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Abstract 

In order to analyze the spatiotemporal change 
characteristics of regional flood disaster, analyze the main 
change characteristics and hydrological response of 
precipitation distribution in Guangxi, and improve the 
comprehensive utilization efficiency of water resources, 
this paper introduces the k-means clustering algorithm to 
design an analysis model of spatiotemporal change 
characteristics of flood disaster. First of all, obtain the flood 
data in Guangxi and the observation data of the national 
meteorological station within 5 km, complete the 
collection of the basic data of mountain flood disasters. 
Based on the collected data, an analysis was conducted on 
the spatial and temporal distribution of flash floods in the 
Guangxi region. Secondly, the Kriging spatial interpolation 
method was used to analyze the spatial distribution of 
precipitation data in Guangxi. The Mann-Kendall trend test 
was then employed to examine the trend of precipitation-
related statistical parameters over time. Additionally, 
wavelet theory was applied to analyze the time series of 
annual precipitation and precipitation with different 
durations in Guangxi. Subsequently, the k-means clustering 
algorithm was introduced to construct a model for 
analyzing the spatiotemporal characteristics of flood 

changes, determining the concentration and duration of 
precipitation in different years in the region. Finally, 
analyze the spatiotemporal change characteristics of flood 
events in different seasons under various indicators, and 
realize the analysis of flood spatiotemporal change 
characteristics. The research results indicate that the Frank 
Copula function fits the best correlation between annual 
precipitation and temperature, and can better characterize 
the correlation between the two. The Frank Copula 
function has the best fitting effect on the correlation 
between precipitation and temperature in autumn in 
Guilin, summer in Nanning, and summer and winter in 
Beihai. In Guangxi Zhuang Autonomous Region, the annual 
precipitation shows a gradually decreasing trend, 
especially at R and P stations. In summary, the Frank Copula 
function can effectively characterize the correlation and 
trend of precipitation and temperature in different seasons 
and regions of Guangxi. 

Keywords: Mountain flood disaster, mann-kendall trend 
test, k-means algorithm, kriging space interpolation 
method, wavelet theory 

1. Introduction 

Flooding is caused by the rapid rise of water levels in rivers, 
lakes and reservoirs, causing dikes and dams to overflow or 
breach, resulting in the influx of water into populated 
areas, causing significant damage. In addition to causing 
severe harm to agriculture, flood disasters can also result 
in losses to industries, as well as to human lives and 
properties. They are one of the top ten natural disasters 
that pose a threat to human survival (Yao et al., 2022). Over 
the past 50 years in China, although there hasn't been a 
clear trend of extreme precipitation, the number of rainy 
days has decreased while the average precipitation 
intensity has increased. Taking precipitation in the Yangtze 
River Basin as an example, the significant increase in its 
concentration in both time and space is a major reason for 
the exacerbation of surrounding water and drought 
disasters (Schroers and Martin, 2022). For example, since 
the 1990s, the spatiotemporal concentration of 
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precipitation in the Yangtze River basin has increased 
significantly. This change in the spatiotemporal distribution 
of precipitation has weakened the natural flood control 
mechanism of the Yangtze River basin, not only causing an 
increase in the number of occasional floods and shallow 
disasters, but also causing an increase in the number of 
drought disasters in the non-precipitation concentration 
period. This is consistent with the fact that the flood and 
drought disasters in the Yangtze River basin have been 
increasing in recent years (Yang et al., 2022). It is shown 
from some facts that the spatiotemporal concentration of 
precipitation is closely related to serious drought and flood 
events. So whether the spatiotemporal concentration of 
precipitation will further strengthen with global warming, 
and whether its change will lead to more serious drought 
and flood disasters, and other issues have aroused 
widespread concern (Wang et al., 2022; Darand, 2021). 
Therefore, many domestic scholars have conducted in-
depth research on the spatiotemporal variability of 
precipitation in China. 

