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Abstract 

Air pollution is a major reason for health-related issues and 
weather changes, one of humanity's most dangerous 
problems. It is the most crucial environmental issue in the 
21st century and has attracted global attention. These 
challenges are exacerbated by an overabundance of 
automobiles, industrial output, pollution, transportation, 
fuel consumption, and energy generation. Therefore, air 
pollution prediction was developed vital. Air pollution 
monitoring is the procedure of analyzing and measuring 
the air quality in a certain place to develop the levels of 
several pollutants and contaminants present. Monitoring 
air pollution is vital to understand its sources and effects on 
the environment and human health, and for executing 
methods for mitigating its effects. Deep learning (DL) 
approaches are employed for air pollution predicting 
methods. Therefore, this study develops an Atomic Orbital 
Search Algorithm with a Deep Learning-Driven Air Pollution 
Monitoring (AOSADL-APM) approach. The purpose of the 
AOSADL-APM technique is to predict and classify the 
presence of air pollutants. In the presented AOSADL-APM 
technique, the min-max normalization approach is applied 
for data preprocessing. For air pollution prediction and 
classification, the AOSADL-APM technique applies the deep 
long short-term memory (DLSTM) methodology. To 

enhance the performance of the AOSADL-APM technique, 
the AOSA-based hyperparameter tuning has been 
developed. The simulation results of the AOSADL-APM 
technique were tested using the benchmark dataset. The 
widespread outcome analyzed the greater solution of the 
AOSADL-APM algorithm compared to existing approaches. 

Keywords: Air pollution, deep learning, data-driven 
approach, hyperparameter tuning, prediction 

1. Introduction 

Energy consumption and its effects are unavoidable in 
current world human actions. The man-made causes of air 
pollution comprise releases from industrial plants; 
automobiles; kerosene; aerosol cans, and planes; coal 
burning of straw, among others. Elshaboury, N., et al. 
(2023) described different hazardous pollutants such as 
NO2, CO2, COss, O3, NH3, SO2, Pb, Particulate Matter 
(PM), etc. have been released into our surroundings 
regularly. Drewil, G.I. et al. (2022) discussed about air 
pollution may lead plenty of severe diseases in human 
beings, from pneumonia to lung cancer, bronchitis to heart 
disease, and so on. Huang, L., et al. (2021) explained 
insufficient air conditions cause other existing 
environmental problems such as acid rain, early death, 
decreased visibility, smog, aerosol formation, weather 
changes, and global warming. Researchers recognized that 
air pollution carries the ability to harmfully involve previous 
monuments. Environmental emissions of industries and 
power stations, agricultural disposal, vehicle emissions, 
etc. can be accountable for increasing greenhouse gases. 
Abirami, S et al. (2023) implements the greenhouse gases 
negatively impact climatic factors and accordingly the 
growth of plants. Greenhouse gases and inorganic carbon 
emissions also impact plant-soil relations. Meteorological 
conditions not only affect animals and humans, but 
productivity and agricultural factors are also highly 
affected. Financial losses are also related to implications. 
Jamei, M., et al. (2022) expose the Air Quality Index (AQI), 
an evaluation factor, could be directly relevant to medical 
management. A high degree of AQI specifies a very harmful 
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experience for human habitation. Sonawani, S., et al. 
(2021) proved the needs of forecast the AQI in advance 
inspired the researchers to monitor as well as model the 
quality of air. Predicting and monitoring AQI, principally in 
urban regions is an essential and different activity for 
raising development of motor and industries. Majorly, air 
quality-related research and researchers aim emerging 
nations, although the focus on highly dangerous 
contaminants such as PM2.5 is established at multiple 
levels in developing countries. 

