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ABSTRACT 16 

Due to the limitations of fossil fuels and the environmental problems associated with their 17 

usage, renewable energy sources have been exploited for desalination through the employment of 18 

various technologies and mediums. One of the most useful renewable energy sources for solar 19 

desalination, both directly and indirectly, is solar energy. The effectiveness of solar desalination is 20 

influenced by a variety of parameters, making it challenging to forecast their performance in 21 

particular circumstances. Artificial neural networks (ANNs), PSO, ANFIS, RO, and genetic 22 

algorithms would all be suitable techniques for their modeling and output predictions in this 23 

context. In the current research, multiple data-driven approaches are used in-depth to perform 24 

modeling of solar-based desalination facilities. By utilizing these methods with the proper inputs 25 

and structures, it can be deduced that the results of the solar desalination units can be consistently 26 

and correctly projected. Additionally, several suggestions are offered for future research in the 27 

relevant areas of the study. 28 

Keywords: Artificial neural network, solar still, ANFIS-based model, genetic algorithm, 29 

support vector machine 30 

1. Introduction 31 

The globe is experiencing an energy crisis, and via scientific research, researchers from all 32 

around the world are working arduously to find solutions by focusing on renewable energy 33 

sources. Energy is a crucial component needed for human life to exist on Earth and is crucial 34 

to the growth of human life. The ongoing rise in demand, the expansion of the population, and 35 

the improvement of living conditions are the causes of the energy problems. Because fossil 36 

fuels are becoming scarcer and greenhouse gas emissions are rising, it is getting harder to 37 

meet energy needs with traditional resources. Utilizing multiple natural or renewable 38 

resources is therefore necessary. 39 

To meet one of the fundamental needs of any nation, which is the rising energy demand. The 40 

amount of energy a nation consumes determines its level of growth and advancement. The 41 
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development of alternative energy sources is essential for sure and steady advancement. The 42 

best choice for it is renewable energy. There are several types of renewable energy, but the 43 

most significant source of thermal energy is solar radiation. 44 

Modern technology is getting increasingly concerned with Thermal Energy Storage (TES). 45 

By storing thermal energy during times when it is abundantly available and utilizing it when 46 

and where it is needed, TES systems enhance energy management. TES is used in a variety of 47 

applications, including air conditioning, waste heat recovery, space and water heating, and 48 

more. It is therefore the most promising energy source. India is fortunate to have abundant 49 

solar radiation available virtually all year round throughout its territory. Water heating is one 50 

of the current uses for solar energy. Solar water stills are becoming more and more popular 51 

because they are relatively cheap to make and maintain. They serve as a substitute for or in 52 

addition to electric or gas geysers. 53 

Despite being cost-effective, non-polluting, and endless, solar energy is time-dependent and 54 

has an intermittent nature. As a result, some type of TES is required, which improves solar 55 

energy utilization and is just as crucial to the development of new energy sources. Systems 56 

using Phase Change Materials (PCM) are more popular than other options for energy storage 57 

because of their consistency in latent heat storage. However, the PCM for thermal energy 58 

storage is still in the early stages of development. 59 

Untreated water contains a variety of contaminants, such as iron, arsenic, fluoride, and more, 60 

making it unfit for human consumption. Over a billion people do not have access to clean 61 

drinking water, according to a United Nations report, and this number is expected to rise as 62 

the world's population grows compared to its water supply. Water covers about two thirds of 63 

the earth's surface. Still, the accessible water is salted and so unfit for human consumption. 64 

According to reports, 97% of the water on Earth's surface is salty. A significant amount of the 65 

3% of water on Earth that is not salty is found in the polar regions as icebergs or as seawater.  66 

Less than 1% of this fresh water is accessible to humans, which is insufficient to cover all 67 
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needs. Furthermore, 90% of urban sewage in developing nations is dumped into waterways, 68 

creating a massive amount of waste and converting the waterways into sewers or sources of 69 

contaminated water. Currently, 884 million people do not have access to clean water supplies; 70 

1 in 8 people do not have access to safe drinking water; and every day, water-borne illnesses 71 

claim the lives of about 24,000 children under the age of five.   72 

 73 

Some locations have far greater fluoride percentages than the 1.5 parts per million (ppm) that 74 

the World Health Organisation (WHO) recommends for drinking water. Many methods have 75 

been devised to make use of the available dirty water for the creation of safe and clean water. 76 

The majority of advanced technology rely on active mechanisms that use enormous amounts 77 

of power produced by burning fossil fuels. In the next two decades, the global demand for 78 

fossil fuels is predicted to surpass the yearly production. A lack of petrol or oil can potentially 79 

spark violence and international economic and political issues. Furthermore, burning fossil 80 

fuels creates toxic emissions that have an impact on the local, regional, and global 81 

environments. These emissions include carbon dioxide, nitrogen oxides, and 82 

aerosols.Therefore, it is challenging to produce enough drinkable water at a reasonable cost in 83 

areas where grid power has not yet been reached.Many technologies have been developed to 84 

far, primarily in underdeveloped nations, to use solar energy to create distillate; however, the 85 

efficiency of these systems are found to be rather low. To help establish an effective model 86 

for higher yield and higher-quality distillate, an attempt has been made in this work to analyse 87 

various procedures, designs, and operating factors on the performance of a solar distillation 88 

unit. 89 

2. Artificial neural network 90 

An area of Artificial Intelligence (AI) known as Artificial Neural Networks is a subset of 91 

computational algorithms. Biological neural systems that build an input-output mapping to 92 

learn from examples are the inspiration for ANN models. It is a straightforward mathematical 93 
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method made to handle several tasks. ANN is made up of characteristics that result in ideal 94 

solutions. These qualities include mistake tolerance, parallel processing, generalization, and 95 

learning capacity. These characteristics would enable the ANN to precisely and adaptably 96 

address complicated issues. 97 

The basic transforming units (neurons) that make up an ANN are numerous, interconnected, 98 

and layered. Input data and associated output values are required to train and test a neural 99 

network. Five components make up an artificial neuron: weights, inputs, activation function, 100 

output, and summation function. Figure 1 shows the structure of ANN. 101 

 102 

Figure 1 ANN model 103 

 104 

W1, W2, and Wn are weights, whereas X1, X2, and Xn are input values. The appropriate 105 

weight is multiplied by each input. The output of the neuron is derived by applying the 106 

activation function to the result of the summary. Learning normally takes place during a 107 

certain training period in an artificial neural network. The network enters a production phase 108 

where it generates results on its own after training. A static network is a system that has 109 

separate learning and production phases. Dynamic networks are those that can continue to 110 

learn while they are being produced. However, the type of application and data format of a 111 

particular problem determine the best artificial neural network topology to use. 112 
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 113 