Liu (2022) and others based on 3DGIS flood spatial-
temporal situation deduction and dispatching simulation 
research, established flood spatial-temporal situation 
process model based on situation deduction and other 
theories, combined with flood characteristics and influence 
factors, proposed flood spatial-temporal situation 
visualization and dynamic deduction method under 3DGIS 
scenario, and built flood spatial-temporal situation 
dispatching simulation program framework. Taking the 
flood of the Yangtze River basin in 2020 as an example, with 
the assistance of the dispatch calculation results for the 
flood process, this program framework is utilized to carry 
out the analysis, deduction and visualization application of 
various spatiotemporal situations, and visually display the 
flood process in the three-dimensional virtual scene. The 
results show that the flood spatiotemporal situation 
deduction and dispatching simulation method based on 
3DGIS can clearly present the flood spatiotemporal 
situation, assist in understanding the flood evolution trend 
and risk, intuitively reproduce the whole flood 
spatiotemporal process, and provide auxiliary support for 
flood control dispatching consultation. Zhang et al. (2022) 
studied the flood simulation of small watershed in 
mountainous areas based on time-space information. 
Taking an experimental area in Zhejiang Province as the 
research object, flood simulation was carried out by 
analyzing the small watershed covered by it, and the daily 
model hydrological model was used for actual prediction 
and prediction. Meanwhile, to verify the accuracy of the 
daily hydrological model, the results of the HEC-HMS model 
are compared and analyzed. The experimental results 
showed that the daily model hydrological model 
comprehensively considered the water balance. The 
energy balance can effectively adapt to the small basin 
flood simulation in the study area, and the results are 
better than the HEC-HMS model, which proves that the 
model is applicable and provides theoretical and practical 
support for the subsequent basin flood simulation. Jia et al. 
(2022) based on Sentinel-1 SAR data and Chaohu Lake basin 
flood spatial-temporal dynamic change monitoring 

research, taking Chaohu Lake basin as the experimental 
area, based on Sentinel-1 Synthetic Aperture Radar (SAR) 
image, constructed a flood inundation identification 
method combining spectral relationship and threshold 
segmentation, which was applied to Google Earth Engine 
platform, obtained the flood spatial-temporal pattern of 
Chaohu Lake basin from 2015 to 2020, combined with land 
use data, The impact of flood on farmland and residential 
areas represented by construction land in Chaohu Lake 
basin is analyzed. Compared with the single-band threshold 
method and the simple index method, the accuracy of this 
method is improved by 3%~7%, and it can quickly apply 
remote sensing data to extract the flood inundation range 
of the basin over the years. The research shows that SAR 
satellite data has good applicability in monitoring the flood 
in Chaohu Lake basin, helping to grasp the extent of 
damage to farmland and rural settlements caused by the 
flood, and is crucial for formulating relevant planning 
strategies in the future and strengthening the flood control 
in the basin and rural areas to ensure personnel and food 
security. However, the above methods are not effective in 
analyzing the spatiotemporal characteristics of flood 
disasters.  

In view of the above problems, this paper proposes a flood 
spatiotemporal change feature analysis model based on k-
means clustering algorithm.  

2. Multi-time scale analysis of precipitation series in 
flood areas 

2.1. Data acquisition of mountain flood disaster in Guangxi 

Guangxi is located in the coastal area of South China, with 
a total area of 236700 km2, accounting for 2.5% of the total 
land area of the country. The Tropic of Cancer, which runs 
through the central part of the country, belongs to the 
subtropical monsoon climate zone. It has abundant rainfall, 
with an annual average rainfall of about 1537 mm, which is 
about three times the national average. There are many 
rivers, and there are about 1450 rivers with a rainfall 
collection area of more than 50 square kilometers. 
Surrounded by three high mountains and facing the sea on 
one side, the area of hills accounts for 77%. The terrain is 
high in the north and low in the south, and the central part 
is low in the basin, forming a dustpan-like terrain. Due to 
complex topographical and geological conditions and karst 
development, it is easy to form local strong rainfall and 
strong convection in hilly areas, and the impact of human 
activities, resulting in frequent occurrence of mountain 
flood disasters in Guangxi, which is one of the most serious 
natural disasters in Guangxi.  

The data used in this paper are mainly from the relevant 
departments of the national government, the research 
institute of the Chinese Academy of Sciences and the 
official data sharing website of Shaanxi Province. See Table 
1. for details of data types and types.  

Meteorological data mainly collected daily rainfall data 
from 34 meteorological stations in Guangxi Zhuang 
Autonomous Region from 1990 to 2015. The data is from 
the China Meteorological Data Network 
(http://data.cma.cn). Slope data, soil type data and 
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vegetation cover data (NDVI index) are directly provided by 
Shaanxi Provincial Hydrological Survey Center. Elevation 
(DEM) data is derived from geospatial data cloud 
(http://www.gscloud.cn/) DEM image with a resolution of 
30 m obtained from. Land use data is the distribution of 
land use types in Guangxi Zhuang Autonomous Region in 
2015 obtained from the National Basic Geographic 

Information Center. Population and socio-economic data 
were obtained from the Guangxi Zhuang Autonomous 
Region Statistical Annals, and population density data was 
extracted with the help of GIS tools. 