Wang S., et al. (2023) executes the quantification, 
alleviation, and assessment of these impacts need 
techniques for evaluating the involvement of traffic 
volumes in air pollution. Conventionally, this is 
implemented by incorporating an evaluation (both noticed 
or modelled) of traffic volume, or instead of the allied 
pollution generation evaluated with weather monitoring in 
distribution techniques that determine a set of partial 
differential equations (PDE) for estimating the preferred 
pollution distributions. Gu, Y., et al. (2022) introduce the 
approach is limited in 3 processes, namely, the PDE method 
is computationally costly, needs significant field capability, 
and cumbersome to configure for more geographical 
positions. The computational cost limits the meshes that 
could be determined with respect to the spatial resolution, 
spatial level, and finally, the multiple discrete sources of 
pollution. Wardana, I.N.K., et al. (2021) explored the 
several techniques have been developed for forecasting 
pollutant concentrations because of the development of 
artificial intelligence (AI). These techniques are categorized 
into two types, namely non-deep learning (DL) and DL 
methods. Shu, Y et al. (2023) implements the non-DL 
approaches comprise two major techniques such as 
statistical and deterministic ones. Other algorithm 
leverages the ability of DL for establishing fast estimates, 
which is measured with some domain size. 

This study develops an Atomic Orbital Search Algorithm 
with a Deep Learning-Driven Air Pollution Monitoring 
(AOSADL-APM) approach. The purpose of the AOSADL-
APM technique is to predict and classify the presence of air 
pollutants. In the presented AOSADL-APM technique, the 
min-max normalization approach is applied for data 
preprocessing. For air pollution prediction and 
classification, the AOSADL-APM technique applies the deep 
long short-term memory (DLSTM) methodology. To 
enhance the performance of the AOSADL-APM technique, 
the AOSA-based hyperparameter tuning has been 
developed. The simulation results of the AOSADL-APM 
technique were tested utilizing the benchmark database. 

2. Related works 

Wu, C.L et al. (2023) developed a new DL-based hybrid 
methodology of Res-GCN-BiLSTM integrating the ResNets, 
Bi-LSTM, and GCN was developed. Primarily, cluster 
analysis and auto-correlation analysis are employed. 
Furthermore, the detected spatiotemporal attributes are 
adequately leveraged, and the monitoring network 
topological data, and meteorology and auxiliary pollutants 
are adaptably combined. Lin et al. (2021) implemented a 

Gated Recurrent Unit (GRU) DL network model for 
developing diverse prediction methods, which address 
several spatial and temporal conditions, followed by 
developing an ensemble learning predicting algorithm 
termed Multiple Linear Regression based GRu (MLE-GRU) 
depending on multilinear regression approach to 
incorporated DL prediction methods. Gilik, A et al. (2022) 
introduced a supervised technique for predicting air 
pollution with the help of actual sensor data and carrying 
pattern among cities. The incorporation of CNN and LSTM-
DNN techniques has been developed. Two techniques were 
implemented: the uni-variate model comprises the data of 
a single pollutant but the multi-variate model includes the 
data of every pollutant and meteorological information for 
forecasting. 

Dairi, A., et al. (2021) developed an adaptable and effective 
DL-driven algorithm for predicting the measurement of 
environmental pollutants. This study presents initially the 
standard VAE and attention methods to design the 
prediction model approach dependent on the innovative 
integrated multiple-directed attention (IMDA) DL 
technique. Du et al. (2019) present a new DL approach for 
the quality of air that learns the spatial-temporal 
correlation features and connection of multiple variate air 
quality compared to time-series data by the hybrid DL 
method. Because of the non-linear and dynamic features of 
multiple variate quality of air time-series data, the base 
components of the presented method contain 1D-CNNs 
and a Bi-LSTM approach. Heydari et al. (2022) designed a 
novel hybrid intelligent approach that depends on an LSTM 
and multiverse optimizer approach (MVO). In this 
introduced method, the LSTM approach has a predictor 
engine to forecast the quantity of generated SO2 and NO2 
by the combination of Cycle Power Plant, but the MVO 
algorithm has been exploited for enhancing the LSTM 
parameters to attain minimum predictive methods. 