2.1. Types of ann 114 

2.1.1. Single-layer feed-forward  (SFF) neural network 115 

When the input layer of node sources does not project into the output layer of neurons, the 116 

neural network is referred to as a  (SFF) or acyclic (NN). In a one-layer network, the output 117 

layer of computer nodes is known as the single layer. 118 

 119 

2.1.2. Multiple layers feed-forward neural network 120 

The computation nodes in this kind of network are divided into one or more hidden layers and 121 

are referred to as hidden neurons. Hidden neurons' roles include extracting higher-order 122 

statistics and interacting beneficially between network output and external input. Neurons in 123 

the second layer of the network receive their input signal from source nodes in the input layer. 124 

The second layer's output signals are fed into the third layer, and so forth. The overall 125 

response to the pattern of activation is made up of the set of output signals from the neurons 126 

in the output layer of the neural network, which improves prediction accuracy. 127 

 128 

2.1.3. Back Propagation (BP) Algorithm 129 

The backpropagation (BP) learning algorithm is used in multi-layer neural network 130 

architecture to train the input and target pair patterns in a supervised way and divided into two 131 

trips over the various network layers: Backward pass and forward pass 132 

 The weights between neurons are adjusted layer by layer when input data is transmitted 133 

through the system forward during the FP (forward pass). The network's real response is then 134 

produced as a sequence of outputs. The networks' synaptic masses are fixed during the FP. An 135 

error correction rule adjusts the weights during the reverse pass.  136 
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 137 

Figure 2 Feed forward back propagation model 138 

An error signal is produced by deducting the network's actual output from its predicted 139 

response.  This incorrect signal is then reverse-transmitted by the network. The prediction 140 

error is decreased across several training cycles until the network gets the required degree of 141 

accuracy. A full cycle of forward-backward passes and weight adjustments using each input-142 

output pair in the data set is referred to as an epoch, also known as an iteration. The network 143 

consistently reaches the predetermined level of accuracy. The idea of feed forward-back 144 

propagation is demonstrated in Figure 2. 145 

Where, 146 

X1, X2, X3, ..., Xi are inputs 147 

W1,4, W1,5, Wi,j, …, Wj,k are weightsO7, O8, O9, …, Ok are outputs 148 

3. Design and development of ann model 149 

The creation of ANN models goes through three crucial stages. Phases of Training, Testing, 150 

and Performance Evaluation sending a certain set of inputs through the network and 151 

comparing the results with a specific set of intended outputs is how training is carried out. 152 

The weights are changed to generate a set of outputs that are closer to the goal values if there 153 
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is a discrepancy between the actual and target outputs. The old weight is multiplied by the 154 

error correction value to create the network masses, and the bias value is also changed. Up till 155 

the performance goal is reached, this process is repeated. The created ANN model is finalized 156 

against the testing data after the training phase is complete to meet our requirements with the 157 

least amount of error. The next sections go into great detail regarding the training and testing 158 

phase. 159 

3.1. Training Phase 160 

Training and neural network designs are carried out during the training phase. The subsequent 161 

substeps are employed: 162 

• Acquiring the data. 163 

• Splitting the data (for example, 80% for training and 20% for testing). 164 

• Normalization of data from origin to destination. 165 

• Choose the different parameters. 166 

•  NN size. 167 

• The transfer function type that will be applied to each layer. 168 

• The algorithm used for training. 169 

• Identifying the best-hidden layer and hidden neurons. 170 

• Use the training dataset to run the neural network through its learning process. 171 

• In the event of any of the following, training is terminated: 172 

• Achieves the performance objective. 173 

• The maximum number of repeats (epochs) has been achieved. 174 

• The allotted time has been exceeded. 175 

• The performance gradient is below the established minimum value. 176 

 177 

3.2. Testing Phase 178 
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In the testing step, the trained ANN model is assessed against testing data to determine its 179 

suitability for achieving the objective of accurate performance with little error. 180 

4. Performance evaluation 181 

The effectiveness of the ANN is assessed using the following parameters to calculate the 182 

statistical error between the predicted and goal: RMSE, R-value, Correlation Coefficient, and 183 

Regression Analysis - MAPE 184 

4.1. Solar still using ann's analysis 185 

From the aforementioned literature, it can be seen that some researchers have created 186 

mathematical models while others have carried out thorough experimental experiments to 187 

assess the effectiveness of various solar heating methods. Due to lengthy computer 188 

programming codes, the analytical approach takes a long time to produce a suitable result, 189 

especially for the solution of complex equations. To obtain results and draw useful 190 

conclusions, the experimental study also needs a significant amount of time for 191 

experimentation and analysis. Contrarily, the use of ANN delivers significant information 192 

patterns in a multi-dimensional information domain while also saving time; as a result, this 193 

technology is becoming more and more common in the scientific and engineering disciplines. 194 

In recent years, several scholars have used ANN to predict the performance of various solar 195 

stills. Without the need for intricate experiments or explicit equations, ANNs can represent 196 

complex systems. ANNs can predict the desired output of a system when sufficient 197 

experimental data is presented. Numerous research have used ANN to simulate and predict 198 

the thermal characteristics of solar energy collectors. A review of the literature on applying 199 

the ANN technique to forecast the thermal performance of various solar stills is given below: 200 

4.2 ANN+ Learning Algorithm 201 

ANN to analyze the ability of a parabolic collector solar steam generator. 396 patterns were 202 

gathered from trials on a solar steam generation setup. They built an 8-8-4 ANN model using 203 
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the parameters. Three layers were employed in the hidden layer. 349 of the 396 data patterns 204 

were used for training and 47 for testing, out of which 349 were used. A learning technique 205 

was used to train the ANN model, and it correctly predicted results with a maximum range of 206 

4.8% and an R2 value of 1.678 (Kalogirou et al.,1998). 207 

4.3 Neural Model analysis using hidden layers 208 

ANN was recommended and used to evaluate the effectiveness of a home solar still. To 209 

perform an ANN analysis, they gathered data. They then created a 9- 19-5 neural model with 210 

three hidden layer layers. Using the collected data to train an ANN model, two output 211 

parameters had expected values of 0.8967 and 0.8994. The actual data collected was 7.1% 212 

and 9.7%, respectively, of what was anticipated (Kalogirou et al. 1999). 213 

ANN model with 8-28-3 neurons for thermo-siphon solar water heating system thermal 214 

performance prediction. They gathered 54 data sets for this project, of which 46 were used for 215 

training and the remaining 8 for testing. The ANN model was trained using a learning 216 

technique, and it was able to predict outcomes with maximum variations of 1MJ and 2.2oC 217 

for two output parameters (Kalogirou et al. 1999). 218 

4.4 Performance of solar collector using ANN 219 

The ANN approach to forecast the effectiveness of a household forced circulation solar 220 

collector still. To complete this project, they built two different ANN models using the 13-5-1 221 

and 14-7-2 neural models. The model's training phase employed the data that had been 222 

collected. R2 was 0.9945 for the first model and 0.9825 and 0.9910 for the second model for 223 

results that were expected. For the two models, the greatest percentage variances were 1.9% 224 

and 5.5%, respectively (Kalogirou, 2000). 225 

4.5 Hottel-Vhillier (H-V) model for solar still 226 

ANN model to forecast how well a flat plate solar still would function. Three input 227 

variables—ambient temperature, air intake temperature, and solar intensity—and one output 228 
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variable—air outlet temperature—were used to build the ANN model. The LM learning 229 

method was used to train the model. In the hidden and output layers, respectively, the tang 230 

and purlin transfer functions were employed. The heat network model's measured data from 231 