 

Table 1. Main data sources 

Data name Data content Data sources 

Meteorological data Daily rainfall data of 34 meteorological stations in Guangxi 

Province from 1990 to 2015 

China Meteorological Data Network 

Landform data Slope data of Guangxi Zhuang Autonomous Region Guangxi Zhuang Autonomous Region 

Hydrological Survey Center 

Soil type data Soil type data of Guangxi Zhuang Autonomous Region Guangxi Zhuang Autonomous Region 

Hydrological Survey Center 

DEM data 30m resolution DEM image Geospatial data cloud 

Vegetation cover data NDVI value of vegetation index in Guangxi Zhuang 

Autonomous Region 

Hydrological Survey Center of Guangxi 

Zhuang Autonomous Region 

Land use data Land use distribution map of Guangxi Zhuang 

Autonomous Region in 2015 

National Basic Geographic Information 

Center 

Demographic data Using ArcGIS technology to extract population density 

from the population data of Guangxi Zhuang Autonomous 

Region in 2015 

Statistical Yearbook 2016 

Socio-economic data GDP data of Guangxi Zhuang Autonomous Region in 2015 Statistical Yearbook 2016 

 

In this regard, the collection of basic data of mountain 
torrent disasters is completed, and the temporal and 
spatial distribution of mountain torrent disasters in 
Guangxi is analyzed based on the collected data.  

 

Figure 1. Inter-annual changes of mountain flood disasters 

2.2. Study on temporal and spatial distribution of mountain 
flood disaster 

Based on the historical flood investigation reports of 
various districts and counties in Guangxi Zhuang 
Autonomous Region, the mountain flood disaster situation 
in the region from 1949 to 2015, spanning 67 years, was 
compiled. There were more than 1,300 flash floods during 
this period, with an average of approximately 19 per year. 
The annual frequency of mountain flood disasters and the 
changing trend of disasters over the years are illustrated in 
Figure 1. 

It can be seen from the figure that the number of mountain 
flood disasters in Guangxi Zhuang Autonomous Region 
generally presents a trend of stable annual growth. 
Through multiple item fitting of the annual disaster 
frequency during the study period, it is found that the 
periodic change of mountain flood disasters is 
characterized by an upward trend of fluctuations year by 
year. According to the records of rainfall data over the 
years in the study area, there were 7 years with abnormal 
values of disaster number in these 67 years, most of which 
had rainstorm records. For example, 2010 was the year of 
the highest concentration of flash floods, with severe 
disasters occurring in many places. 122 villages and 
communities in M District were affected, involving a 
population of 227.83 million people (including 5947 
emergency transfers), 3215 houses collapsed, 2.11km of 
dykes were destroyed, and 15031.5 mu of crops were 
affected. At the same time, the flood destroyed many 
public facilities such as highway bridges and convenience 
bridges, resulting in high cliff collapse and other disasters, 
leading to serious casualties and losses.  

According to the above analysis results of spatiotemporal 
characteristics, the spatial distribution data of precipitation 
in Guangxi is analyzed with Kriging spatial interpolation 
method.  

2.3. Kriging space interpolation method 

Spatial interpolation is a method to predict the data of 
unknown points in the region from known points by 
interpolation or extrapolation based on some data function 
relationship or theory. According to different mathematical 
principles, spatial interpolation is usually divided into two 
categories: deterministic interpolation and geostatistical 
interpolation. According to the research, the ordinary 
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Kriging interpolation method in geostatistical interpolation 
has a good effect in rainfall interpolation calculation. 
Therefore, when drawing the spatial distribution of 
precipitation related statistics in Guangxi, the ordinary 
Kriging interpolation method (Hou et al., 2022) is used to 
determine the precipitation prediction model in Guangxi, 
and the expression is: 
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Where, Z(xi) is the measured value of annual precipitation, 
Z(X0) is the predicted value of annual precipitation, n  is the 

number of stations, λi is the weight, and λi is determined by 
Kriging equation group: 
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Where, C(Xi, Xj) is the covariance between the annual 
precipitation samples, C(Xi, X0) is the covariance between 
the annual precipitation measured value and the samples, 
and u  is the Lagrange multiplier (Lee et al., 2022). The 

analysis model of precipitation in Guangxi is obtained as 
follows: 
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Where, Z(Si + h) is the semi-variance, 2N(h) is the data pair, 
and Z(Si) is the measured value.  

2.4. Mann-Kendall non-parametric trend test 

The Mann-Kendall trend test method (Khavse and 
Chaudhary, 2022) can be used to examine relatively 
stationary sequences. Therefore, in this study, the method 
was employed to analyze the trend of precipitation-related 
statistical parameters in Guangxi over time. 

