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ABSTRACT 

In order to analyze the spatiotemporal change characteristics of regional flood disaster, analyze the 

main change characteristics and hydrological response of precipitation distribution in Guangxi, and 

improve the comprehensive utilization efficiency of water resources, this paper introduces the 

k-means clustering algorithm to design an analysis model of spatiotemporal change characteristics 

of flood disaster. First of all, obtain the flood data in Guangxi and the observation data of the 

national meteorological station within 5 km, complete the collection of the basic data of mountain 



 

 

flood disasters. Based on the collected data, an analysis was conducted on the spatial and temporal 

distribution of flash floods in the Guangxi region. Secondly, the Kriging spatial interpolation 

method was used to analyze the spatial distribution of precipitation data in Guangxi. The 

Mann-Kendall trend test was then employed to examine the trend of precipitation-related statistical 

parameters over time. Additionally, wavelet theory was applied to analyze the time series of annual 

precipitation and precipitation with different durations in Guangxi. Subsequently, the k-means 

clustering algorithm was introduced to construct a model for analyzing the spatiotemporal 

characteristics of flood changes, determining the concentration and duration of precipitation in 

different years in the region. Finally, analyze the spatiotemporal change characteristics of flood 

events in different seasons under various indicators, and realize the analysis of flood spatiotemporal 

change characteristics. The research results indicate that the Frank Copula function fits the best 

correlation between annual precipitation and temperature, and can better characterize the correlation 

between the two. The Frank Copula function has the best fitting effect on the correlation between 

precipitation and temperature in autumn in Guilin, summer in Nanning, and summer and winter in 

Beihai. In Guangxi Zhuang Autonomous Region, the annual precipitation shows a gradually 

decreasing trend, especially at R and P stations. In summary, the Frank Copula function can 

effectively characterize the correlation and trend of precipitation and temperature in different 

seasons and regions of Guangxi. 

Keywords: Mountain flood disaster, Mann-Kendall trend test, k-means algorithm, Kriging space 

interpolation method, Wavelet theory



 

 

1. Introduction 

Flooding is caused by the rapid rise of water levels in rivers, lakes and reservoirs, causing dikes and 

dams to overflow or breach, resulting in the influx of water into populated areas, causing significant 

damage. In addition to causing severe harm to agriculture, flood disasters can also result in losses to 

industries, as well as to human lives and properties. They are one of the top ten natural disasters that 

pose a threat to human survival (Yao et al., 2022). Over the past 50 years in China, although there 

hasn't been a clear trend of extreme precipitation, the number of rainy days has decreased while the 

average precipitation intensity has increased. Taking precipitation in the Yangtze River Basin as an 

example, the significant increase in its concentration in both time and space is a major reason for 

the exacerbation of surrounding water and drought disasters (Schroers and Martin, 2022). For 

example, since the 1990s, the spatiotemporal concentration of precipitation in the Yangtze River 

basin has increased significantly. This change in the spatiotemporal distribution of precipitation has 

weakened the natural flood control mechanism of the Yangtze River basin, not only causing an 

increase in the number of occasional floods and shallow disasters, but also causing an increase in 

the number of drought disasters in the non-precipitation concentration period. This is consistent 

with the fact that the flood and drought disasters in the Yangtze River basin have been increasing in 

recent years (Yang et al., 2022). It is shown from some facts that the spatiotemporal concentration 

of precipitation is closely related to serious drought and flood events. So whether the spatiotemporal 

concentration of precipitation will further strengthen with global warming, and whether its change 

will lead to more serious drought and flood disasters, and other issues have aroused widespread 

concern (Wang et al., 2022; Darand, 2021). Therefore, many domestic scholars have conducted 

in-depth research on the spatiotemporal variability of precipitation in China. 

