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Abstract 

Floods are one of the leading causes of damage, 
prompting mortality and substantial destruction to the 
structure and total economy of the affected nations. 
Remote sensing, satellite imagery, global positioning 
system, and geographic information system (GIS) are 
widely employed for flood identification to examine flood-
related losses. Recently, accurate and automated flood 
detection models using remote sensing images have 
become effective for flood disaster management, risk 
manager, infrastructure planning, disaster rescue 
management, etc. Computer vision and deep learning (DL) 
models provide prompt and rapid flood detection in 
remote sensing images. In this aspect, this paper presents 
a multiverse optimization with a deep transfer learning-
enabled flood detection (MVODTL-FD) technique for 
disaster risk management. In the proposed MVODTL-FD 
technique, remote sensing images are investigated for the 
effectual detection of floods. To accomplish this, the 
presented MVODTL-FD technique applies a guided normal 
filter (GNF) based image preprocessing approach to 
eliminate the noise. In addition, the proposed MVODTL-FD 
technique uses a deep convolutional neural network-
based Squeeze Net model for feature extraction, and the 
hyperparameter process is performed using the MVO 
algorithm. At last, the flood detection process is 
performed using support vector machine (SVM) 

classification. For establishing the improved version of the 
MVODTL-FD method, a wide-ranging experimental 
analysis is performed. The MVODTL-FD model is rated 
higher in the comparative analysis than other DL models. 

Keywords: Remote sensing, disaster risk management, 
flood detection, deep learning 

1. Introduction 

Almost 80% of the world’s population is expected to live 
in urban regions, meaning one-third of the economic 
losses caused by natural disasters globally are caused by 
flood damage. Floods have accounted for 43% of all 
known disasters worldwide over the last 20 years. 
Flooding events are estimated to become more frequent 
and prevalent due to climate change, including extreme 
heavy precipitation events, quick spring snow melt, and 
severe storm surges. Jean R. et al., (2020) described the 
flooding has a variety of negative consequences such as 
the loss of human life, risks of road closures, erosion and 
landslides, threats to aquatic species, and water 
contamination posing health problems. This 
unprecedented gathering of people and infrastructure 
was shifting the emphasis of disaster risk management 
(DRM) research work toward cities. Santhanaraj R.K. et al., 
(2023) explained the ability of a system to recover, resist, 
absorb, and accommodate the impacts of a hazard in an 
efficient and timely manner is called resilience, and it is 
becoming crucial to reduce disaster risk. Li X. et al., (2020) 
was developed, the resilience even includes postevent 
processes that permit communities to learn, reorganize, 
and change responding to an event. Later, improving the 
resilience of the community to natural hazards indicates 
enhancing its ability to anticipate menaces, reducing its 
complete vulnerability, and allowing the community to 
recovering from adverse effects when they occur. 

Tanim A.H. et al., (2022) implement the Remote sensing 
(RS) rapid tool to monitor larger areas and is vital for 
gaining geospatial data, which creates the base for risk 
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management and assessment. Jain P. et al., (2020) 
elaborate the broadly utilized for several facets of the 
DRM, extending from vulnerability to rapid damage 
valuations, for various areas ranging from coastal 
environments to complicated urban settings, and for 
disasters as different as cyclones or landslides. Duhayyim 
M.A. et al., (2023) developed the RS to provide 
information regarding the forthcoming disaster and event 
obstacles, along with an extraction of the flood region’s 
features. Munawar H.S. et al., (2022) execute the new 
disaster management becomes a multi-faceted and 
strategic process for response, mitigation, recovery, and 
preparedness for protecting the critical intrastate and 
vulnerable communities in several disasters. However, 
every disaster was connected to human beings coping 
with their significance. Chawan A.C. et al., (2020) defined 
failure and success relying on the implementation and 
planning of effectual disaster management observers. 
Tamilvizhi et al., (2022) implementing the disaster 
management deep learning (DL) becomes a significant 
force multiplier with the capability of protecting property 
and people in the disaster of tragedy and is surely the 
future of disaster management. AI can forecast floods 
before events arise. Compared to standard approaches, AI 
uses real-time observed data to forecast flooding and can 
prevent 30 to 50% of damage because flood warnings are 
broadcast in milliseconds. To accurately predict flooding, 
AI uses two main models: a hydrology model to estimate 
river levels of water and an invasion model to prevent 
property damage and fatalities. 