When Mann-Kendall method is used for mutation test, the 
meaning of each statistic is different. First, construct rank 
sequence Sk for precipitation time series X. Secondly, 
calculate statistics UFk, where E(Sk) represents the mean of 
precipitation rank series Sk and Var(Sk) represents the 
variance of Sk.  

−
=

( )

( )

k k
k

k
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(4) 

Thirdly, after the time sequence of precipitation sequence 
X is reversed, the statistic UBk is constructed by the same 
method, then UFk = −UBk. Finally, draw UF and UB statistics 
curves. Current statistics. At UF > 0, the sequence showed 
an upward trend. When the statistic is UF < 0, the sequence 
shows a downward trend. If the UF or UB curve exceeds the 
critical line of significant value, it indicates that the 
sequence has a significant upward or downward trend, and 
the time period corresponding to the exceeded part is 
defined as the mutation time period. If curves UF and UB 
intersect with two adjacent boundaries at a certain point, 
it indicates that this point is the start time of mutation.  

 

2.5. Multi-time scale analysis of precipitation series based 
on wavelet analysis 

Wavelet analysis is a time-frequency localization analysis 
method based on Fourier transform proposed by Morlet in 
the 1980s (Hirai et al., 2022). This paper will use wavelet 
theory to analyze the time series of annual precipitation 
and precipitation of different durations in Guangxi. Its basic 
function is Morlet wavelet of complex wavelet (Belaid, 
2021), which is defined as follows: 
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And wavelet function (t) = L2(R) meets: 
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At the same time, function  

(t) can form a family of function systems: 
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For signal 2( ) ( )f t L R , wavelet transform is defined as 

(Li et al., 2021): 
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Where, ( , )fW a b  is the binary function of the continuous 

wavelet transform coefficient, and its value changes with 
the change of a and b, representing the wavelet change 
coefficient. Parameter a is the scaling factor of wavelet 
period length. Parameter b is the time factor of time 
translation. The wavelet change coefficient map is a two-
dimensional contour map about Wf (a, b), reflecting the 
time-frequency change characteristics of the signal. The 
wavelet coefficient modulus square of the scale factor is 
integrated in the time domain to obtain the wavelet 
variance (Chen et al., 2021), so as to determine the multiple 
time scales of the precipitation series. The expression is: 

+

−
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2
( ) ( , )fvar a W a b db

 
(9) 

The change process of multiple time scales ( )var a  of 

precipitation series with wavelet coefficient modulus can 
be used to analyze the change and development trend of 
precipitation structure in different time scales.  

3. Determining the concentration and duration of 
precipitation in flood-prone areas 

3.1. Analysis model of flood spatiotemporal change 
characteristics based on k-means clustering algorithm 

Given sample observation data matrix 

  
  
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p
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x x xx
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X
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(10) 

Among them, each row of X is a sample (or observation), 
and each column is n observation values of a variable, that 
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is, X is a matrix composed of observation values of 

pvariables of n samples 
1 2( , ,..., )nx x x .  

Fuzzy clustering is to divide n samples into c categories and 
2 c n  , and record 

1 2{ , ,..., }cV v v v=  as the cluster center of 

c  categories, of which 1 2{ , ,..., }( 1,2,..., )i i i ipv v v v i c= = . In k-

means clustering, each sample is not strictly assigned to a 
particular cluster but rather has a certain degree of 
membership in a given cluster. Let uik indicate that the k 

sample xk belongs to category i, where 0 1iku  , 
1

1
c

ik

l

u
=

=

. Define the analysis model of flood spatiotemporal change 
characteristics: 
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Where, ( )ik c nU u =  is the membership matrix, 

ik k id x v= − . Obviously, ( , )J U V  represents the sum of 

the weighted square distance from the sample to the 
cluster center in each category, and the weight is the m  

power of the membership degree of sample 
kx  belonging 

to the i  category. The clustering criterion of k-means 

clustering algorithm is to find ( , )J U V , so that ( , )J U V  can 

get the minimum value. The specific steps of k-means 
clustering algorithm are as follows: 

(1) Determine the number of classes c , power index 

1m  and initial membership matrix 
(0) (0)( )ikU u= . The 

usual method is to take the uniformly distributed random 
number on [0,1] to determine the initial membership 

matrix 
(0)U . Let 1l =  represent the first iteration.  

(2) Calculate the cluster center 
( )lV  in step l  by the 

following formula: 
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(12) 

(3) Modify the membership matrix U(l) and calculate the 
model value J(l) of flood spatiotemporal change 
characteristics analysis.  
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Among them, 
( ) ( )l l

ik k id x V= −
.  