Liu (2022) and others based on 3DGIS flood spatial-temporal situation deduction and dispatching 

simulation research, established flood spatial-temporal situation process model based on situation 

deduction and other theories, combined with flood characteristics and influence factors, proposed 

flood spatial-temporal situation visualization and dynamic deduction method under 3DGIS scenario, 



 

 

and built flood spatial-temporal situation dispatching simulation program framework. Taking the 

flood of the Yangtze River basin in 2020 as an example, with the assistance of the dispatch 

calculation results for the flood process, this program framework is utilized to carry out the analysis, 

deduction and visualization application of various spatiotemporal situations, and visually display 

the flood process in the three-dimensional virtual scene. The results show that the flood 

spatiotemporal situation deduction and dispatching simulation method based on 3DGIS can clearly 

present the flood spatiotemporal situation, assist in understanding the flood evolution trend and risk, 

intuitively reproduce the whole flood spatiotemporal process, and provide auxiliary support for 

flood control dispatching consultation. Zhang et al. (2022) studied the flood simulation of small 

watershed in mountainous areas based on time-space information. Taking an experimental area in 

Zhejiang Province as the research object, flood simulation was carried out by analyzing the small 

watershed covered by it, and the daily model hydrological model was used for actual prediction and 

prediction. Meanwhile, to verify the accuracy of the daily hydrological model, the results of the 

HEC-HMS model are compared and analyzed. The experimental results showed that the daily 

model hydrological model comprehensively considered the water balance. The energy balance can 

effectively adapt to the small basin flood simulation in the study area, and the results are better than 

the HEC-HMS model, which proves that the model is applicable and provides theoretical and 

practical support for the subsequent basin flood simulation. Jia et al. (2022) based on Sentinel-1 

SAR data and Chaohu Lake basin flood spatial-temporal dynamic change monitoring research, 

taking Chaohu Lake basin as the experimental area, based on Sentinel-1 Synthetic Aperture Radar 

(SAR) image, constructed a flood inundation identification method combining spectral relationship 

and threshold segmentation, which was applied to Google Earth Engine platform, obtained the flood 

spatial-temporal pattern of Chaohu Lake basin from 2015 to 2020, combined with land use data, 

The impact of flood on farmland and residential areas represented by construction land in Chaohu 

Lake basin is analyzed. Compared with the single-band threshold method and the simple index 

method, the accuracy of this method is improved by 3%~7%, and it can quickly apply remote 



 

 

sensing data to extract the flood inundation range of the basin over the years. The research shows 

that SAR satellite data has good applicability in monitoring the flood in Chaohu Lake basin, helping 

to grasp the extent of damage to farmland and rural settlements caused by the flood, and is crucial 

for formulating relevant planning strategies in the future and strengthening the flood control in the 

basin and rural areas to ensure personnel and food security. However, the above methods are not 

effective in analyzing the spatiotemporal characteristics of flood disasters.  

In view of the above problems, this paper proposes a flood spatiotemporal change feature 

analysis model based on k-means clustering algorithm.  

2. Multi-time scale analysis of precipitation series in flood areas 

2.1 Data acquisition of mountain flood disaster in Guangxi 

Guangxi is located in the coastal area of South China, with a total area of 236700 km2, accounting 

for 2.5% of the total land area of the country. The Tropic of Cancer, which runs through the central 

part of the country, belongs to the subtropical monsoon climate zone. It has abundant rainfall, with 

an annual average rainfall of about 1537 mm, which is about three times the national average. There 

are many rivers, and there are about 1450 rivers with a rainfall collection area of more than 50 

square kilometers. Surrounded by three high mountains and facing the sea on one side, the area of 

hills accounts for 77%. The terrain is high in the north and low in the south, and the central part is 

low in the basin, forming a dustpan-like terrain. Due to complex topographical and geological 

conditions and karst development, it is easy to form local strong rainfall and strong convection in 

hilly areas, and the impact of human activities, resulting in frequent occurrence of mountain flood 

disasters in Guangxi, which is one of the most serious natural disasters in Guangxi.  

The data used in this paper are mainly from the relevant departments of the national 

government, the research institute of the Chinese Academy of Sciences and the official data sharing 

website of Shaanxi Province. See Table 1 for details of data types and types.  

Meteorological data mainly collected daily rainfall data from 34 meteorological stations in 

Guangxi Zhuang Autonomous Region from 1990 to 2015. The data is from the China 



 

 

Meteorological Data Network (http://data.cma.cn). Slope data, soil type data and vegetation cover 

data (NDVI index) are directly provided by Shaanxi Provincial Hydrological Survey Center. 