Shehata M. et al., (2021) develop, the disaster response 
planning can be suggestively influenced by ecology, 
morphology, weather conditions, the machinery’s 
available resources, and other factors. It can be suggested 
to utilize operations research and management science 
criteria for enhancing resilience in emergency relief 
whereas concerning the effect of relief resource allotment 
over the population. Rambour C. et al., (2020) showed 
numerous studies assessing the use of DL. The crisis 
response condition in other nations differed from India. 
Thus, there comes a necessity to prioritize and find the 
data required to compel crises in natural disasters. The 
right way to reduce the effect of catastrophe is readiness, 
vulnerability, prevention, and resilience in disaster 
management. Shafique A. et al., (2022) explained that the 
AI and geographic information systems (GIS) were 
essential tools utilized by several researchers for plotting 
the spatial distribution of flood hazards and vulnerability 
to flooding. The GIS serves as a facilitator that manages, 
inputs, incorporates, delivers, and stores spatial 
information for real-time decision-making and strategic 
planning for effective and timely hazard readiness and 
flood disaster management. 

This paper presents a multiverse optimization with a deep 
transfer learning-enabled flood detection (MVODTL-FD) 
technique for disaster risk management. The 
demonstrated MVODTL-FD technique applies a guided 
normal filter (GNF) based image preprocessing approach 
to eliminate the noise. In addition, the demonstrated 

MVODTL-FD technique uses a deep convolutional neural 
network-based Squeeze Net model for feature extraction. 
For demonstrating the improved version of the MVODTL-
FD model, an extensive experimental analysis is carried 
out. The comparison analysis noted that the MVODTL-FD 
model outperformed other DL models. The gap in the 
current work is the overall accuracy and the process 
results must be improved. The image quality using 
datasets is not satisfactory and compared to the MVODTL-
FD approach, which employs a deep convolutional neural 
network-based Squeeze Net model. The Objectives of the 
proposed work, 

• To develope a new MVODTL-FD technique for the 
flood detection process through remote sensing 
images. 

• To eliminate the noise through GNF based image 
pre-processing approach 

• To compare the study report of MVODTL-FD 
model over other models. 

The remainder of the paper is organized as follows, 
Section 2 analysis the related works involved in Flood 
Detection techniques. Section 3 describes the Proposed 
MVODTL-FD technique. Section 4 then analyses the 
Results and discussion, including a performance 
comparison with alternative methodologies. Finally, 
Section 5 concludes the critical results of the proposed 
research. 

2. Related works 

Surendran R. et al., (2023) suggested today’s AI systems 
and geospatial technology were advanced and can be 
effective in crises. Khan A.A. et al. (2022) address these 
problems by utilizing an innovative CNN-related structure. 
The presented network includes either spatial or spectral 
data that compiles two subnetworks, which are spectral-
CNN and spatial-CNN. Furthermore, a multiscale spatial 
CNN structure was proposed using various kernels to 
make the features more robust. Li W. et al., (2019) 
inspected a DL-related classification technique for RSI, 
mainly for high spatial resolution remote sensing (HSRRS) 
images having multiscene classes and various changes. To 
be specific, the author concerns with the 4 DNNs, which 
are CNN and CapsNet, similar methods with diverse 
training rounding related to CNN (SMDTR-CNN), and the 
same approach with various trained rounding related to 
CapsNet (SMDTR-CapsNet) to help develop the respective 
classification techniques in urban built-up areas. Munawar 
H.S. et al., (2021) introduce a new approach by combining 
ML and image processing for detecting flood-affected 
regions through a set of images. The three-step method 
offered in this work depends on landmark detection from 
pictures, training of an ML technique, and categorizing 
images from an area into non-flooded and flooded. 
Bhadra T. et al., (2020) devised flood detection in the real 
world by using SAR data and multispectral images utilizing 
DL method and CNN. CNN has revealed outstanding 
performance in image-based tasks such as feature 
extraction, classification, and segmentation. Currently, the 
DL methods are utilized widely in RSI because of their high 
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resolution and the former’s broad computational 
capability. 