(4) For the given membership degree termination 

tolerance 0u   (or the flood spatiotemporal change 

characteristic analysis model termination tolerance 

0J  , or the maximum iteration step size 
maxL ), when 

( ) ( 1)max{( )}I I

ik ik uu u −−   ( ( ) ( 1)1, l l

Jl J J − −  , or 
maxl L ), 

stop the iteration, otherwise, turn to (2).  

After the iteration of the above steps, the final membership 
matrix U and cluster center V can be obtained to minimize 

the value of the flood spatial-temporal change feature 
analysis model J (U, V). The attribution of all samples can 
be determined according to the values of the elements in 
the final membership matrix U. When max{ }jk iku u= , 

sample 
kx  can be classified as category j.  

3.2.  Determination of precipitation concentration and 
concentration 

3.2.1. Daily precipitation concentration index (CID) 

The data below 1.0 mm of daily rainfall for a specific year is 
excluded and grouped every 1 mm. The grouping stops 
when the maximum daily rainfall for that year is reached. 
Then, the rainfall days (Ni) and total days (Pi) are calculated 
for each group, resulting in the correlation between the 
cumulative rainfall day percentage (Y) and the cumulative 
rainfall percentage (X). The exponential relationship 
between X and Y can be described by the following 
equation: 

= exp( )Y aX bX  (14) 

Where a and b are constants obtained through least 
squares fitting. Based on equation (14), the distribution of 
the indicator function is defined as the Lorenz curve. The 
concentration of rainfall is represented by the region A, 
enclosed by the Lorenz curve and the quadrant bisectors. 
In cases where the value of A is larger, the trend is closer to 
the x-axis, indicating a higher concentration of daily 
rainfall. 

The region A can be calculated using the following 
approach: 

= − 
100

0
10000 / 2 exp( )A ax bx dx

 
(15) 

Then CID is: 

=2 /10000CID A  (16) 

The CID ranges from 0 to 1, and the smaller the value of 
CID, the more uniform the distribution of daily rainfall. 

3.2.2. Monthly precipitation concentration index (CIM) 

The calculation method of the monthly precipitation 
concentration index is expressed as follows: 

= =
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12 12

2 2

1 1

100 / ( )i i
i i

CIM p p
 

(17) 

Where 
ip  represents the precipitation in month i . In a 

given year. When CIM is lower than 10, it indicates that the 
precipitation in each month of that year is relatively evenly 
distributed around the average level. When CIM is between 
11 and 20, it suggests that the precipitation in that year 
exhibits seasonal variations. When CIM exceeds 20, it 
signifies an abnormally concentrated distribution of rainfall 
throughout the year, with significant differences in 
monthly precipitation patterns. 

3.2.3. Decadal precipitation concentration (PCD) and 
precipitation concentration period (PCD) 

Precipitation concentration duration (PCD) and 
precipitation concentration period (PCP) are methods 
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based on vector analysis to describe the temporal 
distribution characteristics of rainfall in a certain region. 
PCD is used to describe the spatiotemporal distribution 
characteristics of rainfall in the area. The value of PCD 
ranges from 0 to 1 during rainfall events. The closer the PCD 
value is to 1, the more intense the precipitation is. Within 
a certain time range, when the PCD value approaches 0, it 
indicates a relatively smooth spatial distribution of rainfall. 
PCP is used to describe the timing of the maximum rainfall 
occurrence within a year. The calculation method is as 
follows: 

= +2 2 /
i ix y iPCD R R R  

(18) 

= arctan( / )xi yiPCP R R  (19) 

Where: 
1

sin
n

xi ij j

j

R r 
=

=  , 
1

cos
n

yi ij j

j

R r 
=

=  , and 
iR  

represent the total precipitation at different observation 
stations in the region. rij refers to the precipitation for each 
decadal period investigated. θj represents the azimuth 
corresponding to each decadal period within the specified 
time cycle. i represents the year, and j represents the 
sequence of decadal periods within the study period. 

4. Measurement and analysis of correlation between 
precipitation and temperature based on Copula 
function 

Based on precipitation and temperature data from various 
stations in Guangxi from 1971 to 2012, this paper selected 

Beihai, Nanning and Guilin as typical regions from the coast 
to the interior and measured the correlation between 
precipitation and temperature. It is mainly analyzed from 
two aspects. On the one hand, the correlation between 
seasonal precipitation and temperature is analyzed based 
on data on precipitation and temperature at different 
seasons over the past 42 years. On the other hand, based 
on the data of accumulated monthly average precipitation 
and temperature for many years, the correlation between 
precipitation and temperature within the year is analyzed.  