Elevation (DEM) data is derived from geospatial data cloud (http://www.gscloud.cn/) DEM image 

with a resolution of 30 m obtained from. Land use data is the distribution of land use types in 

Guangxi Zhuang Autonomous Region in 2015 obtained from the National Basic Geographic 

Information Center. Population and socio-economic data were obtained from the Guangxi Zhuang 

Autonomous Region Statistical Annals, and population density data was extracted with the help of 

GIS tools. 

Table 1 Main data sources 

Data name Data content Data sources 

Meteorological data 

Daily rainfall data of 34 meteorological 

stations in Guangxi Province from 1990 to 

2015 

China Meteorological Data 

Network 

Landform data 
Slope data of Guangxi Zhuang 

Autonomous Region 

Guangxi Zhuang Autonomous 

Region Hydrological Survey 

Center 

Soil type data 
Soil type data of Guangxi Zhuang 

Autonomous Region 

Guangxi Zhuang Autonomous 

Region Hydrological Survey 

Center 

DEM data 30m resolution DEM image Geospatial data cloud 

Vegetation cover data 
NDVI value of vegetation index in 

Guangxi Zhuang Autonomous Region 

Hydrological Survey Center of 

Guangxi Zhuang Autonomous 

Region 

Land use data 
Land use distribution map of Guangxi 

Zhuang Autonomous Region in 2015 

National Basic Geographic 

Information Center 

Demographic data 

Using ArcGIS technology to extract 

population density from the population 

data of Guangxi Zhuang Autonomous 

Region in 2015 

Statistical Yearbook 2016 

Socio-economic data 
GDP data of Guangxi Zhuang Autonomous 

Region in 2015 
Statistical Yearbook 2016 

 

In this regard, the collection of basic data of mountain torrent disasters is completed, and the 

temporal and spatial distribution of mountain torrent disasters in Guangxi is analyzed based on the 

collected data.  

2.2 Study on temporal and spatial distribution of mountain flood disaster 

Based on the historical flood investigation reports of various districts and counties in Guangxi 

Zhuang Autonomous Region, the mountain flood disaster situation in the region from 1949 to 2015, 



 

 

spanning 67 years, was compiled. There were more than 1,300 flash floods during this period, with 

an average of approximately 19 per year. The annual frequency of mountain flood disasters and the 

changing trend of disasters over the years are illustrated in Figure 1. 
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Figure 1. Inter-annual changes of mountain flood disasters 

 

It can be seen from the figure that the number of mountain flood disasters in Guangxi Zhuang 

Autonomous Region generally presents a trend of stable annual growth. Through multiple item 

fitting of the annual disaster frequency during the study period, it is found that the periodic change 

of mountain flood disasters is characterized by an upward trend of fluctuations year by year. 

According to the records of rainfall data over the years in the study area, there were 7 years with 

abnormal values of disaster number in these 67 years, most of which had rainstorm records. For 

example, 2010 was the year of the highest concentration of flash floods, with severe disasters 

occurring in many places. 122 villages and communities in M District were affected, involving a 

population of 227.83 million people (including 5947 emergency transfers), 3215 houses collapsed, 

2.11km of dykes were destroyed, and 15031.5 mu of crops were affected. At the same time, the 

flood destroyed many public facilities such as highway bridges and convenience bridges, resulting 

in high cliff collapse and other disasters, leading to serious casualties and losses.  

According to the above analysis results of spatiotemporal characteristics, the spatial 

distribution data of precipitation in Guangxi is analyzed with Kriging spatial interpolation method.  



 

 

2.3 Kriging space interpolation method 

Spatial interpolation is a method to predict the data of unknown points in the region from known 

points by interpolation or extrapolation based on some data function relationship or theory. 