17 days of data and the Hottel-Vhillier (H-V) model's generated data were both used to train 232 

the model. Finally, they believed that output temperatures from three different kinds of solar 233 

collectors would be adequate. They found that there was an average variance of 0.9 C in the 234 

outlet temperature of the solar collector (Farkas & Geczy, 2003). 235 

 236 

4.6 Multilayer perceptron (MLP) and Radial Basis Function (RBF)  237 

To estimate the useful heat gained and thermal efficiency, an ANN model was applied to two 238 

different types of hybrid solar stills. They built two different kinds of models, including MLP 239 

and RBF. The best MLP model for thermal efficiency and useable heat gain in tube-type 240 

collectors was found to have 9 hidden nodes. Due to the lowest MSE and in the instance of 241 

the RBF model with 8-91-2, 6 and 3 neurons in the hidden layer were found to be the 242 

optimum model for the pipe-type collector in terms of usable heat gain and thermal 243 

efficiency. Due to having the lowest MSE and an R2 value larger than 0.95, the MLP model 244 

is deemed to be marginally superior to the RBF model (Falcao et al., 2004). 245 

An ANN model was created to forecast the performance of the solar still absorber. To do this, 246 
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they created an experimental setting (Figure. 3) and gathered data for the research. 40 data 247 

points total were gathered, of which 26 were used for testing and 6 for training. When they 248 

created an ANN model with five variables in the input layer and four parameters in the output 249 

layer, they discovered that 7 neurons in the hidden layer were the ideal number. The LM 250 

learning approach was used to train the 5-8-4 neural model, which was successful in 251 

accurately predicting outcomes with low error and high R2 values ( Cetiner, 2005). 252 

 253 

Figure. 3 Experimental setup with cylindrical collector 254 

 255 

4.7 Solar collector analysis using SISO and MISO model 256 

two models: multiple input, single output (MISO) and single input, single output (SISO). In 257 

contrast to the MISO model, which used thermal heat loss coefficient as both the output and 258 

the input data, the SISO model used solar radiation as both the output and the input data 259 

(Lecoeuche & Lalot, 2005). ANN tool to estimate flat plate solar collector performance 260 

characteristics ( Kalogirou, 2006). 261 

 262 

4.8 Different angles of solar still with ANN analysis 263 

The ANN model to forecast flat plate solar collectors' thermal performance. They used an 264 

experimental setup (Figure. 4) for this work and gathered data to build an ANN model. The 265 

experimental time, date, solar radiation intensity, absorber surface temperature, tilt angle, 266 

azimuth angle, and declination angle were seven of the input factors that were chosen. The 267 

output parameter used was the collector's thermal efficiency. In the intermediate layer, 20 268 

neurons were chosen from two buried layers. In the neural model, the logistic sigmoid transfer 269 

function and the back-propagation learning technique were employed. The 7-20-20-1 neural 270 

model was successful in predicting the flat plate solar collector's thermal efficiency. The 271 

highest and minimum variances of the findings were discovered to be 2.558484 and 272 
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0.001969, respectively (Sozen et al., 2008). 273 

 274 

Figure. 4 Experimental setup of liquid flat plate collector  275 

A solar still is a basic apparatus that operates using the principles of water evaporation and 276 

condensation. Essentially, it consists of a glass cover that allows for energy transfer, an absorber plate 277 

that holds saline or brackish water, and a metallic frame with a black base to support the water and 278 

cover. Blackening the base's interior surface allows it to efficiently absorb solar radiation that strikes 279 

it. In order to be purified, the brackish water is fed into the basin. At the bottom of the glass cover is a 280 

place to catch the distillate.  The two main classifications of solar distillation systems, such as passive 281 

and active solar stills, can be generally categorised.  Glass is utilised as a glazing material in the 282 

majority of the literature because it can transmit over 90% of incident short wave radiation. However, 283 

because it acts as an opaque material for long wave radiation, glass has a low transmittance to long 284 

wave heat radiation of wavelengths between 5 and 50 μm that is emitted by the absorber plate. There 285 

have also been reports of the usage of plastic sheets and films as glazing material. A transparent 286 

plastic cover in the shape of a hemispherical dome that has an absorptivity of 0.9 and transmissivity of 287 

0.8 is utilised by many authors. Sometimes a very thin (few microns) dielectric substance is put on the 288 

glass cover to reduce reflectance. Utilising dielectric material has been found to reduce reflectance by 289 

up to 50%. 290 
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4.9 Direct Expansion Solar Aided Heat Pump's (DXSAHP) performance 291 

ANN technique to forecast a direct expansion solar-aided heat pump's (DXSAHP) 292 

performance. In Calicut, India, they built their 1st experimental arrangement and gathered 293 

data under various climatic circumstances. They first created a 2-10-5 neural model with an 294 

FFBP network for investigation by the ANN technique. This research used a total of 60 data 295 

sets, of which 10 were used for testing and 50 were used for training (Mohanraj et al., 2008) 296 

4.10 Feedforward neural network for solar still 297 

Neural network technology to estimate the solar air's thermal efficiency. Three distinct types 298 

of absorber plates were used in the double flow SAH experiments, as illustrated in Figure. 5. 299 

Using the experimentally determined parameters, they created the FNN and ANN models. In 300 

the ANN model, three distinct learning algorithms, including the LM, SCG, and CGP, were 301 

utilized, however, in the FNN model, just the LM technique was applied. In the ANN and 302 

FNN models, respectively, the tang and more wavelet activation functions were applied. Due 303 

to its lowest error and maximum R2 value among the three algorithms, the LM with 6-4-2 was 304 

determined to be the best model for ANN for a mass flow rate. The best model was LM with 305 

6-4-2 for 0.08 kg/s. The FNN 6-5-3 model, which had the lowest error and best R2 value, was 306 

also discovered to be a better FNN model for prediction ( Esen et al., 2009). 307 

 308 

4.11 Levenberg-Marquardt (LM) algorithm 309 

Direct growth ANN was used to forecast the energy analysis of solar desalination techniques. 310 

For this investigation, they set up a laboratory environment and collected data in Calicut, 311 