4.1. Correlation analysis of seasonal precipitation and 
temperature 

Based on the time series data of precipitation and 
temperature for the four seasons from 1971 to 2012 at the 
three stations of Guilin, Nanning, and Beihai, the Pearson 
correlation coefficient, Kendall rank correlation coefficient, 
and Spearman rank correlation coefficient were calculated. 
The results are shown in Table 2. The results show that 
there is a certain correlation between precipitation and 
temperature in Guilin, Nanning and Beihai in summer, only 
in Guilin in autumn and only in Beihai in winter. Therefore, 
Copula function can be used to measure the correlation of 
precipitation and temperature series with correlation. Take 
Guilin summer as an example to introduce the correlation 
measurement analysis of precipitation and temperature 
based on Copula function.  

 

Table 2. Statistics of correlation between precipitation and temperature in Guilin, Nanning and Beihai 

Area Classificati
on 

Spring Summer Autumn Winter     

Guilin Pearson -0.147 uncorrelated 

uncorrelated 

uncorrelated 

-0.505** correlated -0.412** correlated -0.085 uncorrel

ated 

uncorrel

ated 

uncorrel

ated 

Kendall -0.1 -0.366** -0.285**  -0.085  

Spearman -0.134 -0.515** -0.4051**  -0.137  

Nanni

ng 

Pearson 0.126 uncorrelated 

uncorrelated 

uncorrelated 

-0.506** correlated -0.127 uncorrelate

d 

uncorrelate

d 

uncorrelate

d 

-0.269 uncorrel

ated 

Kendall 0.043 -0.278** -0.043  -0.164  

Spearman 0.079 -0.422** -0.068  -0.231  

The 

North 

Sea 

Pearson -0.155. uncorrelated -0.592** correlated -0.122 uncorrelate

d 

-

0.450** 

correlat

ed 

Kendall -0.120 -0.447** -0.058  -0.261*  

Spearman -0.187 -0.645** -0.096  -

0.397** 

 

**and * * are at 0.01 and 0.05 levels (double tail) respectively, with significant correlation. 
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4.2. Selection and Parameter Estimation of Copula Function 

Calculate the Kendall and Spearman rank correlation 
coefficients corresponding to the Copula function of 
summer precipitation and temperature in Guilin, as shown 
in Table 3.  

Table 3. Copula function correlation measure of summer 

precipitation and temperature in Guilin 

Function type   
s  

Normal Copula -0.338 -0.489 

t-Copula -0.394 -0.563 

Gumbel Copula 1.36E-06 2.05E-06 

Clayton Copula 7.25E-07 1.09E-06 

Frank Copula -0.383 -0.55 

Comparing the correlation measures of the Copula function 
in Table 2 with the Kendall and Spearman rank correlation 
coefficients in Table 3, we can see that the correlation 
measures of the normal Copula and Frank Copula functions 
are the closest, while the effects of other Copula functions 
are poor.  

After determining the edge distribution and the 
preliminary determination of the Copula function, you can 

make further selection of the Copula function, and then 
determine the parameters of the Copula function: 

(1) Substitute the empirical distribution function into 
equation (15), and estimate the parameters of the normal 
Copula and Frank Copula functions with the semi-
parametric method.  

(2) Calculate the Kendall rank phase relationship value 
between annual average precipitation and annual average 
temperature, and then calculate the parameters 
corresponding to the three Copula functions according to 
the relationship formula with parameters in Table 3.  

(3) According to the parameters calculated by the two 
methods, calculate the joint distribution of annual 
precipitation and annual temperature of the empirical 
Copula function and the two Copula functions.  

(4) The AIC value and OLS value under the two parameters 
are calculated. The AIC value and OLS value are the 
smallest, indicating that the corresponding Copula function 
has the best fitting effect.  

The copula function fitting of the joint distribution of 
precipitation and temperature in Guilin is shown in Table 4. 
The best copula function and parameter estimation 
method are shown in bold.  

Table 4. Copula function fitting of the joint distribution of summer precipitation and temperature in Guilin 

Evaluating indicator Copula function type Semiparametric estimation method Kendall rank correlation 
coefficient estimation method 

OLS Normal Copula 0.24 0.23 

Frank Copula 0.23 0.22 

AIC Normal Copula -119.36 -120.15 

Frank Copula -120.84 -120.38 

Table 5. Copula function fitting of the joint distribution of autumn precipitation and temperature in Guilin 

evaluating indicator Copula function type Semiparametric estimation method Kendall rank correlation 
coefficient estimation method 

OLS Normal Copula 0.25 0.25 

Frank Copula 0.24 0.24 

AIC Normal Copula -114.84 -115.07 

Frank Copula -116.36 -115.13 

It can be seen from Table 4 that the OLS value and AIC value 
corresponding to Frank Copula function are the smallest, 
0.23 and -120.84 respectively, so the goodness of fit of 
Frank Copula function is the best, indicating that this 
function can better represent the correlation between 
annual precipitation and temperature. 