Arsov, M et al. (2021) developed utilizing the RNN 
technique with LSTM modules for forecasting the level of 
PM10 particles. This method utilizes earlier quality of air 
evaluated data from sensors positioned at numerous 
places in Skopje and climatic circumstances, namely, 
humidity and temperature. Hardini et al. (2023) suggested 
an air quality estimation method to simplify forthcoming 
predictions. The research includes three primary 
processes, namely, measuring Air Quality, data production, 
and AQI prediction. The Data production method contains 
real-time data gathering and formatting to provide 
similarity with the following methods. In this study, the 
Sparse Spectrum GPR (SS-GPR) approach was utilized for 
predicting AQI, whereas the cloud technique could be 
implemented for measuring air quality. 

3. The proposed model 

In this manuscript, we have presented an automated air 
pollution monitoring approach named the AOSADL-APM 
approach. The purpose of the AOSADL-APM technique is to 
predict and classify the presence of air pollutants. In the 
presented AOSADL-APM technique, three subprocesses 
are involved, namely, data normalization, DLSTM-based 
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prediction, and AOSA-based hyperparameter tuning. 
Figure 1 displays the entire flow of the AOSADL-APM 
algorithm. 

 

Figure 1. Overall flow of the AOSADL-APM approach 

3.1. Data normalization 

In the presented AOSADL-APM technique, the min-max 
normalization approach is applied for data preprocessing. 
Min-max normalized, also called feature scaling or min-
max scaling, is a data preprocessed system utilized in ML 
and data analysis for rescaling numerical features to a 
certain range. The purpose of this method is to change the 
data thus it falls in the existing range, standardly between 
zeros and one, or any other preferred range like (-1, 1). 

3.2. Prediction using the DLSTM model 

For air pollution prediction and classification, the AOSADL-
APM system applies the DLSTM model. To predict and 
understand sequences, Tang, W et al. (2023) researcher 
works have turned to the RNN design called deep LSTM. 
Different from classical RNN, which could experience the 
problem of gradient disappearing while training on long 
sequences, LSTM is enhanced for identifying long‐term 
dependency. Figure 2 defines the structure of LSTM. 

LSTM is built with a memory cell that can be able to retain 
data for a longer period, which allows the network to utilize 
and retain significant data from early time steps. In 
addition, LSTM has a gate that controls the information 
flow, involving forget, input, and output gates. Surendran 
R., et al. (2023) mention the gates can be accountable for 
regulating the outgoing and incoming data from the 
memory units, which enables the Lstm to choose to retain 
or discard data according to its significance. 

Deep LSTM network pertains to the employ of different 
LSTM layers that are hierarchically ordered. The succeeding 
layer of the LSTM structure receives the output from the 
prior layers, which enables the NN to obtain a hierarchical 
visualization of the input data. An initial step includes the 
application of the forget gate, represented by g(t) for 
initiating the LSTM model that plays a critical role in 
determining that data in the prior state must be discarded 
by the memory cells. The forget gate g(t) can be given as 
follows: 

   = + − +( ) ( ( ) ( 1) )f g f g f gf g t x t h t
 (1) 

Where fg(t) shows the forget gate that considers the value 
ranges from zero to one. The logistic sigmoid function, 0 is 
employed. The configurable weighted matrix and the bias 
vector are represented by  , ,f g f g f gand  

 

Figure 2. LSTM architecture 

Consequently, the next step concentrates on defining the 
data that should be integrated as memory cells for 
upgrading purposes. The input gate (t) can be defined by 
the sigmoid function and is accountable for detecting the 
values that should be upgraded. Furthermore, a tanh 
hyperbolic tangent layer can be used for generating a 
potential upgrade vector, represented by (t). Eqs. (2) and 
(3) give a comprehensive description of computation for 
i(t) and C(t): 

   = − + +( ) ( ( 1) ( ) )i i ii t h t x t  (2) 

  = − + +( ) tanh( ( 1) ( ) )c c cc t h t x t  (3) 

Consider the assumed values within [0,1]. The ,  j j  , and 

i  symbols represent a series of trained parameters 

connected to the input gate, while cc c, and  , pertain to 

a series of trained parameters. 