According to different mathematical principles, spatial interpolation is usually divided into two 

categories: deterministic interpolation and geostatistical interpolation. According to the research, the 

ordinary Kriging interpolation method in geostatistical interpolation has a good effect in rainfall 

interpolation calculation. Therefore, when drawing the spatial distribution of precipitation related 

statistics in Guangxi, the ordinary Kriging interpolation method (Hou et al., 2022) is used to 

determine the precipitation prediction model in Guangxi, and the expression is: 
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Where, ( )iZ x  is the measured value of annual precipitation, ( )oZ X  is the predicted value of 

annual precipitation, n  is the number of stations, i  is the weight, and i  is determined by 

Kriging equation group: 
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Where, ( , )i jC X X  is the covariance between the annual precipitation samples, ( , )i oC X X  

is the covariance between the annual precipitation measured value and the samples, and u  is the 

Lagrange multiplier (Lee et al., 2022). The analysis model of precipitation in Guangxi is obtained as 

follows: 

( )
2

1

1
( ) ( ( ) ( ))

2 ( )

N h

i i

i

r h Z S Z S h
N h =

= − +                        (3) 

Where, ( )iZ S h+  is the semi-variance, 2 ( )N h  is the data pair, and ( )iZ S  is the measured 

value.  

2.4 Mann-Kendall non-parametric trend test 



 

 

The Mann-Kendall trend test method (Khavse and Chaudhary, 2022) can be used to examine 

relatively stationary sequences. Therefore, in this study, the method was employed to analyze the 

trend of precipitation-related statistical parameters in Guangxi over time. 

When Mann-Kendall method is used for mutation test, the meaning of each statistic is different. 

First, construct rank sequence kS  for precipitation time series X . Secondly, calculate statistics 

kUF , where ( )kE S  represents the mean of precipitation rank series kS  and ( )kVAR S  represents 

the variance of kS .  
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k
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=                                 (4) 

Thirdly, after the time sequence of precipitation sequence X  is reversed, the statistic 
kUB  is 

constructed by the same method, then k kUF UB= − . Finally, draw UF  and UB  statistics curves. 

Current statistics. At 0UF  , the sequence showed an upward trend. When the statistic is 0UF  , 

the sequence shows a downward trend. If the UF  or UB  curve exceeds the critical line of 

significant value, it indicates that the sequence has a significant upward or downward trend, and the 

time period corresponding to the exceeded part is defined as the mutation time period. If curves 

UF  and UB  intersect with two adjacent boundaries at a certain point, it indicates that this point is 

the start time of mutation.  

2.5 Multi-time scale analysis of precipitation series based on wavelet analysis 

Wavelet analysis is a time-frequency localization analysis method based on Fourier transform 

proposed by Morlet in the 1980s (Hirai et al., 2022). This paper will use wavelet theory to analyze 

the time series of annual precipitation and precipitation of different durations in Guangxi. Its basic 

function is Morlet wavelet of complex wavelet (Belaid, 2021), which is defined as follows: 
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At the same time, function ( )t  can form a family of function systems: 

1/2
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a
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For signal 2( ) ( )f t L R , wavelet transform is defined as (Li et al., 2021): 
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Where, ( , )fW a b  is the binary function of the continuous wavelet transform coefficient, and 

its value changes with the change of a  and b , representing the wavelet change coefficient. 

Parameter a  is the scaling factor of wavelet period length. Parameter b  is the time factor of time 

translation. The wavelet change coefficient map is a two-dimensional contour map about ( , )fW a b , 

reflecting the time-frequency change characteristics of the signal. The wavelet coefficient modulus 

square of the scale factor is integrated in the time domain to obtain the wavelet variance (Chen et al., 

2021), so as to determine the multiple time scales of the precipitation series. The expression is: 
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The change process of multiple time scales ( )var a  of precipitation series with wavelet 

coefficient modulus can be used to analyze the change and development trend of precipitation 

structure in different time scales.  

3.Determining the concentration and duration of precipitation in flood-prone areas 

3.1 Analysis model of flood spatiotemporal change characteristics based on k-means clustering 

algorithm 

Given sample observation data matrix 
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Among them, each row of X  is a sample (or observation), and each column is n  

observation values of a variable, that is, X  is a matrix composed of observation values of p

variables of n  samples 1 2( , ,..., )nx x x .  

Fuzzy clustering is to divide n  samples into c  categories and 2 c n  , and record 

1 2{ , ,..., }cV v v v=  as the cluster center of c  categories, of which 
1 2{ , ,..., }( 1,2,..., )i i i ipv v v v i c= = . 