Hashemi-Beni L. et al., (2021) solved the problem by 
presenting a combined CNN and region growing (RG) 
technique for mapping underneath vegetation and visible 
flooded areas. The CNN-related classification can be 
utilized for extracting flooded regions through optical 
images. At the same time, the RG technique can be 
enforced for predicting the extent of floods underneath 
vegetation that are invisible from images using the digital 
elevation method. Katiyar V. et al., (2021) utilized this 
dataset for improving flood detection with the help of 
segmentation structures, namely, UNet and SegNet 
networks. Moreover, this study offered a deep 
understanding of which group of polarized band 
combinations was appropriate for distinguishing 
permanent water along with flooded regions from the SAR 
imagery. The complete performance of the method with a 
variety of bands and various types of labels for detecting 
all surface water areas is measured. Ahmad K et al. (2019) 
solved the issue of flood aftermath detection and flood 
classification related to both satellite images and social 
media. But still, automatic recognition of disasters like 
floods becomes complicated. The concentration is on 
recognizing roads or passable routes during floods. The 
studies were differentiating and detecting non-passable 
and good roads using imagery from 2 complementary 
information sources and catching images offering 
evidence for road possibility. As an initial challenge, the 
author mostly depends on the object and scene-level 
features derived by many deep methods pretrained on 
ImageNet and Place data. 

Li J. et al., (2022) devised a novel, precise water-extracting 
structure related to NDWI of multispectral images and 
unsupervised DL. Binarized NDWI imagery is utilized for 
identifying influential water bodies, and DL training can be 
executed by these labels and pseudo samples. This 
procedure will realize the change from unlabeled to noisy 
label learning. Firstly, the authors devised a simple and 
fast binarization method for segmenting several natural 
water bodies in NDWI imagery. Next, the group of water 
confidence valuation rules has been built from the four 
aspects of the range, shape spectrum, and aggregation. 
Surendran R. et al., (2023) calculate the hyperparameter 
tuning process is performed using the MVO algorithm. At 
last, the flood detection process is completed by utilizing 
of support vector machine (SVM) technique. 

3. The proposed model 

In this research work, a proposed MVODTL-FD system was 
established for the flood detection process. In the 
proposed MVODTL-FD technique, remote sensing images 
are investigated for the effectual detection of floods. To 
accomplish this, the proposed MVODTL-FD technique 
utilized GNF based image preprocessing approach to get 
rid of the noise. In addition, the proposed MVODTL-FD 
technique uses a deep convolutional neural network-
based SqueezeNet model for feature extraction, and the 
hyperparameter tuning process is performed using the 

MVO algorithm. At last, the flood detection process is 
performed using the SVM classifier. Figure 1 demonstrates 
the block diagram of the MVODTL-FD algorithm. 

 

Figure 1. Block diagram of MVODTL-FD approach 

3.1. Image pre-processing 

Firstly, the presented MVODTL-FD technique utilized GNF 
based image preprocessing approach to eliminate the 
noise. The GNF approach is an adapted one‐stage 
algorithm. The procedure through which the noise 
removal process employs the GNF model is denoted by 
(update normal + (update vertices) viter)iter, and it is 
evaluated using the following. 
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In Eq. (1), gi indicates a guided normal vector of fi and is 
intended to be vital for noise. The chosen patch has the 
average direction, and the selective patch was utilized as 
the normal guidance gi for the face fi. The GNF preserving 
feature is superior to BNF since gi is vital for the noise 

than ni. Remarkably, i is employed in GNF while facing in 

I is assumed in BNF. 