India, under various meteorological circumstances. They developed a pair of models for 312 

energy consumption and efficiency using 3-13-6 neurons. The LM learning algorithm was 313 

used to train the neural model, and it correctly predicted outcomes with lower COV and 314 

RMSE values and greater coefficients of correlation (Mohanraj et al, 2009). 315 
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 316 

Figure. 5 Type I, Type II, and Type III (absorber plates) 317 

 318 

4.12 Stochastic Gradient Descent (SGD) 319 

Still images and the ANN approach to predict how well the solar desalination process would 320 

work. Using the SGD method, they ran tests and gathered 60 data sets. Fifty were used for 321 

training, while ten were used for testing. ANN model built using 3-12-5 neuron FFBP 322 

network. SGD was one of three different training algorithms that were used. In Figure 6, They 323 

found that the LM algorithm for learning was the best one using statistical error analysis. 324 

They forecasted outcomes with minimum RMSE and COV values and maximum correlation 325 

coefficients of 0.9999 (Moahanraj et al., 2009). 326 
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 327 

Figure. 6 Photo of the arrangement (Alizami et al., 2020) showing the solar still in (a) and the 328 

glazed absorber in (b). 329 

4.13 Backpropagation (BP) 330 

To forecast the performance of solar collectors, an ANN model was created. In Beijing, they 331 

carried out experiments and gathered data. The ANN model has been created. Two variables, 332 

such as heating capacity and efficiency, were used in the output layers. The ANN structure 333 

was modeled using the BP learning approach and the logistic sigmoid transfer function, 334 

demonstrating that the model performed as predicted ( Xie et al., 2009). 335 

5. ANN methodology for temperature prediction 336 

ANN methodology for temperature prediction of water during solar purifiers. They tested 337 

various training months over nine days. Two neurons in the input layer of the ANN model, 338 

such as solar radiation and outside air temperature, were constructed. The temperature of the 339 

water was employed in the output layer. Five alternative training methods were used to train 340 

the ANN model. They discovered that the best model for predicting food temperature was the 341 

3-5-2 neural network with TRAINRP training techniques ( Tripathy & Kumar, 2009). 342 
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Soft computing techniques to forecast solar collector performance using PCM materials 343 

(Figure. 7). ANFIS, SVM, and ANN were three different kinds of soft computing tools that 344 

were utilized. One of the important tools utilized to forecast solar collector performance was 345 

ANN. Three layers of the hidden layer were used to build an ANN network using the 5-7-1 346 

neural model. They used the LM learning algorithm to predict outcomes, and they achieved 347 

good R2 values between 0.832 and 0.899(Varol et al., 2011). 348 

 349 

5.1 Open-Cycle Solar Regenerator  Using ANN 350 

. To forecast the ability of an open-cycle solar regenerator, an ANN model of 2-10-1 neurons 351 

was utilized. (figure 7) They made predictions with the least amount of error and the highest 352 

correlation coefficient values (Al et al., 2011). 353 

 354 

Figure. 7 Solar absorber experimental arrangement using  PCM  components (Kicsiny& 355 

Richárd, 2014). 356 

 357 

5.2 Tansig transfer function of ANN to analyze solar still performance: 358 

ANN tool to analyze the performance of solar still. In August and September, they carried 359 

out experiments in Turkey from 10:00 a.m. to 5:00 p.m. for 5 days. They employed flat and 360 

zigzag absorber plates, two different varieties. The experiments produced a total of 80 data 361 

sets. The ANN model was created using MLP 8-20-1 and eight factors, including the type of 362 
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absorber model, the time of the tests, the exit and inlet air temperatures, the temperature of 363 

stored water, the surrounding temperature and absorber surface temperatures, and the solar 364 

intensity.  The collector's efficiency was chosen as the output criterion. Algorithms for 365 

backpropagation LM learning were used to structure the ANN model. It was employed in the 366 

hidden layer of this model. Finally, they estimated the solar air collector's thermal efficiency 367 

and compared it to actual testing results. The neural model performed satisfactorily, as 368 

indicated by the values of SSE, MAE, MRE, R2, and RMSE were determined (Caner et al., 369 

2011). 370 

5.3 Neutrophil-Lymphocyte Ratio (NLR) and Multiple Linear Regression (MLR)Models 371 

 FFNN with the help of NLR and MLR to forecast the rate at which seedy grapes would dry. 372 

They performed tests using the setup (Figure. 8), which was built using two different kinds of 373 

SAC: PCM-based collector and extended surface. Data was gathered for the ANN model. The 374 

ideal ANN model for predicting outcomes was created using 3-10-1 neurons. When the FNN 375 

model's performance was compared to that of the MLR and NLR models, it was discovered 376 

that the FNN model performed better ( Cakmak & Yildiz, 2011). 377 

 378 

Figure.8 experimental set-up 379 
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5.4 Nonlinear Autoregressive with eXogenous input (NARx) 380 

The ANN approach to forecasting the performance of cutting-edge solar collector modeling. 381 

They built the 5-5-1 and 5-4-1 NARX neural models, respectively, and experimented with 382 

performance-based assessments by EN 12975-2, a European Standard. The results 383 

demonstrated that the ANN model performed satisfactorily when combined with cutting-edge 384 

modeling (Fisher et al., 2012). 385 

To analyze the ability of a hybrid Photovoltaic double-pass air heating collector, an ANN 386 

model was built. Data was obtained, and it was utilized for testing. 2000 data sets altogether 387 

were gathered from Indian states. The ANN model used FFBP methods to organize its 388 

performance prediction. 18 neurons in a hidden layer LM were selected. In the end, the results 389 

were correctly predicted by the 4-15-4 optimal model. The RMSE values for thermal, 390 

electrical, overall, and total thermal energy were found to vary from 1.10 to 2.89%, 1.12 to 391 

2.90%, 1.23 to 3.21%, and 1.209 to 2.90%, respectively ( Kamathania & Tiwari, 2012). 392 

5.5 ANN with ANFIS 393 

ANN and ANFIS techniques to forecast evacuated tube solar collector performance. For 394 

training and testing, they carried out experiments and gathered data. A total of 567 data 395 

patterns were gathered, of which 80% were utilized to train the NN model and 20% to test it. 396 

The mean storage tank temperature, ambient temperature, solar radiation, tilt angle, and 397 

thermal efficiency were the four input factors that made up the ANN model's structure. ANN 398 

model built using FFBP techniques. To identify the appropriate number of neurons for the 399 

buried layer, they examined models with 3 to 13 neurons. They found that the LM with 13 400 

neurons was the best ANN model due to its low error. Finally, the neural model's prediction 401 

of the collector's thermal efficiency with a 4-12-1 accuracy was correct. Additionally, they 402 

calculated the thermal efficiency using the ANFIS approach. They claimed that because the 403 