In k-means clustering, each sample is not strictly assigned to a particular cluster but rather has a 

certain degree of membership in a given cluster. Let 
iku  indicate that the k  sample kx  belongs 

to category i , where 0 1iku  , 
1

1
c

ik

l

u
=

= . Define the analysis model of flood spatiotemporal 

change characteristics: 

 2

1 1

( , )
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m

ik ik

k i

J U V u d
= =

=                              (11) 

Where, ( )ik c nU u =  is the membership matrix, ik k id x v= − . Obviously, ( , )J U V  

represents the sum of the weighted square distance from the sample to the cluster center in each 

category, and the weight is the m  power of the membership degree of sample kx  belonging to the 

i  category. The clustering criterion of k-means clustering algorithm is to find ( , )J U V , so that 

( , )J U V  can get the minimum value. The specific steps of k-means clustering algorithm are as 

follows: 

(1) Determine the number of classes c , power index 1m   and initial membership matrix 

(0) (0)( )ikU u= . The usual method is to take the uniformly distributed random number on [0,1] to 

determine the initial membership matrix (0)U . Let 1l =  represent the first iteration.  

(2) Calculate the cluster center ( )lV  in step l  by the following formula: 
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(3) Modify the membership matrix ( )lU  and calculate the model value ( )lJ  of flood 

spatiotemporal change characteristics analysis.  
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Among them, ( ) ( )l l

ik k id x V= − .  

(4) For the given membership degree termination tolerance 0u   (or the flood 

spatiotemporal change characteristic analysis model termination tolerance 0J  , or the maximum 

iteration step size maxL ), when ( ) ( 1)max{( )}I I

ik ik uu u −−   ( ( ) ( 1)1, l l

Jl J J − −  , or maxl L ), 

stop the iteration, otherwise, turn to (2).  

After the iteration of the above steps, the final membership matrix U  and cluster center V  

can be obtained to minimize the value of the flood spatial-temporal change feature analysis model 

( , )J U V . The attribution of all samples can be determined according to the values of the elements in 

the final membership matrix U . When max{ }jk iku u= , sample kx  can be classified as category 

j .  

3.2 Determination of precipitation concentration and concentration 

3.2.1 Daily precipitation concentration index (CID) 

The data below 1.0 mm of daily rainfall for a specific year is excluded and grouped every 1 

mm. The grouping stops when the maximum daily rainfall for that year is reached. Then, the rainfall 

days (
iN ) and total days ( iP ) are calculated for each group, resulting in the correlation between the 

cumulative rainfall day percentage ( Y ) and the cumulative rainfall percentage ( X ). The 

exponential relationship between X  and Y  can be described by the following equation: 

 exp( )Y aX bX=                                (14) 

Where a  and b  are constants obtained through least squares fitting. Based on equation (14), 

the distribution of the indicator function is defined as the Lorenz curve. The concentration of 



 

 

rainfall is represented by the region A , enclosed by the Lorenz curve and the quadrant bisectors. In 

cases where the value of A  is larger, the trend is closer to the x-axis, indicating a higher 

concentration of daily rainfall. 

The region A  can be calculated using the following approach: 

 
100

0
10000 / 2 exp( )A ax bx dx= −                          (15) 

Then CID  is: 

 2 /10000CID A=                                (16) 

The CID  ranges from 0 to 1, and the smaller the value of CID , the more uniform the 

distribution of daily rainfall. 

3.2.2 Monthly precipitation concentration index (CIM ) 

The calculation method of the monthly precipitation concentration index is expressed as follows: 
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100 / ( )i i

i i

CIM p p
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=                            (17) 

Where ip  represents the precipitation in month i . In a given year. When CIM  is lower than 

10, it indicates that the precipitation in each month of that year is relatively evenly distributed 

around the average level. When CIM  is between 11 and 20, it suggests that the precipitation in 

that year exhibits seasonal variations. When CIM  exceeds 20, it signifies an abnormally 

concentrated distribution of rainfall throughout the year, with significant differences in monthly 

precipitation patterns. 

