy needs and environmental goals. 

Interestingly, the coefficient for hydropower and nuclear power is listed as 0, emphasizing their 

role as clean energy sources. These methods of energy production do not directly emit CO2, 

highlighting their potential in reducing overall carbon emissions in the energy sector. However, it's 

important to note that while these sources have minimal direct CO2 emissions, other environmental and 

safety considerations are associated with their use, such as the impact of dam construction on 

ecosystems and the management of nuclear waste. 

In summary, this dataset provides a clear and quantitative illustration of the varying environmental 

impacts of different energy sources. It underscores the challenges and opportunities in managing 

energy consumption and CO2 emissions, particularly for a rapidly developing and industrializing 

country like China. The data is a valuable tool for policymakers and researchers in assessing the 

environmental impact of energy choices and strategizing for a more sustainable energy future. Annual 

carbon dioxide emissions of China during 1978-2016 was displayed in Table 4. 

Table 4 Annual carbon dioxide emissions of China during 1978-2016 (10,000 tons) 

Year CO2 emissions Year CO2 emissions Year CO2 emissions 

1978 38570.63997 1991 70302.71836 2004 149897.5482 

1979 39526.93907 1992 73831.36532 2005 171351.2686 

1980 40630.96763 1993 78051.53891 2006 187685.8448 

1981 39973.54197 1994 82292.88787 2007 203788.9583 

1982 41719.02920 1995 87577.04600 2008 207400.2101 

1983 44299.34803 1996 93274.43071 2009 217249.6957 

1984 47856.07339 1997 91071.18049 2010 229528.7214 

1985 51840.50569 1998 86643.02056 2011 248898.1417 

1986 54741.21461 1999 85002.18854 2012 254319.7118 

1987 58737.33633 2000 83129.53600 2013 261402.5332 

1988 63052.86807 2001 99939.25859 2014 262747.8929 

1989 65590.73037 2002 109314.6759 2015 261805.7824 

1990 66691.61343 2003 128517.4696 2016 260943.1660 

The data shows a more pronounced increase in emissions in the late 20th and early 21st 

centuries, corresponding with China's accelerated economic growth post-economic reforms 

and its integration into the global market. This period is marked by large-scale 

industrialization and urbanization, leading to heightened energy consumption and, 

consequently, higher CO2 emissions. 

In an academic context, this dataset is invaluable for studying the relationship between 

economic development and environmental impact. It provides a case study of how rapidly 
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developing economies face the challenge of balancing growth with sustainability. The data 

can also be used to model future emission scenarios, informing policy decisions and 

international negotiations on climate change. 

In summary, the dataset on China's annual CO2 emissions from 1978 to 2016 offers a 

detailed account of the country's growing environmental footprint, reflecting its economic 

transformation and the resulting challenges and opportunities in achieving sustainable 

development.  

 

  
(a)                           (b) 

Fig.3 (a) Primary energy consumption and the source of energy in China over the years 1978–2016. (b) 

The 3D illustration of main sources consumption of energy in China over the years 1978–2016. 

 

Fig. 4 The total of CO2 emissions in China over the years 1978–2016. 

Fig.3 show that the total energy consumption is increasing year by year. however, since 

2010, a series of policy and regulations is adopted to reduce carbon emissions involving 

reducing the use of fossil energy (viz. coal, crude oil, natural gas and so forth) and increasing 

the use of clean energy power (primary electricity) thereby the growth rate of total energy 

consumption is slowing down. From Fig4, the total amount of carbon dioxide emissions 

obtained by the conversion formula can be seen that China's energy saving and emission 

reduction measures have achieved initial results, and the growth rate of carbon dioxide 

emissions has slowed down significantly. 

3.2 SPSS analysis for influence factor of the carbon dioxide emissions 

Table 5. Bivariate correlation. 

Factor Pearson coefficient Significant (bilateral) 

Total energy production 0.999** 0.000 
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Total population 0.874** 0.000 

Coal consumption 0.999** 0.000 

Oil consumption 0.990** 0.000 

Gross national income 0.873** 0.000 

GDP 0.962** 0.000 

The tertiary industry 0.724** 0.000 

Note: ∗∗indicates a significant correlation at the bilateral significance level of 0.01. 

The influence factor for prediction of the emission of carbon dioxide emissions was 

selected from the statistical yearbook of China. The influence factor mainly contain total 

energy production, total population, coal consumption, oil consumption, gross national 

income, GDP and the tertiary industry. Pearson correlation coefficient and the bilateral 

significance of the above-mentioned factors can be obtained by SPSS analysis. From Table 5, 

the Pearson correlation of the selected influence factors are above 0.7, therefore, we can 

conclude that highly significant correlation exist between the above-mentioned influence 

factor and carbon dioxide emissions. 

3.3 Evaluation criteria of model performance 

In order to verify the learning performance of the proposed algorithm, mean absolute 

percentage error (MAPE) is adopted, which can be define by 

*

1

1 i i

i
i

y y
MAPE

y



 =

−
=                                                       (11) 

Where iy and 
*

iy  are the prediction and real-value of the CO2 emissions,  refer to the 

number of samples to be predicted. The smaller the values of MAPE, the better the 

forecasting performance of the proposed method. 

