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ABSTRACT 

Floods are one of the leading causes of damage, prompting mortality and substantial destruction to the 

structure and total economy of the affected nations. Remote sensing, satellite imagery, global 

positioning system, and geographic information system (GIS) are widely employed for flood 

identification to examine flood-related losses. Recently, accurate and automated flood detection 

models using remote sensing images have become effective for flood disaster management, risk 

manager, infrastructure planning, disaster rescue management, etc. Computer vision and deep learning 

(DL) models provide prompt and rapid flood detection in remote sensing images. In this aspect, this 

paper presents a multiverse optimization with a deep transfer learning-enabled flood detection 

(MVODTL-FD) technique for disaster risk management. In the proposed MVODTL-FD technique, 
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remote sensing images are investigated for the effectual detection of floods. To accomplish this, the 

presented MVODTL-FD technique applies a guided normal filter (GNF) based image preprocessing 

approach to eliminate the noise. In addition, the proposed MVODTL-FD technique uses a deep 

convolutional neural network-based Squeeze Net model for feature extraction, and the hyperparameter 

process is performed using the MVO algorithm. At last, the flood detection process is performed using 

support vector machine (SVM) classification. For establishing the improved version of the MVODTL-

FD method, a wide-ranging experimental analysis is performed. The MVODTL-FD model is rated 

higher in the comparative analysis than other DL models.  

Keywords: remote sensing; disaster risk management; flood detection; deep learning  

 

1. Introduction  

Almost 80% of the world’s population is expected to live in urban regions, meaning one-third of the 

economic losses caused by natural disasters globally are caused by flood damage. Floods have 

accounted for 43% of all known disasters worldwide over the last 20 years. Flooding events are 

estimated to become more frequent and prevalent due to climate change, including extreme heavy 

precipitation events, quick spring snow melt, and severe storm surges. Jean R. et al., (2020) described 

the flooding has a variety of negative consequences such as the loss of human life, risks of road 

closures, erosion and landslides, threats to aquatic species, and water contamination posing health 

problems. This unprecedented gathering of people and infrastructure was shifting the emphasis of 

disaster risk management (DRM) research work toward cities. Santhanaraj R.K. et al., (2023) 

explained the ability of a system to recover, resist, absorb, and accommodate the impacts of a hazard 

in an efficient and timely manner is called resilience, and it is becoming crucial to reduce disaster risk. 

Li X. et al., (2020) was developed, the resilience even includes postevent processes that permit 
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communities to learn, reorganize, and change responding to an event. Later, improving the resilience 

of the community to natural hazards indicates enhancing its ability to anticipate menaces, reducing its 

complete vulnerability, and allowing the community to recovering from adverse effects when they 

occur.  

Tanim A.H et al., (2022) implements the Remote sensing (RS) rapid tool to monitor larger areas and 

is vital for gaining geospatial data, which creates the base for risk management and assessment. Jain 

P. et al., (2020) elaborate the broadly utilized for several facets of the DRM, extending from 

vulnerability to rapid damage valuations, for various areas ranging from coastal environments to 

complicated urban settings, and for disasters as different as cyclones or landslides. Duhayyim M.A et 

al. (2023) developed the RS to provide information regarding the forthcoming disaster and event 

obstacles, along with an extraction of the flood region’s features. Munawar H.S. (2022) et al. execute 

the new disaster management becomes a multi-faceted and strategic process for response, mitigation, 

recovery, and preparedness for protecting the critical intrastate and vulnerable communities in several 

disasters. However, every disaster was connected to human beings coping with their significance. 

Chawan A.C. et al. (2020) defined failure and success relying on the implementation and planning of 

effectual disaster management observers. Tamilvizhi T. et al., (2022) implementing the disaster 

management deep learning (DL) becomes a significant force multiplier with the capability of 

protecting property and people in the disaster of tragedy and is surely the future of disaster 

management. AI can forecast floods before events arise. Compared to standard approaches, AI uses 

real-time observed data to forecast flooding and can prevent 30 to 50% of damage because flood 

warnings are broadcast in milliseconds. To accurately predict flooding, AI uses two main models: a 
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hydrology model to estimate river levels of water and an invasion model to prevent property damage 

and fatalities.  