3.2.3 Decadal precipitation concentration ( PCD ) and precipitation concentration period (PCP ) 

Precipitation concentration duration (PCD) and precipitation concentration period (PCP) are 

methods based on vector analysis to describe the temporal distribution characteristics of rainfall in a 

certain region. PCD is used to describe the spatiotemporal distribution characteristics of rainfall in 

the area. The value of PCD ranges from 0 to 1 during rainfall events. The closer the PCD value is to 

1, the more intense the precipitation is. Within a certain time range, when the PCD value 

approaches 0, it indicates a relatively smooth spatial distribution of rainfall. PCP is used to describe 



 

 

the timing of the maximum rainfall occurrence within a year. The calculation method is as follows: 

 2 2 /
i ix y iPCD R R R= +                             (18) 

 arctan( / )xi yiPCP R R=                            (19) 

Where: 
1

sin
n

xi ij j

j

R r 
=

=  , 
1

cos
n

yi ij j

j

R r 
=

=  , and iR  represent the total precipitation at 

different observation stations in the region. 
ijr  refers to the precipitation for each decadal period 

investigated. 
j  represents the azimuth corresponding to each decadal period within the specified 

time cycle. i  represents the year, and j  represents the sequence of decadal periods within the 

study period. 

4. Measurement and analysis of correlation between precipitation and temperature based on 

Copula function 

Based on precipitation and temperature data from various stations in Guangxi from 1971 to 2012, 

this paper selected Beihai, Nanning and Guilin as typical regions from the coast to the interior and 

measured the correlation between precipitation and temperature. It is mainly analyzed from two 

aspects. On the one hand, the correlation between seasonal precipitation and temperature is 

analyzed based on data on precipitation and temperature at different seasons over the past 42 years. 

On the other hand, based on the data of accumulated monthly average precipitation and temperature 

for many years, the correlation between precipitation and temperature within the year is analyzed.  

4.1 Correlation analysis of seasonal precipitation and temperature 

Based on the time series data of precipitation and temperature for the four seasons from 1971 to 

2012 at the three stations of Guilin, Nanning, and Beihai, the Pearson correlation coefficient, 

Kendall rank correlation coefficient, and Spearman rank correlation coefficient were calculated. The 

results are shown in Table 2. The results show that there is a certain correlation between 

precipitation and temperature in Guilin, Nanning and Beihai in summer, only in Guilin in autumn 

and only in Beihai in winter. Therefore, Copula function can be used to measure the correlation of 

precipitation and temperature series with correlation. Take Guilin summer as an example to 



 

 

introduce the correlation measurement analysis of precipitation and temperature based on Copula 

function.  

Table 2 Statistics of correlation between precipitation and temperature in Guilin, Nanning and 

Beihai  

Area 
Classifica

tion 
Spring Summer Autumn Winter 

Guilin 

Pearson 
-0.14

7 

uncorrelat

ed 

uncorrelat

ed 

uncorrelat

ed 

-0.505

** 

correlat

ed 

-0.412

** 

correlated 

-0.08

5 
uncorrelated 

uncorrelated 

uncorrelated 

Kendall -0.1 
-0.366

** 

-0.285

** 

-0.08

5 

Spearman 
-0.13

4 

-0.515

** 

-0.405

1** 

-0.13

7 

Nanning 

Pearson 
0.12

6 

uncorrelat

ed 

uncorrelat

ed 

uncorrelat

ed 

-0.506

** 

correlat

ed 

-0.127 
uncorrelat

ed 

uncorrelat

ed 

uncorrelat

ed 

-0.26

9 

uncorrelated Kendall 
0.04

3 

-0.278

** 
-0.043 

-0.16

4 

Spearman 
0.07

9 

-0.422

** 
-0.068 

-0.23

1 

The 

North Sea 

Pearson 
-0.15

5. 

uncorrelat

ed 

-0.592

** 

correlat

ed 

-0.122 

uncorrelat

ed 

-0.45

0** 

correlated Kendall 
-0.12

0 

-0.447

** 
-0.058 

-0.26

1* 

Spearman 
-0.18

7 

-0.645

** 
-0.096 

-0.39

7** 

**and * * are at 0.01 and 0.05 levels (double tail) respectively, with significant correlation. 

  

4.2 Selection and Parameter Estimation of Copula Function 

Calculate the Kendall and Spearman rank correlation coefficients corresponding to the Copula 

function of summer precipitation and temperature in Guilin, as shown in Table 3.  