ANN approach has lower RMSE and COV values and higher R2 values (0.811914), it is 404 
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superior to the ANFIS method (Dikmen et al., 2013). 405 

The ANN method to calculate the solar air collector's thermal efficiency. He experimented 406 

with corrugated and trapeze-shaped absorber plates, two different varieties. Experiments were 407 

carried out in Turkey in October between 9:00 and 17:00. 66 samples of data total were 408 

obtained from the studies. ANN model was built using the BP algorithm and the FF structure. 409 

The optimum ANN model was chosen using 3 to 9 neurons in the hidden layer based on a 410 

trial-and-error process. Researchers find that the ideal topology for SAC analysis is LM-3. R2 411 

values of 1.2345 and 1.5672 for the first type and second type respectively, offer good model 412 

results (Benli, 2013). 413 

The ANN method to forecast the solar PV/T system's ideal thermal and electricity output. 414 

They carried out trials with the PV/T setup and gathered information for the ANN model. 415 

With the use of 2-5-1 neurons, an ANN model that predicted data more accurately was 416 

created (Ammar et al. 2013). 417 

5.6 MATLAB software for solar thermal still analysis 418 

Flat plate solar still heat transfer analysis was predicted using an ANN model with 6-30-6 419 

neurons. They used MATLAB software to compute 2509 data utilising an optimisation 420 

strategy for this project. The computed data were divided into three groups: validation (20%), 421 

testing (20%), and training (80%). The neural model used a hidden layer of 20 neurons and a 422 

durable back propagation learning approach (Hamdan et al., 2014). 423 

The ANN approach to forecast how well massive solar systems will function. Over ANN 424 

modeling, experimental data were gathered over 226 days. The ANN model, which includes 425 

three additional levels and layers overall, was constructed with five neurons in the hidden 426 

layer. An ANN model was developed using experimental data and a learning algorithm, and it 427 

accurately predicted outcomes (Kalogirou et al., 2014). 428 

 429 
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5.8 Solar Still thermal energy systems (SSTES) with ANN 430 

For estimating the performance of solar thermal still performance with thermal system, an 431 

ANN model has been implemented. From March 2011 to December 2012, they carried out 432 

trials with the STES setup and gathered data regarding the local climate in Ottawa. ANN 433 

models incorporating FFBP networks were created utilizing two distinct learning methods, 434 

such as LM and SCG. It was discovered that the 10-20-8 neural model and LM learning 435 

algorithm were the best options (Yaïci & Entchev, 2014). 436 

To use experimental data to forecast how well a ground source heat pump system will 437 

function, ANFIA and ANN models were developed. Twelve inputs and one outcome 438 

parameter were used to set up the ANN and ANFIS models. For the ANFIA and ANN 439 

models, we used backpropagation and hybrid learning approaches, respectively. They 440 

discovered that the ANFIS performance prediction is superior to the ANN model (Esen et al., 441 

2015). 442 

5.10 Multiple-layer perceptron neural network (MLPNN) model. 443 

ANN approach to forecast a PV-T evaporator's performance in a solar still. For ANN 444 

modeling, they acquired experimental data. An ANN model with 3–18–5 neurons was 445 

created.  The Multiple-layer perceptron neural network model has the highest R2 and the 446 

lowest estimated variance and COV values when predicting the outcomes (Gunasekar et al., 447 

2015). 448 

Three different types of ANN models to forecast solar radiation, including the MLP, GRNN, 449 

and RBF models and compared the results to data predicted by the Improved Bristow-450 

Campbell (IBC) model (Wang et al, 2016). 451 

The ANN technique has been successfully employed for performance prediction of solar still 452 

desalination since it operates more quickly and forecasts the data with less time, according to 453 
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a review of the aforementioned literature. As a result, it can be concluded that the ANN 454 

method is suitable for predicting the capability of solar desalination techniques. 455 

Table 1 provides a selection of research papers that apply artificial neural networks to forecast 456 

solar still desalination performance. 457 

 458 

Table 1 Artificial Neural Network technique in the solar desalination process. 459 

 460 

Citation Neural Model Type  of 

Network 

Algorithms The Work's Purpose 

[Layek 

et al., 

2099] 

SISO, MISO MLPNN BP approximation of solar 

collectors' daily performance 

[Saini, 

2008] 

4-7-3 MLPNN LM estimating solar water still 

performance with a collector. 

[Karmar

e & 

Tikekar, 

2007] 

ANN: 8-9-1, 

9-3-1, 

9-6-1 

RBF:9-84-1 

RBFNN, MLPNN BP, RBF To forecast the hybrid solar 

still's performance 

[Jaurket 

et al., 

2006] 

3-7-1 MLPNN TRAINLM to evaluate the flat plate solar 

still's performance. 
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[Bhagori

a et al, 

2002] 

13-5-1, 14-7- 

2 

MLPNN BP Forced circulation solar 

water desalination 

performance estimation. 

[Verma 

& 

Prasad, 

2000] 

7-24-2 MLPNN BP System for solar water 

desalination using 

thermosiphon performance 

analysis 

[Gupta et 

al., 

1993] 

8-18-2 

(3 hidden layers 

with 18 

neurons) 

MLPNN BP to forecast how well a 

domestic solar still will 

function. 

[Prasad 

& Daini, 

1988] 

8-8-4 

(3 hidden layers 

with 8 

neurons) 

MLPNN BP to calculate the solar still's 

performance. 

[Kalogir

ou, 

2000] 

2-4-1 MLPNN SCG, CGP, BFG, 

LM, RP 

estimating the temperature of 

the water during the solar 

desalination procedure 

[Prasad 

& Sahu, 

5-10-10-2 MLPNN BP To measure the effectiveness 

of solar still 
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2017) 

 

[Sahu & 

Prasad, 

2017] 

2-10-4 MLPNN LM,SCG, CGP To determine how well direct 

expansion solar-driven 

desalination techniques 

perform 

 

[Prasad& 

Sahu, 

2016] 

2-12-5 MLPNN LM Energy study of direct 

expansion solar-driven 

desalination techniques 

prediction 

 

[Sahu & 

Prasad, 

2016] 

6-4-2, 6-5-2 WNN, ANN ANN: LM, SCG, 

CGP WNN: LM 

To forecast the solar still's 

thermal efficiency 

[Behura 

et al., 

2016] 

1-9-4 MLPNN LM calculating a direct expansion 

solar still's performance 

[Behura 

et al., 

2016] 

7-20-20-1 MLPNN BP To determine how well flat 

plate solar collectors function 

thermally 
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[Sing & 

Siddhart

ha, 2014] 

Six different 

model 

MLPNN BP To forecast the flat plate solar 

still's performance metrics 

[Arcakli

oglu et 

al., 

32004] 

2-5-1 FINN LM To gauge the effectiveness of 

the solar PV/T system 

[Pacheco 

et al., 

2001] 

8-3-1 MLPNN LM To calculate the thermal 

efficiency of two different 

solar still types 

[Jani et 

al., 

2017] 

4-12-1 ANFIS, FFNN LM To forecast how well an 

evacuated tube solar still will 

operate 

[Zahraee 

et al., 

2016] 

4-15-4 MLPNN LM Calculate the hybrid PV/T 

double pass air collector's 

performance 

[Yadav 

& 

Chandel, 

2014] 

5-5-1, 5- 

4-1 

NARX LM comparison of neural 

network and cutting-edge 

solar still modeling 

techniques 

[Karabac

ak& 

3-10-1 FINN LM To calculate the rate of solar 

still performance in seawater. 