When the purpose is made regarding the information that 
can be preserved and eliminated, the cell layer, 
represented by (t) that has been exposed to the updating 
method is evaluated by the following expression: 

( ) ( ) ( ) ( ) ( 1)c t i t c t fg t c t= + −o o
 

(4) 

Where o  represents component-wise multiplicity. The 
term “ −( ) ( 1)g t c t ” shows the information that is collected

−( 1)c t , while the term “ ( )c to ” denotes the new data that 

is incorporated as the cell layer. 

Finally, the step involves the calculation of the output gate 
that roles as a major part in defining the layer viz., hidden 
h(t). The calculation of output, represented by (t) can be 
accomplished by using the sigmoid function. At the same 
time, the output has been accomplished by implementing 
the multi-operation among o(t) and tanh hyperbolic 
tangent output. The process is demonstrated as: 

( ) ( ) ( )( )   = + − +0 1  o oo t x t h t
 

(5) 

( ) ( ) ( )( )tanh  h t o t c t=  (6) 

Where o(t) shows the vector [0, 1], o o o, and   denotes 

trained parameters related to the input gate. 
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3.3. Hyperparameter tuning using AOSA 

To better the performance of the AOSADL-APM 
methodology, the AOSA-based hyperparameter tuning was 
established. According to the concept of atomic theory and 
quantum mechanics, the study presents an AOSA, 
mathematical expression that describes the wave-like 
behaviour of one or two electrons in an atom. The 
underlying concept behind the AOS approach is to use 
quantum-based atomic theory to address problems such as 
electron density configuration and atoms’ ability to emit or 
absorb energy. The AOS techniques explore multiple 
solution possibilities (X) in the quantum-based atomic 
model that represents the electron encircling the nucleus. 
In this method, the thin, concentric spherical layers of the 
electron cloud near the nucleus have been designated as a 
searching space. In the search space, all electrons are 
shown by the solution candidate (Xi), with some decision 
variable (Xij) defining the location of the solution candidate. 
The mathematical equation is given below: 


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(7) 

In Eq. (7), m signifies the solution candidates (number of 
electrons) inside the electron cloud (search space), and d 
indicates the dimensionality of the problem defining the 
electrons (candidate position). The starting position of the 
electron within the electron cloud is specified randomly 
according to the mathematical formula as follows: 

( ) ( ), max, min

1,2, , .
0 . ,

1,2, , .

j j j
ji ii

i m
x x rand x x

j d

= 
= + − 

= 
 

(8) 

In Eq. (8), (0)j
ix  indicates the initial position of the solution 

candidate; ,
j
i maxx  and ,min 

j
ix  shows the indication of the 

maximum and minimum boundaries of the jthdecision 
variables, correspondingly; rand indicates a random 
distribution value [0,1]. 

With a lower energy level, the electron corresponds to the 
solution candidate with the great objective function value. 
In the mathematical modelling, those with lower objective 
function value show electrons with the highest level of 
energy. The value of an objective function of different 
candidate solutions is kept in the subsequent formula 

 
 
 
 

= =  
 
 
 
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2

, 1,2, , .
i

m

E

E

E i m
E

E
 

(9) 

In Eq. (9), E indicates the vector considering the values of 
the main function, Ei specifies the energy level of the ith 
solution candidate and m signifies the amount of solution 
candidates within the searching range. The entire 
imaginary layer has some solution candidates based on the 
specified specifics of defining the electron position using 

PDF. Hence, the mathematical equation represents the 
vector of the placement of the solution candidate (Xk) and 
the value of the main function (EK) in the imaginary layer: 

 
 
 
 

=  
=   =  
 
 
 
 

1

2

1,2, , .
,    

1,2, , .

k

k

k
k
i

n
p

E

E

i p
E

k nE

E

 