Table 3 Copula function correlation measure of summer precipitation and temperature in Guilin 

Function type   
s  

Normal Copula -0.338 -0.489 

t-Copula -0.394 -0.563 

Gumbel Copula 1.36E-06 2.05E-06 

Clayton Copula 7.25E-07 1.09E-06 

Frank Copula -0.383 -0.55 

 

Comparing the correlation measures of the Copula function in Table 2 with the Kendall and 

Spearman rank correlation coefficients in Table 3, we can see that the correlation measures of the 

normal Copula and Frank Copula functions are the closest, while the effects of other Copula 



 

 

functions are poor.  

After determining the edge distribution and the preliminary determination of the Copula 

function, you can make further selection of the Copula function, and then determine the parameters 

of the Copula function: 

(1) Substitute the empirical distribution function into equation (15), and estimate the 

parameters of the normal Copula and Frank Copula functions with the semi-parametric method.  

(2) Calculate the Kendall rank phase relationship value between annual average precipitation 

and annual average temperature, and then calculate the parameters corresponding to the three 

Copula functions according to the relationship formula with parameters in Table 3.  

(3) According to the parameters calculated by the two methods, calculate the joint distribution 

of annual precipitation and annual temperature of the empirical Copula function and the two Copula 

functions.  

(4) The AIC value and OLS value under the two parameters are calculated. The AIC value and 

OLS value are the smallest, indicating that the corresponding Copula function has the best fitting 

effect.  

The copula function fitting of the joint distribution of precipitation and temperature in Guilin is 

shown in Table 4. The best copula function and parameter estimation method are shown in bold.  

Table 4 Copula function fitting of the joint distribution of summer precipitation and temperature in 

Guilin 

Evaluating 

indicator 

Copula function 

type 

Semiparametric 

estimation method 

Kendall rank correlation 

coefficient estimation method 

OLS 
Normal Copula 0.24 0.23 

Frank Copula 0.23 0.22 

AIC 
Normal Copula -119.36 -120.15 

Frank Copula -120.84 -120.38 

 

It can be seen from Table 4 that the OLS value and AIC value corresponding to Frank Copula 

function are the smallest, 0.23 and -120.84 respectively, so the goodness of fit of Frank Copula 

function is the best, indicating that this function can better represent the correlation between annual 



 

 

precipitation and temperature. 

Similarly, the copula function fitting of the joint distribution of precipitation and temperature 

in autumn in Guilin, summer in Nanning, and summer and autumn in the North Sea can be 

calculated, as shown in Table 5-7. 

Table 5 Copula function fitting of the joint distribution of autumn precipitation and temperature in 

Guilin 

evaluating indicator 
Copula function 

type 

Semiparametric 

estimation method 

Kendall rank correlation 

coefficient estimation 

method 

OLS 
Normal Copula 0.25 0.25 

Frank Copula 0.24 0.24 

AIC 
Normal Copula -114.84 -115.07 

Frank Copula -116.36 -115.13 

 

Table 6 Copula function fitting of the joint distribution of summer precipitation and temperature in 

Nanning 

evaluating 

indicator 

Copula function 

type 

Semiparametric 

estimation method 

Kendall rank correlation 

coefficient estimation method 

OLS 
Normal Copula 0.24 0.24 

Frank Copula 0.23 0.24 

AIC 
Normal Copula -118.71 -117.01 

Frank Copula -119.50 -117.29 

 

Table 7 Copula function fitting of the joint distribution of summer and winter precipitation and 

temperature in the North Sea 

season 
evaluating 

indicator 

Copula function 

type 

Semiparametric 

estimation method 

Kendall rank correlation 

coefficient estimation 

method 

summer 

OLS 
Normal Copula 0.20 0.20 

Frank Copula 0.19 0.19 

AIC 
Normal Copula -132.16 -117.01 

Frank Copula -135.36 -117.29 

winter 

OLS 
Normal Copula 0.24 0.25 

Frank Copula 0.23 0.24 

AIC 
Normal Copula -116.99 -114.84 

Frank Copula -118.28 -116.02 

 



 

 

It can be seen from Table 5~7 that the Frank Copula function is the best fit, which shows that 

the Frank Copula function can better represent the correlation between precipitation and 

temperature in autumn in Guilin, summer in Nanning and summer and winter in Beihai.  