Similarly, the copula function fitting of the joint distribution 
of precipitation and temperature in autumn in Guilin, 
summer in Nanning, and summer and autumn in the North 
Sea can be calculated, as shown in Table 5-7. 

It can be seen from Table 5~7 that the Frank Copula 
function is the best fit, which shows that the Frank Copula 
function can better represent the correlation between 
precipitation and temperature in autumn in Guilin, summer 
in Nanning and summer and winter in Beihai.  

From the above analysis, it can be seen that the 
precipitation and temperature in Guangxi Beihai, Nanning 
and Guilin have a certain correlation in summer, while the 

precipitation and temperature in Guilin have a certain 
correlation in autumn, and the precipitation and 
temperature in Beihai in winter. Their linear correlation 
coefficient and rank correlation coefficient are shown in 
Table 2. The correlation degree and structure of 
precipitation and temperature in different seasons in the 
three regions can be measured by Frank Copula function. 
At the same time, it also shows that the semi-parameter 
estimation method is better.  

4.3. The spatial and temporal changes in annual precipitation 

The Mann-Kendall trend test method was used to 
statistically analyze the precipitation data from 19 
monitoring stations in the Guangxi Zhuang Autonomous 
Region from 1960 to 2016 (Table 8). The spatial and 
temporal distribution characteristics of precipitation were 
studied. When the absolute value of Z is greater than or 
equal to 1.96, it indicates that this method has achieved a 
confidence level of 95%. 
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Table 6. Copula function fitting of the joint distribution of summer precipitation and temperature in Nanning 

evaluating indicator Copula function type Semiparametric estimation method 
Kendall rank correlation coefficient 

estimation method 

OLS 
Normal Copula 0.24 0.24 

Frank Copula 0.23 0.24 

AIC 
Normal Copula -118.71 -117.01 

Frank Copula -119.50 -117.29 

Table 7. Copula function fitting of the joint distribution of summer and winter precipitation and temperature in the North Sea 

season evaluating indicator Copula function type 
Semiparametric estimation 

method 
Kendall rank correlation 

coefficient estimation method 

summer 

OLS 
Normal Copula 0.20 0.20 

Frank Copula 0.19 0.19 

AIC 
Normal Copula -132.16 -117.01 

Frank Copula -135.36 -117.29 

winter 

OLS 
Normal Copula 0.24 0.25 

Frank Copula 0.23 0.24 

AIC 
Normal Copula -116.99 -114.84 

Frank Copula -118.28 -116.02 

Table 8. Annual precipitation trend of Guangxi Zhuang Autonomous Region (1960~2016) 

site Z trend site Z trend 

R -2.086 Significant decrease X -1.397 - 

M -0.420 - S -0.929 - 

N -1.921 - O -1.150 - 

P -2.705 Significant decrease J -0.613 - 

K -1.053 - E -1.755 - 

Q -0.324 - T -1.549 - 

Y -1.108 - L -0.792 - 

B -1.218 - F -1.147 - 

D -1.425 - V -0.620 - 

W -0.778 - - - - 

 

Figure 2. Annual precipitation trend 

According to the results in Table 8, the Z value of the annual 
precipitation series in Guangxi Zhuang Autonomous Region 
is less than 0, that is, it has an insignificant downward 
trend, and the Z value at R and P stations is less than -1.96, 
which is a significant downward trend. In the entire 
Guangxi Zhuang Autonomous Region, the annual 
precipitation has a gradual downward trend, which is the 
same as the research results of Lei Jiang Group. According 
to Figure 2 (a), the maximum annual precipitation of R 
station was 801.5 mm, which occurred in 1979, and the 
minimum was 326.6 mm, which occurred in 1997. It can be 
seen from Figure 2 (b) that the maximum annual 
precipitation of P station was 1262.3 mm, which occurred 
in 1964, and the minimum was 465.3 mm, which occurred 
in 1997. 