(10) 

In Eq. (10),   k
jE  shows the kth imaginary layer of the ith 

solution candidate’s objective function value, the integer n 

specifies the maximum number of imagined levels, k
iX  

displays the kth imaginary layer’s ith candidate solution, p 
shows the imaginary layer of kth solution candidate and d 
represents the dimensionality of the problem. In this 
situation, the mathematical formula can be given as 
follows: 

1 1,2, , .
,    

1,2, , .

p
k
i

k i
X i p

BS
k np

= = 
= 

= 


 

(11) 

1 1,2, , .
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1,2, , .

p
k
i

k i
E i p

BE
k np

= = 
= 

= 


 

(12) 

Where as k
iE  and k

iX  indicate the kth layer’s main function 

value and location of ith candidate solution, BEk and BSk 
signify the binding energy and state of kth layers; m signifies 
the overall amount of solution candidates, and the binding 
state and energy of the atoms are evaluated by the 
following equation: 

1 , 1,2, , .

m

i
i
X

BS i m
m

== = 


 

(13) 

1 , 1,2, , . 

m

i
i
E

BE i m
m

== = 


 

(14) 

Whereas Ei and Xi are the ith solution candidate’s objective 
function value and location in the atom; BE and BS show 
the binding energy and states of the atom. In this approach, 
the subsequent formulation can be employed to update 
the position of the solution candidate: 

( )
1

1,2, , .
,

1,2, , .

i i ik k
i i

LE BS i p
X X

k nk

  
+

  −  = 
= + 

= 
 

(15) 

In Eq. (15), BS refers to the binding state of atoms; ,  i i  , 

and i  show the vectors, involving arbitrary numbers 

within (0,1) and evaluate the quantity of released energy; 
the past and present locations for the ith solution candidate 

of kth layers are k
iX  and 1

k
iX + , correspondingly; LE shows 

the solution candidate with the low atomic energy level. 

Once the energy level of the proposed solution in the 
presented layer is less than the layer's binding energy 
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( )k k
iE BE , photon absorption can be assessed. In the 

presented method, the subsequent formula defines the 
position updating of the solution candidate: 

( )1

1,2, , .
,

1,2, , .

k k k k
i i i i i

i p
X X LE BS

k n
  +

= 
= +   −  

= 
 

(16) 

In Eq. (16), LEk indicates the solution candidate of the kth 
layer with the low energy level; the past and present 

locations for the ith solution candidate of kth layers are k
iX  

and 1;k k
iX BS+  denotes the binding state of kth layers; 

  ,  i i iand  shows the vector, or computes the amount of 

energy absorbed, involving uniformly distributed random 
integer within [0,1]. 

Assume the random number (ø) for all the electrons is 
lower than PR (<PR). The transit of electrons across 
dissimilar layers around the nucleus is based on other 
processes, namely, particle magnetic fields or interactions, 
which leads to energy emission or absorption because the 
photons’ impact on electrons is implausible. The method 
whereby the positions of solution candidates are updated 
in consideration of this impact is given below: 

1

1,2, , .
,      

1,2, , .

k k
i i i

i p
X X r

k n
+

= 
= + 

= 
 

(17) 

In Eq. (17), ri shows the vector, involving randomly 
produced numbers within [0, 1]; the past and present 
positions for the ith solution candidate for the kth layers are 
k
iX  and 1

k
iX +  

During this case, the AOSA can be utilized for determining 
the hyperparameter concerned in the DLSTM approach. 
The MSE is assumed as the main function and is 
determined as: 

( )
2

1 1

1
 

L M
i i
j j

j i

MSE y d
T

= =

= −  
(18) 

In which, M and L stand for the outcome value of the layer 

and data correspondingly, 
i

jy  and i
jd  denote the 

accomplished and suitable magnitudes for jth unit in the 
outcome layer of networks from the time t. 