3.2. Feature extraction 

The SqueezeNet model, based on deep convolutional 
neural networks, is used by the reported MVODTL-FD 
technique to extract features. While requiring fifty times 
as many variables as AlexNet, SqueezeNet is a 
convolutional network that performs better derived by 
Shaiba H. (2022). Among the 15 layers that make up 
SqueezeNet are one global average pooling layer, one 
softmax output layer, two convolution layers, three max-
pooling levels, and eight fire layers. The training 
parameter is selected and fed into a pretrained 
SqueezeNet model, which learns from the adapted data. It 
was implemented by Mirjalili S (2016). The DCNN 
SqueezeNet contains eighteen layers. The SqueezeNet is a 
design which that guarantees better efficacy while 
handling a constrained amount of network parameters. 
SqueezeNet initiates with a single convolutional layer 
(conv1), the following eight Fire modules (fire2–9), and 
the last another convolutional layer. Afterward, in conv10, 
fire8, fire4, and conv1 layers, SqueezeNet implements 
max-pooling with a stride of 2. The accessible field of filter 
size can be denoted as K × K notation in SqueezeNet 
design, while the feature map length is signified as l and 
the stride size is signified as s. The RGB channels and 
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227×227 size of the network input are present. The image 
is then used to specialise in information using convolution 
and max pooling. Zhang X. et al., (2021) used 3×3 kernels, 
the convolutional layer connecting the input volume's 
weight and constraint regions. The actual part of each 
convolutional layer's argument is carried out through 
element-by-element activation. Fire layers with squeeze 
and extended stages are used by SqueezeNet in between 
the convolution layers. Equal input and output tensor 
scales apply to the fire. 1×1 filters are used during the 
squeeze phase, while 3×3 and 1×1 filters are used during 
the expansion phase. First, the input tensors H, W, and C 
are squeezed with C/4 of the input tensor channels' worth 
of convolutions. The data moves to extension in the first 
step, where its depth is raised to C/2 of the resulting 
tensor depth. The ReLu units support the squeezing and 
expanding processes. The devised approach increases the 
depth while maintaining the same feature size as the 
squeeze scheme reduces it. The expanded results are then 
stacked in the input tensor's depth dimension using the 
concatenated method similar to Akshaya K.G. et al., 
(2023). 

In this study, the hyperparameter tuning process is 
performed using the MVO algorithm, Karthikeyan B. et al., 
(2023) developed the MVO as a nature-based model. This 
process is the primary motivation for the proposed 
concept of multiverse in astrophysics. According to the 
MVO, the extended bang procedure has different 
universes, whereas worm, white, and black holes 
interconnect those universes. The researchers claimed 
that the matter of the MVO moves in a universe to others 
through black or white holes such that white and black 
holes emit and attract correspondingly. Wormholes 
interconnect two sides of the universe. The key terms of 
these theories are given in the following: every universe is 
a solution, whereas all solutions are encompassed by the 
sequence of generations, iterations, or objects utilized to 
determine the time, and the inflation rate is used to 
determine the value of all things in a specific universe. In 
such theories, the solution is equivalent to a galaxy with 
different wormholes, or white spots or black holes. For 
improving the values of objects, white holes are 
considered highly possible in a specific solution that 
shows the highest value. At the same time, black holes are 
highly potentially designed in objects with the worst deal 
that creates the communication of importance of the 
variable with a satisfactory solution. This improves the 
probability of weaker solutions that are sequentially 
transformed into a better mean value of each key. 
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In Eq. (2), Xi
j characterizes the jth object of the ith 

universe, r1 shows the random value in a predetermined 
spectrum range within [0, 1], NI (Ui) as equivalent to the 
normalizing inflation rate of the ith universe, and Xk

j 
characterizes the jth objects of the kth universe. 

In Eq. (3), Xj indicates the jth centroid of the finest 
universe, UB signifies the upper bound, LB equals the 