Shehata M. et al., (2021) develop, the disaster response planning can be suggestively influenced by 

ecology, morphology, weather conditions, the machinery’s available resources, and other factors. It 

can be suggested to utilize operations research and management science criteria for enhancing 

resilience in emergency relief whereas concerning the effect of relief resource allotment over the 

population. Rambour C., et al., (2020) showed numerous studies assessing the use of DL. The crisis 

response condition in other nations differed from India. Thus, there comes a necessity to prioritize and 

find the data required to compel crises in natural disasters. The right way to reduce the effect of 

catastrophe is readiness, vulnerability, prevention, and resilience in disaster management. Shafique A 

et al., (2022) explained that the AI and geographic information systems (GIS) were essential tools 

utilized by several researchers for plotting the spatial distribution of flood hazards and vulnerability to 

flooding. The GIS serves as a facilitator that manages, inputs, incorporates, delivers, and stores spatial 

information for real-time decision-making and strategic planning for effective and timely hazard 

readiness and flood disaster management. 

This paper presents a multiverse optimization with a deep transfer learning-enabled flood detection 

(MVODTL-FD) technique for disaster risk management. The demonstrated MVODTL-FD technique 

applies a guided normal filter (GNF) based image preprocessing approach to eliminate the noise. In 

addition, the demonstrated MVODTL-FD technique uses a deep convolutional neural network-based 

Squeeze Net model for feature extraction. For demonstrating the improved version of the MVODTL-

FD model, an extensive experimental analysis is carried out. The comparison analysis noted that the 

MVODTL-FD model outperformed other DL models. The gap in the current work is the overall 
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accuracy and the process results must be improved. The image quality using datasets is not satisfactory 

and compared to the MVODTL-FD approach, which employs a deep convolutional neural network-

based Squeeze Net model. The Objectives of the proposed work,  

• To develope a new MVODTL-FD technique for the flood detection process through remote 

sensing images.  

• To eliminate the noise through GNF based image pre-processing approach  

• To compare the study report of MVODTL-FD model over other models.  

The remainder of the paper is organized as follows, Section 2 analysis the related works involved in 

Flood Detection techniques. Section 3 describes the Proposed MVODTL-FD technique. Section 4 then 

analyses the Results and discussion, including a performance comparison with alternative 

methodologies. Finally, Section 5 concludes the critical results of the proposed research. 

 

2. Related Works  

Surendran R. et al., (2023) suggested today’s AI systems and geospatial technology were advanced 

and can be effective in crises. Khan A. A. et al. (2022) address these problems by utilizing an 

innovative CNN-related structure. The presented network includes either spatial or spectral data that 

compiles two subnetworks, which are spectral-CNN and spatial-CNN. Furthermore, a multiscale 

spatial CNN structure was proposed using various kernels to make the features more robust. Li W. et 

al. (2019) inspected a DL-related classification technique for RSI, mainly for high spatial resolution 

remote sensing (HSRRS) images having multiscene classes and various changes. To be specific, the 

author concerns with the 4 DNNs, which are CNN and CapsNet, similar methods with diverse training 

rounding related to CNN (SMDTR-CNN), and the same approach with various trained rounding 
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related to CapsNet (SMDTR-CapsNet) to help develop the respective classification techniques in 

urban built-up areas. Munawar H.S., et al. (2021) introduce a new approach by combining ML and 

image processing for detecting flood-affected regions through a set of images. The three-step method 

offered in this work depends on landmark detection from pictures, training of an ML technique, and 

categorizing images from an area into non-flooded and flooded. Bhadra T. et al.,(2020) devised flood 

detection in the real world by using SAR data and multispectral images utilizing DL method and CNN. 

CNN has revealed outstanding performance in image-based tasks such as feature extraction, 

classification, and segmentation. Currently, the DL methods are utilized widely in RSI because of their 

high resolution and the former’s broad computational capability.  