4. Results and discussion 

In this section, the performance of the AOSADL-APM 
technique is studied under different aspects. Table 1 
signifies the prediction outcome of the AOSADL-APM 
algorithm with varying variables. The outcome highlighted 
that the AOSADL-APM technique predicts the pollutants 
properly with minimal MSE and MAE values. 

The classification outcome of the AOSADL-APM technique 
can test utilizing a database comprising 22321 instances 
and two class labels as defined in Table 2. 

Figure 3 demonstrates the confusion matrices created by 
the AOSADL-APM method under 80:20 and 70:30 of the TR 
phase/TS phase. The outcomes implied the effectual 
recognition of the pollutant and non-pollutant samples 
under all classes. 

The pollutant classification results of the AOSADL-APM 
technique with 80:20 of the TR phase/TS phase are 
portrayed in Table 3 and Figure 4. The results infer that the 
AOSADL-APM technique properly recognizes the non-
pollutant and pollutant samples. With an 80% TR phase, 
the AOSADL-APM technique offers an average accuy of 
97.30%, precn of 96.93%, reca1 of 97.30%, Fscore of 97.11%, 
and AUCscore of 97.30%. Besides, with a 20% TS phase, the 
AOSADL-APM algorithm gains an average accuy of 97.78%, 
precn of 97.63%, reca1 of 97.78%, Fscore of 97.70%, and 
AUCscore of 97.78%. 

Table 1. Prediction outcome of the AOSADL-APM algorithm under 

varying variables  

Variables Training Set Testing Set Validation Set 

MSE 

CO 0.037 0.034 0.030 

Ozone 0.498 0.448 0.053 

SO2 0.297 0.396 0.426 

NO2 0.037 0.029 0.056 

PM2.5 0.286 0.157 0.241 

MAE 

CO 0.075 0.088 0.094 

Ozone 0.089 0.087 0.104 

SO2 0.106 0.110 0.108 

NO2 0.097 0.076 0.113 

PM2.5 0.111 0.108 0.110 

Table 2. Details on database 

Class No. of Instances 

Non-Pollutant 15738 

Pollutant 6583 

Total Number of Instances 22321 

 

Figure 3. Confusion matrices of (a-b) 80:20 of TR phase/TS phase 

and (c-d) 70:30 of TR phase/TS phase 

The pollutant classification outcome of the AOSADL-APM 
algorithm at 70:30 of the TR phase/TS phase is represented 
in Table 4 and Figure 5. The outcome stated that the 
AOSADL-APM algorithm properly recognizes the non-
pollutant and pollutant samples. With 70% TR phase, the 
AOSADL-APM system attain an average accy of 96.33%, 
precn of 96.90%, reca1 of 96.33%, Fscore of 96.61%, and 
AUCscore of 96.33%. Besides, with a 30% TS phase, the 
AOSADL-APM algorithm achieves an average accy of 
96.27%, precn of 96.84%, reca1 of 96.27%, Fscore of 96.55%, 
and AUCscore of 96.27%.  
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Table 3. Pollutant classifier outcome of AOSADL-APM approach at 

80:20 of TR phase/TS phase  

Classes  Accuy Precn Reca1 Fscore AUCscore 

TR phase (80%) 

Non-
Pollutant 

98.00 98.57 98.00 98.28 97.30 

Pollutant 96.61 95.29 96.61 95.95 97.30 

Average 97.30 96.93 97.30 97.11 97.30 

TS phase (20%) 

Non-
Pollutant 

98.55 98.76 98.55 98.65 97.78 

Pollutant 97.01 96.49 97.01 96.75 97.78 

Average 97.78 97.63 97.78 97.70 97.78 

 

Figure 4. Average of AOSADL-APM algorithm with 80:20 of TR 

phase/TS phase 

Table 4. Pollutant classifier outcome of AOSADL-APM system at 

70:30 of TR phase/TS phase 

Class Accuy precn Reca1 Fscore ACCs 

TR phase (70%) 