 

26 

 

Cetin, 

2014] 

[Uma 

Mahesw

ari & 

Meenaks

hi, 2018] 

8-20-1 MLPNN LM Solar still performance 

analysis 

[Mellit et 

al, 2009] 

2-10-1 MLPNN BP estimating open-cycle solar 

still performance. 

[Kalogir

ou, 

2001] 

5-7-1 MLPNN LM determine the solar collector's 

performance based on PCM. 

[Yilmaz 

& Atik, 

2007] 

4-15- 

4 

MLPNN LM To forecast a PV-T 

evaporator's performance for 

solar-aided desalination 

methods 

[Ertunc 

& 

Hosoz, 

2006] 

13- 

15-1 

MLPNN, ANN BP, 

Hybrid 

To forecast the effectiveness 

of a ground-based solar 

desalination system 

[Hosoz 

& 

10- 

20-8 

FFBP LM, SCG To gauge the effectiveness of 

the solar thermal energy 
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Ertunc, 

2006] 

system 

[Yigit & 

Ertunc, 

2006] 

3-5-5- 

5-2 

MLPNN BP assessment of huge solar still 

kinds' performance 

[abbassi 

&Bahar, 

2005] 

5-20- 

5 

NARX Rprop To forecast the flat plate solar 

still's heat transfer analysis 

 461 

 462 

6. Data-driven techniques in solar desalination 463 

Heat, electrical methods, and pressure are the three basic ways utilized for desalination. The 464 

oldest method for boiling highly salinized water and collecting the steam that results is 465 

thermal distillation. Now that the steam has been collected and condensed, it may be used to 466 

make fresh water. The salt and water are separated using an electrical current in the electrical 467 

method. Pressure is the driving force behind the selective porous membrane used in the RO 468 

kind of desalination, which allows water to pass through while leaving the salt behind (Aljuyi 469 

et al, 2021). The thermal and RO kinds of desalination account for almost all of the market. 470 

Even though RO systems make up almost all of the installed capacity for desalination 471 

systems, thermal desalination has some advantages. For instance, using plant waste heat for 472 

the desalination thermal units might increase the system's overall efficiency. Studies on the 473 

utilization of data-driven techniques in SD processes have largely concentrated on thermal 474 

kinds ( Soleimanzade et al., 2022) For example, ( Behnam et al., 2022) used ANN to simulate 475 

the results of a humidification-dehumidification-type SD that was used to humidify the 476 



 

28 

 

greenhouse's interior space and provide fresh water. The model's inputs were the seawater 477 

greenhouse's breadth and length, the height of the front evaporator, and the transparency of 478 

the roof. The model's output was the system's water yield. We looked at their various 479 

concealed one- and two-layer architectures. They discovered that using one hidden layer with 480 

9 neurons produced the maximum degree of accuracy, as measured by R2, of 0.998. In 481 

addition to the model's architecture, the functions used and optimization techniques for 482 

hidden layers ( Faegh et al, 2021) must also be taken into account; however, it must be 483 

remembered that a rise in the number of layers that are hidden may result in overfitting. 484 

 485 

6.1 ANFIS-based models 486 

One of the most crucial elements affecting how accurately data-driven methods predict the results of 487 

solar stills is the applied method and algorithm (Rezk (2022); Mashaly (2017); Nassef (2020); 488 

Olabi(2023).   ANN-ANFIS-based models, multilinear regression, and random forest (RF). When 489 

compared to other methods, they discovered that employing RF produced the most accurate 490 

predictions (Mashaly et al, 2018). Another study evaluated the effectiveness of classical ANN and 491 

SVM with the Harris Hawk optimizer in forecasting the efficiency of an active solar still. Their models 492 

took into account inputs such as time, ambient temperature, solar irradiation, wind speed, and vapor 493 

velocity ( Zayed et al, 2021). They discovered that ANN performed better than models based on 494 

ANFIS and may be improved even more by applying the optimizer. R-squared values for the ANFIS 495 

and ANN-based models in their study were 0.9894 and 0.9983. Better adjusting of the parameters 496 

impacting the ability of the modeling technique can be attributed to increased accuracy of the 497 

simulations via the coupling optimizer. In a different study, the effectiveness of ANN, Multiple 498 

Regression (MR), and ANFIS was examined while predicting the efficiency of an inclined passive 499 

solar still. Relative humidity, solar radiation, TDS, and feed flow rates of brine and feed were all 500 

included as inputs in the suggested models. Another important consideration is the function that is 501 

used in the design of data-driven procedures. 502 



 

29 

 

 503 

Figure 9 | A  solar desalination system featuring a still, PV, and a collector. 504 

As an illustration, (Bahiraei et al, 2021) tested various membership functions in ANFIS-based 505 

models, such as the Pi curve, trapezoid, triangle, and differential between two sigmoidal 506 

functions, to propose a model with the maximum exactness. (figure 9)Regression's correlation 507 

coefficient for training data sets employing these approaches was approximately 0.999. The 508 

most appropriate function in a network's structure for modeling can depend on the physics of 509 

the issue, which can be discovered by putting several functions to the test (Perendecie et al, 510 

2008; Esmaili et al, 2021; Perez et al, 2010; Kharab et al, 2014). 511 

7. Linear regression analysis model 512 

It is crucial to take into account all of the useful components as inputs when modeling the 513 

system using data-driven techniques. To achieve greater accuracy or increase 514 

comprehensiveness, several models have included new inputs. In addition to the variables 515 



 

