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Abstract 

In recent years, there has been a steady increase in the 
intensity and frequency of wildfires worldwide mainly due 
to the escalating climate crisis and land-use change. 
Wildfires result in a decline in air quality and cause damage 
to property, crops, resources, wildlife, and human lives. 
Since models predict that the number of wildfires will rise 
by 50% by 2100 the reduction of the wildfire risk is more 
crucial than ever. We herewith attempt to develop a simple 
model for nowcasting such catastrophic events that may be 
useful for preparing authorities and policymakers. As an 
example, the case of the USA is presented by analyzing the 
count of wildfires and acres burned there over the past four 
decades to forecast such catastrophic events over the next 
ten years. The approach employed in this research can 
serve as an additional resource in the field of environment 
and fire ecology, aiding in identifying fire-adapted 
ecosystems and fire patterns. 

Keywords: Environment, fire ecology, nowcasting tool, fire 
risk 

1. Introduction 

The wildfires of the last five years in Australia, Canada, the 
United States, Nepal, the Amazon, Siberia, and Europe 
have caused heavy loss of lives and property and the 
destruction of vast acres of land and forests with 
consequent implications for the success of the Sustainable 
Development Goals (SDGs) (Dye et al. 2023; Pokharel et al. 
2023). Namely, the recent 2023 Hawaii wildfires have 
resulted in a tragic loss of a minimum of 96 individuals and 
incurred a staggering $5.52 billion in damages (Marris, 
2023). Prior to the occurrence of the event, a discernible 
and ascending pattern in the frequency of wildfires within 
the state of Hawaii had been found (Maui County, 2021). 
Similarly, the 2021 fire season in Greece, which led to 
widespread destruction with over 130,000 hectares of 
burnt area, was one of the most devastating in recent years 
(Giannaros et al. 2022). 

Wildfires are known to be caused by a combination of 
climatic parameters (e.g., temperature, precipitation, 
wind, and atmospheric humidity), vegetation, and land use 
and therefore, in addition to human activities (lighting 
vegetation fires to clear land for agriculture, grazing, 
conflicts, etc.), are governed by the impacts of climate 
change (Cobb, 2022; Molder and Calice, 2023). Gaining a 
comprehensive understanding of the environmental 
impacts of wildfires requires a clear understanding of their 
dynamics, including factors such as hazards, spatial 
distribution, and impacts (Szpakowski et al. 2019). 

Very recently it was found that towering clouds of smoke 
rising into the stratosphere from wildfires deplete the 
ozone layer due to the smoke aerosols, atmospheric 
chemistry and solar ultraviolet radiation (Solomon et al. 
2023, Kondratyev et al. 1994). 

Little is known about how environmental and social factors 
differ between lightning-caused and human-fueled 
wildfires. Abatzoglou et al. (2018) studied differences in 
temperature, vapour pressure deficit, fuel moisture, and 
wind speed for large and small lightning- and human-
caused wildfires during the first days of fire activity in the 
USA. 

https://doi.org/10.30955/gnj.005450
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Marlon et al. (2012) employed sedimentary charcoal 
accumulation rates to create long-term fluctuations in fire 
in the American West over the past 3,000 years. They 
compared this record with independent fire-history data 
from historical records and fire scars. They also suggested 
that burning has decreased over the past 3,000 years, with 
the lowest levels occurring during the twentieth century 
and the Little Ice Age. 

The onset of a wildfire is influenced by a complex interplay 
of non-linear dynamics within various environmental 
components. These components, including vegetation, 
weather patterns, and topography, exhibit intricate 
relationships that can lead to rapid and unpredictable shifts 
in fire behavior (Moritz et al. 2014). For instance, as 
vegetation accumulates, it becomes more susceptible to 
ignition, and its moisture content affects its flammability 
(Pechony & Shindell 2010). Weather conditions, such as 
wind speed, humidity, and temperature, interact 
nonlinearly to create conditions conducive to fire spread. 
The topography of the landscape influences fire's rate of 
spread, intensity, and direction, creating localized wind 
patterns and areas of fuel concentration (Dennison et al. 
2014). These non-linear interactions highlight the 
challenge of predicting wildfire behavior and the need for 
holistic models that account for the intricate relationships 
among environmental factors. Effective wildfire 
management requires an understanding of these non-
linear dynamics to enhance preparedness, response, and 
mitigation strategies (Parisien et al. 2012; Bowman et al. 
2017). 

Syifa et al. (2020) generated a pre- and post-wildfire map 
to provide baseline data for evacuation and mitigation 
planning, in response to the catastrophic wildfire reported 
in Butte County, California on 08/11/2018, with about 88 
deaths and 18,804 structures. 