Wormhole Existence Probability (WEP), minimal 
determined, and Traveling Distance Rate (TDR) are 
coefficient, r2, r3, and r4 represents random numbers 
within zero and one. 
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As well, the process of MVO signifies the best solution to 
apply and optimize to impact other solutions. During this 
study, the author claimed that wormholes are established 
in each universe. Then, it improves the probability of 
having access to the best solution, and maintaining the 
best solution is accomplished by the optimized approach. 
The precondition of resolving the aforementioned 
equation above is replacing the parameters among 
different solutions. It is notable that if the equation is 
employed in the same pattern (exploitative or 
exploratory) yield the same outcomes. The MVO 
comprises the subsequent process to suitably focus on 
different ways in the optimization pattern in Eq. (4). 
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From Eq. (5), p indicates the exploitation components. 
Two kinds of adaptive parameters are presented in MVO: 
TDR and WEP. To increase the accuracy of exploitation or 
local in defining the optimal solution, TDR must be 
improved in different iterations. WEP rises according to 
the frequency of iteration to improve exploitation. 
Therefore, MVO is regarded as a revolutionary model for 
exchanging matters. It results in an unexpected change in 
the universe, which enhances the exploration and keeps 
the universe’s diversity when implementing the iteration. 
Afterward, recognizing the better universe, all universes 
take a sequence of parameters in random methodology. 
This technique shows the mutation, a revolutionary 
model. Sequentially, the mutation operation leads to 
small alternations for better solutions and exploitation. 
Elitism is an extreme operator used for maintaining a 
better solution accomplished by an optimization 
technique. The elitism accomplishes by discovering a 
better universe. 

A fitness function (FF) is enhanced using the MVO system to 
achieve better classifier results. It specifies a positive 
number to represent the candidate outcomes that 
performed the best. In this instance, it is assumed that FF is 
given Eq in order to minimize the classifier error rate (6). 

( ) ( )=

=

 

     
*100 

     

i ifitness x ClassifierErrorRate x

number of misclassified samples

Total number of samples

 (6) 

3.3. Flood detection using SVM 

Finally, the flood detection process is performed using the 
SVM classifier. A multiclass SVM was utilized as the 
classification mechanism. SVM functions on the standard 
of disaster risk management. It is better suitable for 
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classification tasks once the sampling size is not that big. 
The main idea is to discover the optimum hyperplane that 
distinguishes the trained dataset into two double 
categories by increasing the margin. In a multiclass 
classifier problem, the dataset except the targeted one is 
integrated for creating dual classifier situations. Figure 2 
depicts the hyperplane of SVM. The dataset point 
positioned nearby the imaginary line is called a support 
vector. 

 

Figure 2. Hyperplane SVM 

For the provided set of information(u1,v1), (u2,v2), …, 
(un,vm), ui∈Rn are taken into account as input, whereby 𝑢 
and 𝑣  represent corresponding data points of support 
vector, and vi∈(−1, +1) indicates the output for every 𝑢𝑖  
. It is expressed in Eq. (7). 

( ) 0,w u b + =
 (7) 

Eq. (8), 𝑤  indicates a vector with dimension 𝑁 , and 𝑏 
shows a scalar quantity. In general form, the equation of 
hyperplane for vi = 1 and vi = −1 is indicated below Eq. (9). 
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By a positive margin, 
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For negative margin, 
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(11) 

By deducting Eq. (11) from Eq. (10), obtain the maximal 
margin by Eq. (12). 
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This is the enhanced function that should be increased in 
Eq. (13). 

Error optimization: For novel testing dataset Vi, one gets 
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Once the abovementioned condition is not fulfilled in Eq. 
(14), it denotes a case of misclassification. In such cases, it 
is necessary to add the error term for calculating w and b. 


=

= +  ,
1

( *,  *)  min 
2

n

i i
i

w
w b C

‖ ‖

 
(15) 

In Eq. (15), C indicates the error penalty, and ε denotes 
the slack parameter. 

4. Results and discussion 

The flood detection results of the MVODTL-FD model are 
tested using a dataset comprising 400 samples. A few 
sample images are portrayed in Figure 3. 

 

Figure 3. Sample images 

 
Figure 4. Confusion matrices of MVODTL-FD approach (a) Run1, 

(b) Run2, (c) Run3, (d) Run4, and (e) Run5 

The flood detection results of the MVODTL-FD model are 
represented in the form of a confusion matrix in Figure 4. 
On run-1, the MVODTL-FD model has categorized 190 
samples into flooded classes and 195 pieces into non-
flooded types. Concurrently, in run-2, the MVODTL-FD 
approach has categorized 184 pieces into flooded types 
and 195 samples into non-flooded classes. 
Simultaneously, in run-3, the MVODTL-FD technique 
categorized 188 pieces into flooded classes and 196 pieces 
into non-flooded types. Finally, in run-4, the MVODTL-FD 
approach categorized 189 pieces into flooded type and 
198 pieces into non-flooded type (Table 1). 