Non-
Pollutant 

98.43 97.58 98.43 98.01 96.33 

Pollutant 94.23 96.22 94.23 95.21 96.33 

Average 96.33 96.90 96.33 96.61 96.33 

TS phase (30%) 

Non-
Pollutant 

98.42 97.62 98.42 98.02 96.27 

Pollutant 94.12 96.05 94.12 95.08 96.27 

Average 96.27 96.84 96.27 96.55 96.27 

 

Figure 5. Average of AOSADL-APM method at 70:30 of TR 

phase/TS phase 

To estimate the performance of the AOSADL-APM system 
at 80:20 of the TR phase/TS phase, TR and TS accuy curves 
are determined, as revealed in Figure 6. The TR and TS 
accuy curves establish the performance of the AOSADL-
APM method over several epochs. The figure offers 
meaningful details regarding the learning task and 
generalization capabilities of the AOSADL-APM approach. 
With an increase in epoch count, it is perceived that the TR 
and TS accuy curves get improved. It is observed that the 
AOSADL-APM approach obtains enhanced testing accuracy 
which can recognize the patterns in the TR and TS data. 

 

Figure 6. Accuy curve of AOSADL-APM algorithm with 80:20 of TR 

phase/TS phase 

Figure 7 exhibits the overall TR and TS loss values of the 
AOSADL-APM algorithm at 80:20 of the TR phase/TS phase 
epochs. The TR loss displays the method loss gets lesser 
over epochs. Primarily, the loss values get reduced as the 
model modifies the weight to diminish the predictive error 
on the TR and TS data. The loss curves demonstrate the 
extent to which the model fits the training data. It is 
experimental that the TR and TS loss is steadily decreased 
and portrayed that the AOSADL-APM approach effectually 
learns the patterns exhibited in the TR and TS data. It is also 
observed that the AOSADL-APM system adjusts the 
parameters to minimize the discrepancy between the 
prediction and the original training label. 

 

Figure 7. Loss curve of AOSADL-APM algorithm with 80:20 of TR 

phase/TS phase 

The PR curve of the AOSADL-APM approach at 80:20 of the 
TR phase/TS phase is established by plotting the precision 
against recall as defined in Figure 8. The results confirm 
that the AOSADL-APM system gains better PR values under 
all classes. The figure depicts that the model learns to 
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recognize various class labels. The AOSADL-APM system 
accomplishes higher outcomes in the recognition of 
positive samples with minimal false positives. 

 

Figure 8. PR curve of AOSADL-APM algorithm with 80:20 of TR 

phase/TS phase 

The ROC curves provided by the AOSADL-APM algorithm at 
80:20 of the TR phase/TS phase are exemplified in Figure. 
9, which has the ability discriminate the classes. The figure 
indicates valuable insights into the trade-off between the 
TPR and FPR rates over distinct classification thresholds 
and varying numbers of epochs. It presents the accurate 
predictive outcome of the AOSADL-APM algorithm on the 
classification of various classes. 

 

Figure 9. ROC curve of AOSADL-APM system at 80:20 of TR 

phase/TS phase 

Table 5. Comparative outcomes of AOSADL-APM system with 

recent methodologies 

Methods Precn Reca1 Accuy Fscore 

PCA SVR-

RBF 
60.70 60.80 95.20 60.70 

SVR-RBF 61.80 62.00 96.00 61.90 

Decision 

tree 
90.80 69.40 87.40 58.60 

SVM 

Model 
92.40 72.50 91.70 74.50 

ANN 

Model 
94.50 76.30 94.50 78.80 

OAI-AQPC 97.20 96.40 96.20 97.30 

AOSADL-

APM 
97.63 97.78 97.78 97.70 

Table 5 reports a comparison study of the AOSADL-APM 
methodology with recent models from Tamilvizhi T., et al. 