Wildfire risk has increased, but we can still influence where 
and how wildfires happen. The devastating consequences 
of the increasing frequency and intensity of wildfires on 
people's lives and ecosystems require concrete action at all 
levels, such as developing new integrated management 
strategies and international cooperation (Lang and Moeini-
Meybodi, 2021). The use of the “risk analysis” method in 
wildfire control has steadily increased over the past ten 
years. “Risk analysis” is particularly suited to analyzing the 
timing, location, and potential impacts of wildfires, as it 
arose out of the need to make decisions about highly 
unpredictable events. In this regard, Miller and Ager (2012) 
reviewed recent improvements in estimating and 
integrating the three components of wildfire risk, 
"likelihood, intensity, and impacts". 

In the studies of risk analysis, the type of the distribution of 
the used quantities is crucial. Among the most observed 
data distributions in nature are the Gaussian distribution 
(or due to its graph "Gaussian bell"), and the semi-
logarithmic distribution. In the first case, the majority of 
the data is gathered into a measure with some dispersion 
or variance that is symmetric with a fixed mean and 
variance, thus allowing us to make predictions about an 
unknown value. In the second case, distribution 

characterizes the growth of a quantity when it is 
exponential (Varotsos et al. 2009). A tool to investigate the 
existence and the properties of the exponential behavior is 
the rescaled range analysis (Ying et al. 2019). Related to this 
issue, Efstathiou and Varotsos (2012) showed that the 
Sahel precipitation anomalies and rainfall index do not 
follow a Gaussian distribution, but instead, their values 
seem to obey the semi-logarithmic distribution. 

This study attempts to develop a new nowcasting tool for 
wildfires (NTW) and implement it, using data from the past 
forty years on the number of wildfires and burned acres in 
the USA. A similar methodology has been applied by 
Varotsos et al. (2020a), where a novel nowcasting tool for 
climate parameters was developed. 

2. Materials and methods 

In an effort to develop a new NTW, we use the annual 
wildfire count (WFC) and the burned acres (BAC) in the 
USA, over the period 1983-2022, obtained from the 
National Interagency Incident Communications Division 
(NIICD) web page (https://www.nifc.gov/fire-
information/statistics). NIICD is a partnership between the 
United States Department of Agriculture (USDA) Forest 
Service and the Department of the Interior's agencies. It is 
located at the National Interagency Fire Center (NIFC) in 
Boise, Idaho. 

The methodology employed to develop the new NTW is the 
basic statistical algorithms along with the Natural Time 
Analysis (NTA), which has been introduced by our group at 
the National and Kapodistrian University of Athens (e.g., 
Varotsos et al. 2012). The NTA operates on a new 
perspective of the time platform that determines when a 
complex system approaches criticality. In short, for a time 
series of N events, an index to the occurrence of the k-th 
event is defined by χk = k/N, which is called “natural time”. 
In this way, the time intervals between successive events 
are ignored, but the sequence of events and their energy 
Qk are preserved because these two quantities are 
considered important for the evolution of the system. Next, 
we study the evolution of the pair (χk, Qk) to forecast 
upcoming wildfires moving from long-term to short-term 
scales. 

3. Results and discussion 

The first goal of our analysis for implementing NTW 
development is to identify the most suitable distribution 
describing WFC and BAC values, to forecast the frequency 
of such devastating incidents during the next decade. 

3.1. The case of WFC 

Our investigation begins by plotting the cumulative count 
(N) of WFC values greater than or equal to M against the 
values of M itself, covering the period from 1983 to 2022. 
The Gaussian cumulative distribution function gives an 
obvious fit to extreme values of WFC (greater than 66481) 
(Figure 1a). 

The M–value 66481 is chosen to give the best fit, while, 
according to the F-test, the coefficient of determination R2 
= 0.97 is statistically significant at the 95% confidence level.  

https://www.usda.gov/
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Furthermore, applying the non-parametric Kolmogorov-
Smirnov (KS) test to the above-mentioned values gives a 
KS-statistic D = 0.077 which is below the critical value (at 
95% confidence level), confirming that the WFC is normally 
distributed. 

 

Figure 1. (a) Plot of the cumulative frequency-magnitude 

distribution (gray circles) for WFC over the period 1983-2022, in 

the USA. The black dashed curve is the fit of the Gaussian 

cumulative distribution function with R² = 0.97. (b) The semi-

logarithmic plot of the cumulative frequency-magnitude 

distribution (gray circles) for the same WFC dataset. The black 

dashed line is the GR-scaling least-squares fit,  

y = 3.72 – 3.410-5x and R² = 0.96. 