 

Figure 5. Result analysis of MVODTL-FD approach under run1 
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Table 1. Provides the overall flood detection results of the MVODTL-FD model under five distinct runs 

Class Accuracy Precision Recall F-Score G-Mean 

Run-1 

Flooded 96.25 97.44 95.00 96.20 96.24 

Non-Flooded 96.25 95.12 97.50 96.30 96.24 

Average 96.25 96.28 96.25 96.25 96.24 

Run-2 

Flooded 94.75 97.35 92.00 94.60 94.71 

Non-Flooded 94.75 92.42 97.50 94.89 94.71 

Average 94.75 94.89 94.75 94.75 94.71 

Run-3 

Flooded 96.00 97.92 94.00 95.92 95.98 

Non-Flooded 96.00 94.23 98.00 96.08 95.98 

Average 96.00 96.07 96.00 96.00 95.98 

Run-4 

Flooded 96.75 98.95 94.50 96.68 96.72 

Non-Flooded 96.75 94.74 99.00 96.82 96.72 

Average 96.75 96.84 96.75 96.75 96.72 

Run-5 

Flooded 96.50 97.94 95.00 96.45 96.49 

Non-Flooded 96.50 95.15 98.00 96.55 96.49 

Average 96.50 96.54 96.50 96.50 96.49 

 

Figure 5 demonstrates the classification results of the 
MVODTL-FD model under run-1. The MVODTL-FD model 
has identified flooded samples with accuy of 96.25%, precn 
of 97.44%, recal of 95%, Fscore of 96.20%, and Gmean of 
96.24%. Besides, the MVODTL-FD model has identified 
non-flooded samples with accuy of 96.25%, precn of 
95.12%, recal of 97.50%, Fscore of 96.30%, and Gmean of 
96.24%. Moreover, the MVODTL-FD model has attained 
an average accuy of 96.25%, precn of 96.28%, 𝑟𝑒𝑐𝑎𝑙  of 
96.25%, Fscore of 96.25%, and Gmean of 96.24%. 

 

Figure 6. Result analysis of MVODTL-FD approach under run2 

Figure 6 establishes the classification results of the 
MVODTL-FD technique under run-2. The MVODTL-FD 
algorithm has identified flooded samples with accuy of 
94.75%, precn of 97.35%, recal of 92%, Fscore of 94.60%, 
and Gmean of 94.71%. Moreover, the MVODTL-FD method 
has identified non-flooded samples with accuy of 94.75%, 
precn of 92.42%, recal of 97.50%, Fscore of 94.89%, and 
Gmean of 94.71%. The MVODTL-FD approach has gained an 
average accuy of 94.75%, precn of 94.89%, recal of 94.75%, 
Fscore of 94.75%, and Gmean of 94.71%. 

Figure 7 illustrates the classification results of the 
MVODTL-FD method under run-3. The MVODTL-FD 
technique has identified flooded samples with accuy of 
96%, precn of 97.92%, recal of 94%, Fscore of 95.92%, and 

Gmean of 95.98%. As well, the MVODTL-FD algorithm has 
identified non-flooded samples with accuy of 96%, precn of 
94.23%, recal of 98%, Fscore of 96.08%, and Gmean of 
95.98%. Likewise, the MVODTL-FD method has gained an 
average accuy of 96%, precn of 96.07%, recal of 96%, Fscore 
of 96%, and Gmean of 95.98%. 