(2022)., Hamza, M.A., et al. (2022) and Surendran R. et al. 
(2023). Figure 10 inspects the results of the AOSADL-APM 
algorithm with existing methodologies in terms of accuy. 
The outcome highlights the higher solution of the AOSADL-
APM technique. Based on accuy, the AOSADL-APM 
technique offers increasing accuy of 97.78% while the PCA 
SVR-RBF, SVR-RBF, DT, SVM, ANN, and OAI-AQPC models 
obtain decreasing accuy of 95.20%, 96%, 87.40%, 91.70%, 
94.50%, and 96.20% correspondingly. 

 

 

Figure 10. Accuy outcome of AOSADL-APM algorithm with recent 

approaches  

Figure 11 demonstrates the outcome of the AOSADL-APM 
system with other methods in terms of precn, reca1, and 
Fscore. The simulation value depicts the better outcome of 
the AOSADL-APM algorithm. Based on precn, the AOSADL-
APM system attains a higher precn of 97.63% while the PCA 
SVR-RBF, SVR-RBF, DT, SVM, ANN, and OAI-AQPC systems 
obtain decreasing precn of 60.70%, 61.80%, 90.80%, 
92.40%, 94.50%, and 97.20% correspondingly. In addition, 
based on reca1, the AOSADL-APM technique offers an 
increasing reca1

 of 97.78% while the PCA SVR-RBF, SVR-
RBF, DT, SVM, ANN, and OAI-AQPC approaches reach a 
lesser reca1 of 60.80%, 62%, 69.40%, 72.50%, 76.30%, and 
96.40% respectively. Eventually, based on Fscore, the 
AOSADL-APM technique offers an enhanced Fscore of 
97.70% while the PCA SVR-RBF, SVR-RBF, DT, SVM, ANN, 
and OAI-AQPC algorithms gain a lesser Fscore of 60.70%, 
61.90%, 58.60%, 74.50%, 78.80%, and 97.30% respectively. 

 

Figure 11. Precn, Reca1, and Fscore outcome of AOSADL-APM 

algorithm with recent approaches  
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Table 6 and Figure 12 examine the computation time (CT) 
results of the AOSADL-APM algorithm with recent 
approaches. The outcome highlights the higher outcome of 
the AOSADL-APM technique. Based on CT, the AOSADL-
APM technique offers lesser CT of 1.35s while the PCA SVR-
RBF, SVR-RBF, DT, SVM, ANN, and OAI-AQPC models 
achieve improved CT of 3.98s, 3.53s, 3.78s, 5.45s, 4.35s, 
and 2.47s correspondingly. 

These performances confirmed the better solution of the 
AOSADL-APM technique for air pollution monitoring. 

Table 6. CT outcome of AOSADL-APM algorithm with recent 

approaches 

Methods Computational Time (sec) 

PCA SVR-RBF 3.98 

SVR-RBF 3.53 

Decision tree 3.78 

SVM Model 5.45 

ANN Model 4.35 

OAI-AQPC 2.47 

AOSADL-APM 1.35 

 

Figure 12. CT outcome of AOSADL-APM algorithm with recent 

approaches 

5. Conclusion 

In this study, we have presented an automated air pollution 
monitoring approach named the AOSADL-APM approach. 
The purpose of the AOSADL-APM technique is to predict 
and classify the presence of air pollutants. In the presented 
AOSADL-APM technique, three subprocesses are involved, 
namely, data normalization, DLSTM-based prediction, and 
AOSA-based hyperparameter tuning. In the presented 
AOSADL-APM technique, the min-max normalization 
approach is applied for data preprocessing. For air 
pollution prediction and classification, the AOSADL-APM 
method applies the DLSTM system. To improve the 
performance of the AOSADL-APM methodology, the AOSA-
based hyperparameter tuning has been developed. The 
simulation results of the AOSADL-APM technique were 
tested using the benchmark dataset. The widespread 
outcomes analyzed the optimum solution of the AOSADL-
APM algorithm compared to existing approaches. In the 
future, the performance of the AOSADL-APM algorithm will 
improve and utilize hybrid DL models for enhanced 
detection efficiency at real-time. 
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