Next, we show in Figure 1b the logarithm of N of WFC 
values greater than or equal to M versus M (Varotsos et al. 
2020b). Regression analysis shows a statistically significant 
linear relationship between logN and M regarding extreme 
WFC values (those exceeding 66481): 

= –logN d cM  (1) 

Once again, the value 66481 is chosen to achieve the most 
accurate linear fit, while the significance of R2 = 0.96 (with 

c = 3.410–5 and d = 3.72) is assessed using an F-test (t-test), 
at the 95% confidence level. As a result, the cumulative 
frequency distribution of high WFC values also appears to 
follow the Gutenberg-Richter (GR) law. 

Next, we evaluate the accuracy of the aforementioned GR 
fit by subjecting the mentioned values to the KS test. The 
KS-statistic D = 0.097 provides evidence of the semi-
logarithmic distribution in the case of high WFC values, 
with a confidence level of 95%.  

However, to confirm the GR-fit, we also employ the 
concept of the “natural time” (Varotsos et al. 2004, 2012), 
exploring the cumulative number, 𝑁1, of WFC with 
magnitude M ≥ 𝑀1 that occurred after an extremely high 
WFC with M ≥ 𝑀2 (see Varotsos et al. 2020 a, b). The values 
of 𝑀1 = 66,481 and 𝑀2 = 70,295.87 denote the threshold of 
the above-mentioned WFC interval and the WFC average 
during 1983–2022, respectively. 

More specifically, we examine whether two values with a 
fixed difference d = 𝑀1 – 𝑀2 exhibit a constant ratio N2/N1, 
as implied by the GR-relation:  

( )−
= =1 2

2 1 10
c M M

N N constant  
(2) 

where c is calculated from Eq. (1) and 𝑁2 is the cumulative 
number of FC with size M ≥ 𝑀2. 

Indeed, Figure 2a presents the pair (N1, N2), whenever an 
extremely high WFC occurs, accompanied by the linear 

function ( )1 0 1F N c N=  with ( )1 2

0 10
c M M

c
−

=  and an obvious 

correlation between these two curves appears, confirming 
the reliability of the GR-model. The coefficient of 
determination of this linear fit on the (N1, N2) pairs is 
estimated to be R2 = 0.99 revealing a prominent 
significance at the 95% confidence level. 

Next, we plot the cumulative number N1 against the 
conventional clock time t (in years), over the period 1983–
2022 and a linear relationship of the type ( )F t t=  is 

detected (Figure 2b). The constant 0.65 0.1t =   is calculated 

by averaging the ratio N1/t and its confidence interval is 

( ) ( )
2 2

1 1
,

n nZ Z 

 − −
 − +
 
 

, where n is the count of 

pairs ( )1N t  and 
2

Z 
 is the critical value of the standard 

normal distribution at a significance level.  

The coefficient of determination of this linear fit to the 
pairs (N1, t) is R2 = 0.96 indicating high statistical 
significance at the 95% confidence level. 

Figure 2c clearly shows a strong correlation between 
observed and nowcasted N2-values with respect to 
conventional clock time. The nowcasted N2-values are 
estimated using Eq. (2) where we take the N1-values given 
in Figure 2b and multiply them by the slope 𝑐0 (as shown in 
Figure 2a). 

Statistical validation of this agreement is confirmed at the 
95% confidence level using the Wilcoxon Signed Rank test.  

 

Figure 2. (a) Dependence of the cumulative number of 

extremely high FC, 𝑁2, on the cumulative number of less high 

values, 𝑁1 (grey points). The dashed black line is the linear fit to 

the data passing through the origin, with y = 0,74x and R² = 0,96. 

(b) Cumulative number, 𝑁1, of WFC with magnitude M ≥ 𝑀1 vs. 

the clock time (in years), during 1983–2022, in the USA. The 

black dashed line is the linear fit to the data, with y = 0,65·x and 

R² = 0,96. (c) Empirical (gray dots) and nowcasted (black dots) 

N2- values vs. clock time (in years), for the same period. (d) 

Nowcasted N – values vs. M (for 70,296 ≤ M ≤ 100,296, during 

2023-2032) derived from both the Gaussian cumulative 

distribution function (black solid line) and the “natural time” 

model (black dashed line) accompanied by the upper (grey 

dashed line with circles) and lower (grey solid line with triangles) 

bounds of the 95%-confidence interval of  

Finally, we calculate the nowcasted cumulative number N 
versus selected magnitudes 70,296 ≤ M ≤ 100,296, for WFC 
during the next 10 years (i.e., 2023-2032). The nowcasted 
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N is derived from Eq. (2) by replacing 𝑁2 with N, 𝑀2 with 
the above-mentioned magnitudes, and N2 with the product 
of ℓ and the 10-year period: 

( )−
= 10 11 0c M MN  

(3) 

It is worth noting that seems to remain almost constant 
for all these magnitudes. 