Hashemi-Beni L et al., (2021) solved the problem by presenting a combined CNN and region growing 

(RG) technique for mapping underneath vegetation and visible flooded areas. The CNN-related 

classification can be utilized for extracting flooded regions through optical images. At the same time, 

the RG technique can be enforced for predicting the extent of floods underneath vegetation that are 

invisible from images using the digital elevation method. Katiyar V. et al. (2021) utilized this dataset 

for improving flood detection with the help of segmentation structures, namely, UNet and SegNet 

networks. Moreover, this study offered a deep understanding of which group of polarized band 

combinations was appropriate for distinguishing permanent water along with flooded regions from the 

SAR imagery. The complete performance of the method with a variety of bands and various types of 

labels for detecting all surface water areas is measured. Ahmad K et al. (2019) solved the issue of flood 

aftermath detection and flood classification related to both satellite images and social media. But still, 

automatic recognition of disasters like floods becomes complicated. The concentration is on 

recognizing roads or passable routes during floods. The studies were differentiating and detecting non-
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passable and good roads using imagery from 2 complementary information sources and catching 

images offering evidence for road possibility. As an initial challenge, the author mostly depends on 

the object and scene-level features derived by many deep methods pretrained on ImageNet and Place 

data.  

Li J. et al. (2022) devised a novel, precise water-extracting structure related to NDWI of multispectral 

images and unsupervised DL. Binarized NDWI imagery is utilized for identifying influential water 

bodies, and DL training can be executed by these labels and pseudo samples. This procedure will 

realize the change from unlabeled to noisy label learning. Firstly, the authors devised a simple and fast 

binarization method for segmenting several natural water bodies in NDWI imagery. Next, the group 

of water confidence valuation rules has been built from the four aspects of the range, shape spectrum, 

and aggregation. Surendran R. et al., (2023) calculate the hyperparameter tuning process is performed 

using the MVO algorithm. At last, the flood detection process is completed by utilizing of support 

vector machine (SVM) technique. 

3. The Proposed Model 

  In this research work, a proposed MVODTL-FD system was established for the flood detection 

process. In the proposed MVODTL-FD technique, remote sensing images are investigated for the 

effectual detection of floods. To accomplish this, the proposed MVODTL-FD technique utilized GNF 

based image preprocessing approach to get rid of the noise. In addition, the proposed MVODTL-FD 

technique uses a deep convolutional neural network-based SqueezeNet model for feature extraction, 

and the hyperparameter tuning process is performed using the MVO algorithm. At last, the flood 

detection process is performed using the SVM classifier. Fig. 1 demonstrates the block diagram of the 

MVODTL-FD algorithm. 
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 Figure 1.  Block diagram of MVODTL-FD approach 

3.1.  Image Pre-processing 

Firstly, the presented MVODTL-FD technique utilized GNF based image preprocessing approach to 

eliminate the noise. The GNF approach is an adapted one‐stage algorithm. The procedure through 

which the noise removal process employs the GNF model is denoted by (update normal 

+(𝑢𝑝𝑑𝑎𝑡𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠)𝑉𝑖𝑡𝑒𝑟)𝑖𝑡𝑒𝑟 , and it is evaluated using the following. 

𝑛̃𝑖 =
1

𝐾𝑖
× ∑ 𝐴𝑗

 

𝑓𝑗𝜖𝛺𝑖

𝑊𝐶(‖𝑐(𝑓𝑖) − 𝑐(𝑓𝑗)‖, 𝜎𝑐)𝑊𝑆(‖𝑔𝑖 − 𝑔𝑗‖, 𝜎𝑠)𝑛𝑗                                                                     (1) 

In Eq. (1), 𝑔𝑖 indicates a guided normal vector of 𝑓𝑖 and is intended to be vital for noise. The chosen 

patch has the average direction, and the selective patch was utilized as the normal guidance 𝑔𝑖 for the 

face𝑓𝑖 . The GNF preserving feature is superior to BNF since 𝑔𝑖  is vital for the noise than 𝑛𝑖 . 

Remarkably, 𝛺𝑖 is employed in GNF while facing in 𝛷𝑖 is assumed in BNF. 