As for the evaluation criteria of prediction intervals, CWC is a kind of combined index 

based on prediction interval coverage probability (PICP) and the mean prediction interval 

width(MPIW), which can be define as 

( )
1 1 1

1 1 1
1 exp

test test testn n n

i i i ii i i
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CWC U L c c
n n n

  
= = =

     
= − + − −       

     
                  (12) 

Where ic equal 1 when the target is placed in the interval range, otherwise, ic equal 0. 

 and   are two hyper-parameters that control the location and the amount of CWC jump; 
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                                                    (13) 

Assuming that the experiments are conducted repeatedly, medianCWC and SDCWC are the 

mean value and standard deviation of CWCs, respectively. medianCWC denotes the average 

results and can be used to measure the quality of the prediction intervals. The smaller the 

medianCWC , the better the performance. SDCWC denotes the distribution of the CWCs around the 

medianCWC and can be used to measure the variability. The medianCWC and can be used to 
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measure the variability. The smaller the medianCWC , the lower the variability Together, these 

smaller the medianCWC , the lower the variability Together, these two indicators reflect the 

performance of the prediction intervals. two indicators reflect the performance of the 

prediction intervals. 

 

Table 6 A statistical analysis of prediction intervals results 

Method CWCmedian(105) CWCsd(105) MAPE(%) Time(s) 

MVE MLP 0.0303 0.0056 6.78 2.14 

Delta MLP 0.0334 0.0037 5.498 2.34 

PSO-ELMEnsemble 0.028 0.0035 2.17 1.52 

  

Fig.5 PIs constructed by PSO-ELMEnsemble    Fig.6 PIs constructed by Delta MLP 

 

    Fig.7 PIs constructed by MVE MLP   Fig.8 Comparative analysis of state-of-art PIs method 

 

The experiment of CO2 emission prediction in China is carried out based on the 

aforementioned related data from 1978 to 2016.However, the obtained data of CO2 emissions 

are always accompanied with noise, and the existing point-oriented predictions without any 

indication of the accuracy are less reliable for the real-world applications. In practice, the 

workers usually raise more concerns on prediction accuracy and the variation intervals of CO2 

emission, with which they can design the appropriate policies. 

In this study, the proposed PSO-ELMEnsemble is adopted to construct the PIs for CO2 

emission. The activation function of neurons in the PSO-ELMEnsemble employs the line 

kernel function, and the ensemble structure has a better performance when the dimensionality 
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equals 10. In addition, the issue of coverage probability in the proposed method is fully 

considered. A statistical analysis of prediction intervals results is listed in Table 6. The 

iterative prediction is adopted here for PIs construction, which is one-step ahead of the 

prediction with a rolling forecast origin. Fig. 5 shows the results based on the proposed 

PSO-ELMEnsemble with the confidence level 95%, in which the values can be completely 

covered by the constructed PIs. Fig.6 and Fig.7 respectively shows the results of the other two 

methods where existing points are observed outside the interval range. Given that a 

comprehensive comparative analysis of these methods is visualized in the Fig.8, it can be seen 

that the proposed method exhibits an improved accuracy performance than the others for CO2 

emissions. 

4. Conclusions 

Global climate change has become the greatest non-traditional security challenge faced 

by human development, and achieving carbon peak and carbon neutrality is of significant 

importance. The main objective of this study is to select the correlative factor and construct 

the prediction intervals for carbon emissions in China. Therefore, an extreme learning 

machine ensemble based on particle swarm optimization approach (PSO- ELMEnsemble) is 

presented, which is the novelty of this work that is helpful to understand the trend and the 

corresponding reliability of CO2 emissions during the periods 1978-2016. Research shows 

that efficient carbon emission prediction models help better balance economic development 

with ecological environment. Since 2015, the rate of carbon emission growth in China has 

started to slow down, largely due to the government's focus on carbon emission control as a 

key research area, coupled with active development of new energy sources and 

implementation of industrial energy conservation and emission reduction policies. In the 

future, by incorporating more influencing factors into the carbon emission prediction models, 

we can further improve their accuracy. As for achieving the goals of carbon peak and carbon 

neutrality, the following strategies can be adopted in terms of optimizing industrial structure, 

raising environmental access thresholds and increasing investment in technological 

innovation and research & development. Frist reducing the proportion of the secondary 

industry in the national economy while enhancing the development level of the tertiary 

industry. Specific measures include accelerating the elimination of outdated production 

capacity, restricting the development of high-energy-consuming and heavily polluting 

industries, and encouraging the growth of new energy, renewable energy, and high-end 

manufacturing. Furthermore, strengthen environmental access standards for investment 

projects, guiding more funds towards green technological innovation. Finally, technological 

innovation plays a vital role in reducing carbon emissions. Actively increase support for 

industries such as clean energy, green manufacturing, green buildings, and green 

transportation, as well as for the research and development of green low-carbon technologies 

and carbon-negative technologies (such as CCS/CCUS), to enhance the role of technology in 

energy conservation and emission reduction. 
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