30 

 

used in the bulk of the research, ( Abuella et al, 2015) employed broader variables including 516 

the number of hours in a day, day, and month numbers, cloud cover, and the differential in 517 

temperature between the inner and outer surfaces of glass as an example. They used a 518 

regression, cascaded forward ANN, and linear model with various numbers of neurons in 519 

their research. They discovered that the ANN model provided a more accurate forecast of the 520 

system's production. Although this model is more thorough than the ones stated earlier, it may 521 

still be improved by taking into account additional elements like the system's specifications, 522 

such as the sizes of various sections and the material's qualities that determine how well the 523 

systems function ( Ibrahim et al, 2012; Alizamir et al, 2020; Skumanich et al, 1975; Ramedani 524 

et al 2014). 525 

SD can be combined with other elements to increase output. Forecasting the performance of 526 

these systems can be done using data-driven methods (Kicsiny & Richard, 2014). The panel 527 

was used to power the still in the tank that was used to warm the salt water before it was 528 

introduced to the solar still ( Wahbah et al, 2019). Saltwater was heated further in the 529 

collector before going into the still. Figure 10 displays the system's schematic. They 530 

discovered that the maximum model accuracy was achieved while utilizing 24 neurons, with 531 

an R2 of 0.987 after testing several network designs and hidden layer neuron counts. Hybrid 532 

technology would require more inputs from the systems, making the modeling process more 533 

challenging ( Ruivo et al., 2022; Bocco et al, 2012; Daut et al, 2011; Mahesh et al, 2022; Devi 534 

et al., 2011). 535 

 536 

It is possible to model the dynamic efficiency of solar desalination systems using data-driven 537 

methodologies. A solar still with an improved design's water temperature and hourly 538 

production of water were estimated using a variety of ANNs in a study conducted by (Chiteka 539 

et al., 2020), comprising feedforward (FF), backpropagation (BP), linear SVR, Support 540 
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Vector Regression (SVR), RBF, and RF. Their models' inputs included wind speed, outside 541 

temperature, solar energy received, and basin water depth. When compared to the predicted 542 

data and the corresponding real values, FF and RBF were shown to be the most successful 543 

approaches for predicting the hourly water output and water temperature, respectively ( 544 

Abubaker et al, 2021). Although they took a novel method for dynamic modeling of SD, their 545 

model's accuracy was confined and may be increased by taking into consideration additional 546 

elements like wind speed and feed temperature. 547 

 548 

8. Genetic algorithm 549 

The performance of solar stills can be enhanced by using nanofluids. These solar stills can be 550 

accurately evaluated using innovative techniques. Different data-driven modeling techniques, 551 

such as ANN-GA, to simulate the capabilities of slope solar still using carbon black nanofluid 552 

at a concentration of 1.5% wt ( Garud et al., 2021). The suggested model's inputs included 553 

solar radiation, ambient air temperature, vapor temperature, wind speed, glass outlet and 554 

intake temperatures, and basin temperature. To fine-tune the methods and provide the results 555 

with the best degree of accuracy, the models were combined using the Bayesian optimization 556 

technique. They discovered that while all of the suggested models could forecast the system's 557 

performance with a fair amount of accuracy, using RF produced the best results ( Saadaoui eti 558 

al, 2021). The efficiency of a nanofluidic solar still combined with a thermoelectric module, 559 

for instance, was modeled using ANN in conjunction with the Imperialist Competition 560 

Method(ICM), genetic algorithm (GA), and other techniques by (Jervase et al., 2001). 561 
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 562 

Figure 10 Genetic algorithm for solar desalination PSO-ANFIS AND PSO-ANN 563 

Coupling the aforementioned optimization approaches greatly enhanced the model's 564 

accuracy, with ICM having a greater impact on accuracy improvement. The modeling 565 

methodology has an impact on how accurately nanofluidic solar desalination values are 566 

projected to be. PSO-ANFIS and PSO-ANN, for instance, were employed by (Khare et al., 567 

2013) to predict the performance of a solar still using Cu2O nanoparticles. The models' inputs 568 

were comparable to those from earlier work, and the result of the created model was system 569 

efficiency. They discovered that coupling the optimization methods increased exactness in 570 

both types of models, but that PSO-ANFIS provided the highest level of modeling accuracy. 571 

In a different study ( Khanna et al., 2015), the effectiveness of MLP ANN and MLR in 572 

foretelling the instantaneous thermal effectiveness of a solar still was evaluated. In 573 
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comparison to MLR, they discovered that utilizing MLP ANN produced a model with greater 574 

exactness. Due to its more sophisticated structure and ability to model complex systems more 575 

effectively, MLP ANN has a higher level of accuracy. 576 

9. RO-ANN 577 

The outcomes of the ANN-based model can be used to design the ideal conditions for the 578 

efficiency of desalination systems ( Ghermandi et al., 2009). As an example, in a study done 579 

by (Ramanzanian et al., 2023), an ANN-based optimizing control system was used to regulate 580 

a solar-powered transmembrane distillation module. After that, a control system was put in 581 

place to maximize the system's distillate production. The suggested technology made it 582 

possible to adjust the feed flow rate to achieve continuous optimum distillate output at the 583 

ideal levels. Another example is the way (Boesch & William, 1982) uses ANN to forecast 584 

the weather and optimize a hybrid RO desalination system that is powered by solar and wind 585 

energy. The system's ideal design was created by using the network's outputs and doing 586 

optimization. 587 

The study's conclusions can be summed up by saying that the methods used, optimization 588 

algorithms, etc., have an impact on the models' accuracy. Due to their more sophisticated 589 

structures, which allow them to more accurately mimic complex systems, intelligent 590 

approaches, like ANNs, are typically chosen in terms of accuracy. Additionally, as the 591 

parameters impacting exactness are employed at their optimum values, it is discovered that 592 

applying optimization algorithms and connecting them with intelligent approaches improves 593 

accuracy. The examined inputs have an impact on the exactness in addition to the previously 594 

specified elements. Models will be more accurate if more significant inputs are taken into 595 

account (Manolakos et al., 2008). The additional elements that might contribute to the 596 

model's discrepancies can be considered to be the data noise that is inescapable in 597 

experimental data utilized for modeling. 598 
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10. Dynamic performance of solar still using ANN 599 

A cutting-edge technique for boosting the volume of desalinated water in solar desalination 600 

plants. Solar panels and a cylindrical parabolic collector (CPC) were employed to achieve this 601 

goal of increasing the temperature of the basin water. Investigations were also conducted into 602 

the effects of various basin solar still components on freshwater mass. Of the several 603 

elements that make up a basin, the aluminium basin has been linked to the greatest amount of 604 

water desalination. In addition, the impacts of various water depths and colours on the basin 605 

were investigated. At a 5-mm water depth, the maximum freshwater content in the black 606 

aluminium basin was 2.97 kg/day ( Bagheri et al., 2021).    607 

These days, artificial intelligence is a major technological advancement that can benefit 608 

business and research across a wide range of disciplines, including the desalination of water 609 

using solar thermal energy. Therefore, the primary goal of the research is to forecast the 610 

efficiency of water desalination, which is dependent on solar thermal energy, by using an 611 

artificial intelligence regression model. Before implementing the system, the contribution aids 612 

researchers and manufacturers in assessing the productivity of the desalination system's 613 

design in a beta setting ( Salem et al., 2022).  614 

 The research team's improved design for a solar still desalination system is taken into 615 

consideration here, and ANN models are developed for it using the experimental data 616 

collected over the course of a year. One of the most widely used machine learning techniques 617 

is the development and comparison of various artificial neural network (ANN) models in 618 

order to determine which performs best in predicting the two most important system 619 

performance parameters: the hourly produced distillate and the water temperature in the basin 620 