3.2. Feature Extraction 
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The SqueezeNet model, based on deep convolutional neural networks, is used by the reported 

MVODTL-FD technique to extract features. While requiring fifty times as many variables as AlexNet, 

SqueezeNet is a convolutional network that performs better derived by Shaiba H. (2022). Among the 

15 layers that make up SqueezeNet are one global average pooling layer, one softmax output layer, 

two convolution layers, three max-pooling levels, and eight fire layers. The training parameter is 

selected and fed into a pretrained SqueezeNet model, which learns from the adapted data. It was 

implemented by Mirjalili S (2016). The DCNN SqueezeNet contains eighteen layers. The SqueezeNet 

is a design which that guarantees better efficacy while handling a constrained amount of network 

parameters. SqueezeNet initiates with a single convolutional layer (conv1), the following eight Fire 

modules (fire2–9), and the last another convolutional layer. Afterward, in conv10, fire8, fire4, and 

conv1 layers, SqueezeNet implements max-pooling with a stride of 2. The accessible field of filter size 

can be denoted as K × K notation in SqueezeNet design, while the feature map length is signified as l 

and the stride size is signified as s. The RGB channels and 227×227 size of the network input are 

present. The image is then used to specialise in information using convolution and max pooling. Zhang 

X et al. (2021) used 3×3 kernels, the convolutional layer connecting the input volume's weight and 

constraint regions. The actual part of each convolutional layer's argument is carried out through 

element-by-element activation. Fire layers with squeeze and extended stages are used by SqueezeNet 

in between the convolution layers. Equal input and output tensor scales apply to the fire. 1×1 filters 

are used during the squeeze phase, while 3×3 and 1×1 filters are used during the expansion phase. 

First, the input tensors H, W, and C are squeezed with C/4 of the input tensor channels' worth of 

convolutions. The data moves to extension in the first step, where its depth is raised to C/2 of the 

resulting tensor depth. The ReLu units support the squeezing and expanding processes. The devised 
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approach increases the depth while maintaining the same feature size as the squeeze scheme reduces 

it. The expanded results are then stacked in the input tensor's depth dimension using the concatenated 

method similar to Akshaya, K. G et al. (2023). 

In this study, the hyperparameter tuning process is performed using the MVO algorithm, Karthikeyan 

B. et al. (2023) developed the MVO as a nature-based model. This process is the primary motivation 

for the proposed concept of multiverse in astrophysics. According to the MVO, the extended bang 

procedure has different universes, whereas worm, white, and black holes interconnect those universes. 

The researchers claimed that the matter of the MVO moves in a universe to others through black or 

white holes such that white and black holes emit and attract correspondingly. Wormholes interconnect 

two sides of the universe. The key terms of these theories are given in the following: every universe is 

a solution, whereas all solutions are encompassed by the sequence of generations, iterations, or objects 

utilized to determine the time, and the inflation rate is used to determine the value of all things in a 

specific universe. In such theories, the solution is equivalent to a galaxy with different wormholes, or 

white spots or black holes. For improving the values of objects, white holes are considered highly 

possible in a specific solution that shows the highest value. At the same time, black holes are highly 

potentially designed in objects with the worst deal that creates the communication of importance of 

the variable with a satisfactory solution. This improves the probability of weaker solutions that are 

sequentially transformed into a better mean value of each key. 

𝑥𝑖
′ = {

𝑥𝑘
′  𝑟1 < 𝑁𝐼(𝑈𝑖)

𝑥𝑖
′ 𝑟1 ≥ 𝑁𝐼(𝑈𝑖)

                                                                                                                                                 (2) 

In Eq. (2), 𝑋𝑖
𝑗
 characterizes the 𝑗𝑡ℎ object of the 𝑖𝑡ℎ universe, 𝑟1 shows the random value in a 

predetermined spectrum range within [0,1], NI (𝑈𝑖) as equivalent to the normalizing inflation rate of 

the 𝑖𝑡ℎ universe, and 𝑋𝑘
𝑗
 characterizes the 𝑗𝑡ℎ objects of the 𝑘𝑡ℎ universe.  
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𝑥𝑖
′ = {

𝑥𝑗 + 𝑇𝐷𝑅 × ((𝑈𝑏𝑏 − 𝐿𝑏𝑏) × 𝑟4 × 𝐿𝑏𝑏) 𝑟3 < 0.5|𝑟2 < 𝑊𝐸𝑃

𝑥𝑗 − 𝑇𝐷𝑅 × ((𝑈𝑏𝑏 − 𝐿𝑏𝑏) × 𝑟4 × 𝐿𝑏𝑏) 𝑟3 ≥ 0.5|𝑟2 < 𝑊𝐸𝑃

𝑥𝑖
′ 𝑟2 ≥ 𝑊𝐸𝑃

                                                               (3) 

In Eq. (3), 𝑋𝑗 indicates the 𝑗𝑡ℎ centroid of the finest universe, UB signifies the upper bound, LB 

equals the Wormhole Existence Probability (WEP), minimal determined, and Traveling Distance Rate 

(TDR) are coefficient, 𝑟2, 𝑟3, and 𝑟4 represents random numbers within zero and one. 