From the above analysis, it can be seen that the precipitation and temperature in Guangxi 

Beihai, Nanning and Guilin have a certain correlation in summer, while the precipitation and 

temperature in Guilin have a certain correlation in autumn, and the precipitation and temperature in 

Beihai in winter. Their linear correlation coefficient and rank correlation coefficient are shown in 

Table 2. The correlation degree and structure of precipitation and temperature in different seasons in 

the three regions can be measured by Frank Copula function. At the same time, it also shows that 

the semi-parameter estimation method is better.  

4.3 The spatial and temporal changes in annual precipitation 

The Mann-Kendall trend test method was used to statistically analyze the precipitation data from 19 

monitoring stations in the Guangxi Zhuang Autonomous Region from 1960 to 2016 (Table 8). The 

spatial and temporal distribution characteristics of precipitation were studied. When the absolute 

value of Z is greater than or equal to 1.96, it indicates that this method has achieved a confidence 

level of 95%. 

Table 8 Annual precipitation trend of Guangxi Zhuang Autonomous Region (1960~2016) 

site Z trend site Z trend 

R -2.086 
Significant 

decrease 
X -1.397 - 

M -0.420 - S -0.929 - 

N -1.921 - O -1.150 - 

P -2.705 
Significant 

decrease 
J -0.613 - 

K -1.053 - E -1.755 - 

Q -0.324 - T -1.549 - 

Y -1.108 - L -0.792 - 

B -1.218 - F -1.147 - 

D -1.425 - V -0.620 - 

W -0.778 - - - - 
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(a) R station                                (b) P station 

Figure 2. Annual precipitation trend 

According to the results in Table 8, the Z value of the annual precipitation series in Guangxi 

Zhuang Autonomous Region is less than 0, that is, it has an insignificant downward trend, and the Z 

value at R and P stations is less than -1.96, which is a significant downward trend. In the entire 

Guangxi Zhuang Autonomous Region, the annual precipitation has a gradual downward trend, 

which is the same as the research results of Lei Jiang Group. According to Figure 2 (a), the 

maximum annual precipitation of R station was 801.5 mm, which occurred in 1979, and the 

minimum was 326.6 mm, which occurred in 1997. It can be seen from Figure 2 (b) that the 

maximum annual precipitation of P station was 1262.3 mm, which occurred in 1964, and the 

minimum was 465.3 mm, which occurred in 1997. 

5. Conclusion 

In this paper, k-means clustering algorithm is introduced to design an analysis model of flood 

spatiotemporal change characteristics. Obtain the flood disaster data in Guangxi and the observation 

data of nearby national meteorological stations, analyze the temporal and spatial distribution of 

mountain flood disasters in Guangxi, use the Kriging spatial interpolation method to calculate the 

spatial distribution data of precipitation in Guangxi, conduct the trend test on the time series of 

precipitation related statistics in Guangxi according to the Mann-Kendall trend test method, and 

build an analysis model based on Copula function that integrates the precipitation concentration 

index and the temporal and spatial change characteristics of flood disasters, Some achievements 



 

 

have been made. The k-means clustering algorithm is introduced to build the analysis model of 

flood spatial-temporal change characteristics, determine the precipitation concentration degree and 

concentration period in different years in the region, and analyze the spatial-temporal change 

characteristics of flood events in different seasons under various indicators.  

With the advancement of technology and the improvement of data acquisition methods, the 

data quality and coverage of spatiotemporal changes in flood disasters will be improved. In the 

future, multi-source data fusion will be considered, such as remote sensing data, meteorological 

data, geographic information data, etc. By utilizing the advantages of different data sources, we can 

more accurately capture and analyze the spatiotemporal changes of floods, thereby improving flood 

warning and disaster response capabilities. 
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