5. Conclusion 

In this paper, k-means clustering algorithm is introduced to 
design an analysis model of flood spatiotemporal change 

characteristics. Obtain the flood disaster data in Guangxi 
and the observation data of nearby national 
meteorological stations, analyze the temporal and spatial 
distribution of mountain flood disasters in Guangxi, use the 
Kriging spatial interpolation method to calculate the spatial 
distribution data of precipitation in Guangxi, conduct the 
trend test on the time series of precipitation related 
statistics in Guangxi according to the Mann-Kendall trend 
test method, and build an analysis model based on Copula 
function that integrates the precipitation concentration 
index and the temporal and spatial change characteristics 
of flood disasters, Some achievements have been made. 
The k-means clustering algorithm is introduced to build the 
analysis model of flood spatial-temporal change 
characteristics, determine the precipitation concentration 
degree and concentration period in different years in the 
region, and analyze the spatial-temporal change 
characteristics of flood events in different seasons under 
various indicators.  

With the advancement of technology and the 
improvement of data acquisition methods, the data quality 
and coverage of spatiotemporal changes in flood disasters 
will be improved. In the future, multi-source data fusion 
will be considered, such as remote sensing data, 
meteorological data, geographic information data, etc. By 
utilizing the advantages of different data sources, we can 
more accurately capture and analyze the spatiotemporal 
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changes of floods, thereby improving flood warning and 
disaster response capabilities. 

Conflict of Interest 

The authors report there are no competing interests to declare. 

Data Availability Statement 

The datasets used and/or analysed during the current study are 

available from the corresponding author on reasonable request. 

References 

Belaid A. (2021). The processing of resonances excited by gear 

faults using continuous wavelet transform with adaptive 

complex Morlet wavelet and sparsity measurement. 

Measurement, 180(1), 162–169. 

Chen K., Zhang X. and Liu Y. (2021). An improved denoise method 

based on EEMD and optimal wavelet threshold for model 

building of OPAX. Proceedings of the Institution of Mechanical 

Engineers, Part D: Journal of Automobile Engineering, 

235(14), 3530–3544. 

Darand M. (2021). Projected changes in extreme precipitation 

events over Iran in the 21st century based on CMIP5 models. 

Climate research, 26(2), 82–96s. 

Hirai T. (2022). Structure of unipotent orbits and Fourier 

transform of unipotent orbital integrals for semisimple Lie 

groups. Lectures on Harmonic Analysis on Lie Groups & 

Related Topics, 16(9): 153–159. 

Hou D., Wang L. and Yan J. (2022). Vibration analysis of a strain 

gradient plate model via a mesh-free moving Kriging 

Interpolation Method. Engineering Analysis with Boundary 

Elements, 135(18): 156–166. 

Jia J., Ma J., Shen M. et al. (2022). Research on monitoring the 

spatiotemporal dynamic change of flood in Chaohu Lake basin 

based on Sentinel-1 SAR data. Remote Sensing Technology 

and Application, 37 (01): 173–185. 

Khavse R. and Chaudhary J.L. (2022). Trend assessment in climate 

variable by Mann Kendall test of Bastar district of 

Chhattisgarh. Mausam: Journal of the Meteorological 

Department of India, 32(1): 73–78. 

Lee H., Shin J., Lee J. Energy quadratization Runge-Kutta scheme 

for the conservative Allen-Cahn equation with a nonlocal 

Lagrange multiplier. Applied mathematics letters, 18(10): 

132–145. 

Li W., Xu W., Zhang T. Improvement of threshold denoising 

algorithm based on wavelet transform. Computer Simulation, 

38 (06): 348–351+356. 

Liu C., Zhang L., Fan Q., et al. (2022). Study on flood space-time 

situation deduction and dispatching simulation based on 

3DGIS. Water conservancy and hydropower technology 

(Chinese and English), 53 (8): 8–15. 

Schroers M. and Martin E. (2022). Synoptic Connections and 

Impacts of 14-Day Extreme Precipitation Events in the United 

States. 12(32): 151–158. 

Wang H., Wang H. and Li H. (2022). Analysis of drainage efficiency 

under extreme precipitation events based on numerical 

simulation. Hydrological processes, 21(6): 36–38. 

Yang P., Zhang S., Xia J. et al. (2022). Analysis of drought and flood 

alternation and its driving factors in the Yangtze River Basin 

under climate change. Atmospheric Research, 270(06): 

106087–106092. 

Yao R., Zhang S., Sun P. et al. (2022). Estimating the impact of 

urbanization on non-stationary models of extreme 

precipitation events in the Yangtze River Delta metropolitan 

region. Weather and Climate Extremes, 18(21): 16–25. 

Zhang Q. and Zheng C. (2022). Research on flood simulation of 

small watershed in mountainous areas based on 

spatiotemporal information. Electromechanical Technology of 

Hydropower Station, 45 (08): 85–87+91. 