As well, the process of MVO signifies the best solution to apply and optimize to impact other solutions. 

During this study, the author claimed that wormholes are established in each universe. Then, it 

improves the probability of having access to the best solution, and maintaining the best solution is 

accomplished by the optimized approach. The precondition of resolving the aforementioned equation 

above is replacing the parameters among different solutions. It is notable that if the equation is 

employed in the same pattern (exploitative or exploratory) yield the same outcomes. The MVO 

comprises the subsequent process to suitably focus on different ways in the optimization pattern in Eq. 

(4). 

𝑊𝐸𝑃 =  Min + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × (
 Max −  Min 

𝐿
)                                                                                                   (4) 

𝑇𝐷𝑅 = 1 −
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1/𝑝

𝐿1/𝑝
                                                                                                                                          (5) 

From Eq. (5), 𝑝  indicates the exploitation components. Two kinds of adaptive parameters are 

presented in MVO: TDR and WEP. To increase the accuracy of exploitation or local in defining the 

optimal solution, TDR must be improved in different iterations. WEP rises according to the frequency 

of iteration to improve exploitation. Therefore, MVO is regarded as a revolutionary model for 

exchanging matters. It results in an unexpected change in the universe, which enhances the exploration 

and keeps the universe’s diversity when implementing the iteration. Afterward, recognizing the better 

universe, all universes take a sequence of parameters in random methodology. This technique shows 

the mutation, a revolutionary model. Sequentially, the mutation operation leads to small alternations 
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for better solutions and exploitation. Elitism is an extreme operator used for maintaining a better 

solution accomplished by an optimization technique. The elitism accomplishes by discovering a better 

universe.   

A fitness function (FF) is enhanced using the MVO system to achieve better classifier results. It 

specifies a positive number to represent the candidate outcomes that performed the best. In this 

instance, it is assumed that FF is given Eq in order to minimize the classifier error rate (6). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 (𝑥𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                     (6) 

3.3. Flood detection using SVM 

Finally, the flood detection process is performed using the SVM classifier. A multiclass SVM was 

utilized as the classification mechanism. SVM functions on the standard of disaster risk management. 

It is better suitable for classification tasks once the sampling size is not that big. The main idea is to 

discover the optimum hyperplane that distinguishes the trained dataset into two double categories by 

increasing the margin. In a multiclass classifier problem, the dataset except the targeted one is 

integrated for creating dual classifier situations. Fig. 2 depicts the hyperplane of SVM. The dataset 

point positioned nearby the imaginary line is called a support vector.  
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Figure 2.  Hyperplane SVM 

For the provided set of information (𝑢1, 𝑣1), (𝑢2, 𝑣2), …, (𝑢𝑛, 𝑣𝑛), 𝑢𝑖 ∈ 𝑅𝑛 are taken into account 

as input, whereby 𝑢  and 𝑣  represent corresponding data points of support vector, and 𝑣𝑖 ∈

(−1, +1) indicates the output for every 𝑢𝑖 . It is expressed in Eq. (7). 

(𝑤 ⋅ 𝑢) + 𝑏 = 0,                                                                                                                                 (7) 

Eq. (8), 𝑤 indicates a vector with dimension 𝑁, and 𝑏 shows a scalar quantity. In general form, the 

equation of hyperplane for 𝑣𝑖 = 1 and 𝑣𝑖 = −1 is indicated below Eq. (9). 

(𝑤 ⋅ 𝑢𝑖) + 𝑏 ≥ 1,                                                                                                                                                          (8) 

(𝑤 ⋅ 𝑢𝑖) + 𝑏 ≤ 1.                                                                                                                                                          (9) 

By a positive margin, 

(𝑤𝑇 ⋅ 𝑢2) + 𝑏 = +1.                                                                                                                                                 (10) 

For negative margin, 

(𝑤𝑇 ⋅ 𝑢1) + 𝑏 = −1.                                                                                                                                                  (11) 

By deducting Eq. (11) from Eq. (10), obtain the maximal margin by Eq. (12). 