(Sohani et al., 2021). 621 

To improve the efficiency of solar energy-powered solar still units by utilising solar panels 622 

and cylindrical parabolic collectors. Salinized water is heated by thermal components outside 623 
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the solar still unit using a 300 W solar panel. Since solar panels are cooled during the hottest 624 

parts of the day, lowering their temperature may boost the efficiency of the panels first and 625 

the solar still unit second. 2.132 kg of freshwater per day was the largest amount used in the 626 

experiment. ANNs were used to model the experiments. Neural network modelling and 627 

experimental data show a strong association, as indicated by the results of neural network 628 

simulations (Bagheri eto al., 2020). 629 

According to the performance evaluation criteria, the ANN model outperformed the MVR 630 

and SWR models. Compared to the MVR and SWR models, the ANN model's mean 631 

coefficient of determination was around 13% and 14% more accurate, respectively. 632 

Furthermore, the MVR and SWR models' mean root mean square error values, at 6.534% and 633 

6.589%, respectively, were nearly twice as high as the ANN model's mean values. While the 634 

findings from the SWR and MVR models were comparable, the MVR model produced 635 

superior outcomes (Mashaly & Alaza et al., 2016). 636 

11. Minearlization process 637 

The natural process of mineralization is how the environment stores CO2, but it takes time. 638 

One of the main causes of rock chemical weathering is the hydrolysis of CO2 in damp air or 639 

water. According to the geological record, weathering happens at a rate that can significantly 640 

lower atmospheric CO2 levels when tectonic action exposes huge rock masses to the 641 

atmosphere. Even though natural weathering may remove around 30 Gt of CO2 from the 642 

atmosphere every century, this process might potentially be accelerated and turned into an 643 

industrial process. Anthropogenic CO2 can thus react with a reactive substrate to create 644 

carbonate salts, a mineralized product that can either be disposed of or transformed into a 645 

commodity that is valued. Products that have been mineralized may be usefully used in 646 

amounts that may eventually lessen the consequences of global warming. There includes 647 

discussion of typical rock kinds and how they react with CO2 gas. 648 
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12. Thermal conductivity in solar still 649 

The thermal conductivity of solar still using ANN and a combination of water-based Al2O3 650 

and CuO nanofluids were assessed at different temperatures and volume concentrations. 651 

Ethylene glycol and water are combined in a base fluid mixture of 1:1 by weight. In addition, 652 

a temperature range of 15 to 50 °C was obtained, and the concentration was found to be 0.8% 653 

. In comparison to Al2O3 and CuO nanofluids, the base fluids exhibit low thermal 654 

conductivity, according to the test results that were obtained. When compared to Al2O3 655 

nanofluids, the CuO nanofluids exhibit higher thermal conductivity at the same volume and 656 

temperature concentration. Nanoparticles suspended in any liquid provide energy to 657 

nanofluids. The parameters of base fluid heat transmission were altered by the recent addition 658 

of nanoparticles. In this experiment, the efficiency of distillation can enhance by up to 29% 659 

by combining violet dye with water. Studies were conducted on the novel nanofluid additives 660 

for solar still performance. It was calculated how much the 1000 solar still performance units 661 

would weigh overall using ANN. Based on the experiment, it was determined how 662 

introducing a carbon nanotube to the basin water affected the hoover still's yield. 663 

13. Conclusion 664 

Applications of data-driven methodologies for modeling solar desalination systems are 665 

given in the paper. These have been developed using a variety of inputs, such as ANN, 666 

ANFIS, PSO, RO, BP, GA, SVM, and others. The following are the key conclusions of this 667 

review article: 668 

1. When compared to correlation, intelligent approaches can more precisely model solar 669 

desalination systems. 670 

2. By utilizing intelligent approaches, several parameters, including output, energy, and 671 

energy efficiency, may be modeled. 672 

3. The applied approach and algorithm as well as the taken into account inputs are some 673 
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of the factors that affect how accurate the proposed models are. 674 

4.  Using optimization techniques in conjunction with the models will increase accuracy 675 

because the hyperparameters will be set to their ideal values. 676 

5.  The type of optimization algorithm has an impact on the models' accuracy in 677 

addition to the modeling approach used. 678 

6.  Among the most crucial elements that must be employed as inputs are operating 679 

circumstances. 680 

7.  The models' outputs, which were obtained via clever techniques, can be used to 681 

improve the systems. 682 

8. The majority of research has used water productivity as the model's output, but it 683 

would be advantageous to take other technical factors like energy and the system's efficiency 684 

into account. 685 

9. It would be beneficial to take into account economic and environmental elements as 686 

model outputs in addition to technical criteria. 687 

10. It is advised to compare the amount of time and calculations needed for the training 688 

process of intelligent models using various algorithms and methodologies. 689 

11. Models can be more accurate by using hybrid optimization algorithms, which have a 690 

better capacity to find optimal solutions. 691 

The material for the basin has been chosen creatively, and the distinctions between the 692 

materials have been investigated. On several experiment days, heat  characteristics are shown. 693 

If the right materials are employed, the temperature of the basin can be elevated, which will 694 

increase the rate of desalination and the temperature of the water. During the process, this 695 

novel approach raises the temperature of the basin water by utilising solar panels and an 696 

artificial neural network (ANN) in solar desalination facilities. There is typically good 697 

agreement between the ANN-based prediction and the experimental results when a variable 698 
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number of neurons is predicted based on the ANN inputs. ANNs have been used as one of the 699 

most dependable techniques for prediction and data validation. An investigation of the total 700 

similarity of ANNs has been conducted through the use of ANN simulation. 701 

ABBREVIATION 702 

ANNs-Artificial neural networks 703 

TES- Thermal Energy Storage 704 

PCM-Phase Change Materials 705 

AI-Artificial Intelligence 706 

BP-Back propagation 707 

RMSE-Root Mean Square Error, 708 

MAPE-Mean Absolute Percentage Error 709 

HV-Hottel-Vhillier 710 

SISO-single input, single output 711 

MISO-multiple input, single output 712 

DXSAHP-direct expansion solar-aided heat pump 713 

NLR-Neutrophil-Lymphocyte Ratio 714 

MLR-Multiple Linear Regression 715 

FFNN-feed-forward neural network 716 

NARx-Nonlinear Autoregressive with exogenous input 717 

SSTES-Solar Still thermal energy systems 718 

MLPNN-Multiple-layer perceptron neural network 719 

FFF-feed forward 720 

SVR-Support Vector Regression 721 

ICM-Imperia list Competition Method 722 

GA-genetic algorithm 723 
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PSO-Particle Swarm Optimisation 724 
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