Figure 2d depicts the nowcasted N versus M (for 70,296 ≤ 
M ≤ 100,296) derived from both the Gaussian cumulative 
distribution function and the “natural time” model. The 
graph also displays the upper and lower limits of the 95%-
confidence interval of  

3.2. The case of BAC 

The next step of our analysis is to study the case of BAC. 
Thus, we investigate the cumulative number (N) of BAC 
values greater than or equal to M versus M, for the period 
1983-2022. The Gaussian cumulative distribution function 
seems to fit the entire plot significantly. Indeed, according 
to the F-test, the coefficient of determination R2 = 0.95 is 
statistically significant at the 95% confidence level (Figure 
3a). 

We then apply the KS test to the above-mentioned values 
and the resulting KS-statistic D = 0.12 appears to be lower 
than the critical value (at 95% confidence level), thus 
confirming the normal distribution of BAC. 

On the other hand, we present the logarithm of N of BAC 
values greater than or equal to M versus M, accompanied 
by a linear fit to the entire plot (Figure 3b). The regression 
analysis gives R2= 0.89 that is statistically significant at 95% 
confidence level (according to the F-test). However, the KS 
test applied to the above-mentioned values gives D = 0.23 
which is higher than the critical value (at 95% confidence 
level).  

 

Figure 3. (a) Plot of the cumulative frequency-magnitude 

distribution (gray circles) for BAC during 1983-2022, in the USA. 

The black dashed curve is the fit of the Gaussian cumulative 

distribution function with R² = 0,97. (b) Semi-logarithmic plot of 

the cumulative frequency-magnitude distribution (gray circles) 

for the same BAC dataset. The black dashed line is the least-

squares fit of the GR-scaling, y = 1.8 – 1.210-7 x and R² = 0,89. (c) 

Nowcasted N – values vs. M for the next decade and for 

5,223.975 ≤ 𝑀 ≤ 11,223.975, as derived from the Gaussian 

cumulative distribution function. 

Thus, the BAC values significantly obey only the Gaussian 
distribution, while the GR-law is not confirmed. Figure 3 
plots the nowcasted N versus M (for 5,223.975 ≤ M ≤ 
11,223.975, during 2023–2032) derived from the Gaussian 
cumulative distribution function. 

All the characteristic features found from the analysis 
above constitute the new simple tool that may be utilized 
to perform the forecasting and nowcasting of future 
devastating wildfires in a specific geographic area. 

4. Conclusions 

In the aforementioned analysis, we proposed a new 
nowcasting tool for wildfires by investigating the 
distribution function of both WFC and BAC. As a case study, 
we presented wildfires that have occurred in the US using 
available data over the past four decades, with the goal of 
forecasting and nowcasting such catastrophic events over 
the next decade. In this effort, the main findings were as 
follows: 

1) The number of large wildfires that occurred in the USA 
significantly obeys both the Gaussian and the semi-
logarithmic distributions. The combination of these 
two distributions can accurately predict the probability 
of such devastating events occurring in the next 
decade, which may contribute to an effective wildfire 
safety management. 

2) The application of “natural time analysis” showed that 
the GR-law behaviour of the extreme values of wildfire 
counts is a solid assumption for the proposed 
nowcasting tool of wildfires. 

The proposed above simple nowcasting tool can also 
contribute insight to management strategies for reducing 
climate and wildfire vulnerability and increasing habitat 
sustainability (Folharini et al. 2023). Finally, the model 
developed in this paper can help support multiple SDG’s by 
enabling more effective management of environmental 
risks, enchancing disaster resilience, protecting ecosystems 
and communities, and promoting collaboration and 
innovation in the pursuit of sustainable development. In 
particular, the prediction and monitoring of wildfire 
occurrences, which are influenced by climate factors, can 
support efforts to mitigate and manage wildfires, thereby 
addressing one of the key impacts of climate change (Goal 
13: Climate action). Also, it can provide valuable 
information to authorities and communities, enabling 
them to take proactive measures to prevent wildfires from 
spreading into populated areas and minimizing damage to 
infrastructure and homes (Goal 11: Sustainable Cities and 
Communities). 
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