𝑤𝑇(𝑢2 − 𝑢1) = 2,                                                                                                                                                      (12) 

𝑤𝑇

||𝑤‖
⋅ (𝑢2 − 𝑢1) =

2

‖𝑤‖
.                                                                                                                                         (13) 

This is the enhanced function that should be increased in Eq. (13). 

Error optimization: For novel testing dataset 𝑣𝑖, one gets 

𝑣𝑖 ∗ (𝑤𝑇 ⋅ 𝑢𝑖) + 𝑏𝑖 ≥ 1.                                                                                                                                            (14) 

Once the abovementioned condition is not fulfilled in Eq. (14), it denotes a case of misclassification. 

In such cases, it is necessary to add the error term for calculating 𝑤 and 𝑏. 

(𝑤∗, 𝑏∗) =  min 
‖𝑤‖

2
+ 𝐶𝑖 ∑ 𝜀𝑖,

𝑛

𝑖=1

                                                                                                                          (15) 

In Eq. (15), 𝐶 indicates the error penalty, and 𝜀 denotes the slack parameter. 

4. Results and Discussion 
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The flood detection results of the MVODTL-FD model are tested using a dataset comprising 400 

samples. A few sample images are portrayed in Fig. 3.  

 

Figure 3. Sample images 

The flood detection results of the MVODTL-FD model are represented in the form of a confusion 

matrix in Fig. 4. On run-1, the MVODTL-FD model has categorized 190 samples into flooded classes 

and 195 pieces into non-flooded types. Concurrently, in run-2, the MVODTL-FD approach has 

categorized 184 pieces into flooded types and 195 samples into non-flooded classes. Simultaneously, 

in run-3, the MVODTL-FD technique categorized 188 pieces into flooded classes and 196 pieces into 

non-flooded types. Finally, in run-4, the MVODTL-FD approach categorized 189 pieces into flooded 

type and 198 pieces into non-flooded type. 
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Figure 4. Confusion matrices of MVODTL-FD approach (a) Run1, (b) Run2, (c) Run3, (d) 

Run4, and (e) Run5 

Table 1 provide the overall flood detection results of the MVODTL-FD model under five distinct 

runs. 

Table 1.  provides the overall flood detection results of the MVODTL-FD model under five 

distinct runs. 

Class Accuracy Precision Recall F-Score G-Mean 

Run-1 

Flooded 96.25 97.44 95.00 96.20 96.24 

Non-Flooded 96.25 95.12 97.50 96.30 96.24 

Average 96.25 96.28 96.25 96.25 96.24 

Run-2 

Flooded 94.75 97.35 92.00 94.60 94.71 

Non-Flooded 94.75 92.42 97.50 94.89 94.71 

Average 94.75 94.89 94.75 94.75 94.71 

Run-3 

Flooded 96.00 97.92 94.00 95.92 95.98 
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Non-Flooded 96.00 94.23 98.00 96.08 95.98 

Average 96.00 96.07 96.00 96.00 95.98 

Run-4 

Flooded 96.75 98.95 94.50 96.68 96.72 

Non-Flooded 96.75 94.74 99.00 96.82 96.72 

Average 96.75 96.84 96.75 96.75 96.72 

Run-5 

Flooded 96.50 97.94 95.00 96.45 96.49 

Non-Flooded 96.50 95.15 98.00 96.55 96.49 

Average 96.50 96.54 96.50 96.50 96.49 

Fig. 5 demonstrates the classification results of the MVODTL-FD model under run-1. The MVODTL-

FD model has identified flooded samples with 𝑎𝑐𝑐𝑢𝑦 of 96.25%, 𝑝𝑟𝑒𝑐𝑛 of 97.44%, 𝑟𝑒𝑐𝑎𝑙 of 95%, 

𝐹𝑠𝑐𝑜𝑟𝑒  of 96.20%, and 𝐺𝑚𝑒𝑎𝑛  of 96.24%. Besides, the MVODTL-FD model has identified non-

flooded samples with 𝑎𝑐𝑐𝑢𝑦 of 96.25%, 𝑝𝑟𝑒𝑐𝑛 of 95.12%, 𝑟𝑒𝑐𝑎𝑙 of 97.50%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.30%, 

and 𝐺𝑚𝑒𝑎𝑛  of 96.24%. Moreover, the MVODTL-FD model has attained an average 𝑎𝑐𝑐𝑢𝑦  of 

96.25%, 𝑝𝑟𝑒𝑐𝑛 of 96.28%, 𝑟𝑒𝑐𝑎𝑙 of 96.25%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.25%, and 𝐺𝑚𝑒𝑎𝑛 of 96.24%. 