 

Figure 7. Result analysis of MVODTL-FD approach under run3 

Figure 8 reveals the classification results of the MVODTL-
FD method under run-4. The MVODTL-FD approach has 
identified flooded samples with accuy of 96.75%, precn of 
98.95%, recal of 94.50%, Fscore of 96.68%, and Gmean of 
96.72%. In addition, the MVODTL-FD method has 
identified non-flooded samples with accuy of 96.75%, 
precn of 94.74%, recal of 99%, Fscore of 96.82%, and Gmean of 
96.72%. Additionally, the MVODTL-FD approach has 
reached an average accuy of 96.75%, precn of 96.84%, 
recal of 96.75%, Fscore of 96.75%, and Gmean of 96.72%. 

Figure 9 portrays the classification results of the MVODTL-
FD method under run-5. The MVODTL-FD approach has 
identified flooded samples with accuy of 96.50%, precn of 
97.94%, recal of 95%, Fscore of 96.45%, and Gmean of 
96.49%. Moreover, the MVODTL-FD algorithm has 
identified non-flooded samples with accuy of 96.50%, 
precn of 95.15%, recal of 98%, Fscore of 96.55%, and Gmean of 
96.49%. In addition, the MVODTL-FD method has reached 
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an average accuy of 96.50%, precn of 96.54%, recal of 
96.50%, Fscore of 96.50%, and Gmean of 96.49%. 

 

Figure 8. Result analysis of MVODTL-FD approach under run4 

 

Figure 9. Result analysis of MVODTL-FD approach under run5 

The training accuracy (TRA) and validation accuracy (VLA) 
acquired by the MVODTL-FD approach under the test 
dataset is exemplified in Figure 10. The experimental 
outcome implicit MVODTL-FD algorithm has gained 
maximal values of TRA and VLA. Seemingly, the VLA is 
greater than TRA. 

 

Figure 10. TRA and VLA analysis of MVODTL-FD approach 

The training loss (TRL) and validation loss (VLL) obtained 
by the MVODTL-FD technique in the test dataset are 
displayed in Figure 11. The experimental outcome 
denotes the MVODTL-FD approach has exhibited the least 
values of TRL and VLL. Specifically, the VLL is lesser than 
TRL. 

 

Figure 11. TRL and VLL analysis of MVODTL-FD approach 

A transparent precision-recall investigation of the 
MVODTL-FD approach in the test dataset is described in 
Figure. 12. The figure denoted the MVODTL-FD algorithm 
has resulted in enhanced precision recall values under all 
classes. 

 

Figure 12. Precision-recall analysis of MVODTL-FD approach 

A brief ROC study of the MVODTL-FD approach under the 
test dataset is portrayed in Figure 13. The results denoted 
the MVODTL-FD algorithm has displayed its capability in 
classifying different class labels in the test dataset. 

 

Figure 13. ROC curve analysis of MVODTL-FD approach 

Finally, a detailed comparative accuy examination of the 
MVODTL-FD model with recent models is made in Figure 
14. The experimental values infer that the SMVD-CNN, RF, 
AHP, and SVM models have reached lower accuy values of 
84.55%, 86.94%, 84.47%, and 85.43% respectively. The 
CNN-LE model has obtained a slightly improved accuy of 
90.47%. Then, the DNN model reached a reasonable accuy 
of 91.55%. 

However, the MVODTL-FD model has shown enhanced 
performance with a maximum accuy of 96.75%. These 
results ensured the superior flood detection performance 
of the MVODTL-FD model. 

5. Conclusion 

In this study, a new MVODTL-FD technique was developed 
for the flood detection process. In the demonstrated 
MVODTL-FD technique, remote sensing images are 
investigated for the effectual detection of floods. To 
accomplish this, the demonstrated MVODTL-FD technique 
utilized GNF based image preprocessing approach to 
eliminate the noise. In addition, the proposed MVODTL-FD 
technique uses a deep convolutional neural network-
based Squeeze Net model for feature extraction, and the 
hyperparameter tuning process is performed using the 
MVO algorithm. At last, the flood detection process is 
performed using the SVM classifier. To demonstrate the 
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enhanced version of the MVODTL-FD model, a wide-
ranging experimental analysis is performed. The 
comparison study reported the better version of the 
MVODTL-FD model over other DL models. In the future, 
the performance of the MVODTL-FD model was extended 
to utilize hybrid DL models for enhanced detection 
efficiency at real-time. 
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