 

Figure 5. Result analysis of MVODTL-FD approach under run1 

Fig. 6 establishes the classification results of the MVODTL-FD technique under run-2. The 

MVODTL-FD algorithm has identified flooded samples with 𝑎𝑐𝑐𝑢𝑦 of 94.75%, 𝑝𝑟𝑒𝑐𝑛 of 97.35%, 

𝑟𝑒𝑐𝑎𝑙 of 92%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.60%, and 𝐺𝑚𝑒𝑎𝑛 of 94.71%. Moreover, the MVODTL-FD method has 

identified non-flooded samples with 𝑎𝑐𝑐𝑢𝑦  of 94.75%, 𝑝𝑟𝑒𝑐𝑛  of 92.42%, 𝑟𝑒𝑐𝑎𝑙  of 97.50%, 
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𝐹𝑠𝑐𝑜𝑟𝑒 of 94.89%, and 𝐺𝑚𝑒𝑎𝑛 of 94.71%. The MVODTL-FD approach has gained an average 𝑎𝑐𝑐𝑢𝑦 

of 94.75%, 𝑝𝑟𝑒𝑐𝑛 of 94.89%, 𝑟𝑒𝑐𝑎𝑙 of 94.75%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.75%, and 𝐺𝑚𝑒𝑎𝑛 of 94.71%. 

 

Figure 6. Result analysis of MVODTL-FD approach under run2 

Fig. 7 illustrates the classification results of the MVODTL-FD method under run-3. The MVODTL-

FD technique has identified flooded samples with 𝑎𝑐𝑐𝑢𝑦 of 96%, 𝑝𝑟𝑒𝑐𝑛 of 97.92%, 𝑟𝑒𝑐𝑎𝑙 of 94%, 

𝐹𝑠𝑐𝑜𝑟𝑒 of 95.92%, and 𝐺𝑚𝑒𝑎𝑛 of 95.98%. As well, the MVODTL-FD algorithm has identified non-

flooded samples with 𝑎𝑐𝑐𝑢𝑦  of 96%, 𝑝𝑟𝑒𝑐𝑛  of 94.23%, 𝑟𝑒𝑐𝑎𝑙  of 98%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 96.08%, and 

𝐺𝑚𝑒𝑎𝑛  of 95.98%. Likewise, the MVODTL-FD method has gained an average 𝑎𝑐𝑐𝑢𝑦  of 96%, 

𝑝𝑟𝑒𝑐𝑛 of 96.07%, 𝑟𝑒𝑐𝑎𝑙 of 96%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96%, and 𝐺𝑚𝑒𝑎𝑛 of 95.98%. 
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Figure 7. Result analysis of MVODTL-FD approach under run3 

Fig. 8 reveals the classification results of the MVODTL-FD method under run-4. The MVODTL-FD 

approach has identified flooded samples with 𝑎𝑐𝑐𝑢𝑦  of 96.75%, 𝑝𝑟𝑒𝑐𝑛  of 98.95%, 𝑟𝑒𝑐𝑎𝑙  of 

94.50%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 96.68%, and 𝐺𝑚𝑒𝑎𝑛  of 96.72%. In addition, the MVODTL-FD method has 

identified non-flooded samples with 𝑎𝑐𝑐𝑢𝑦  of 96.75%, 𝑝𝑟𝑒𝑐𝑛 of 94.74%, 𝑟𝑒𝑐𝑎𝑙  of 99%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 96.82%, and 𝐺𝑚𝑒𝑎𝑛  of 96.72%.  Additionally, the MVODTL-FD approach has reached an 

average 𝑎𝑐𝑐𝑢𝑦 of 96.75%, 𝑝𝑟𝑒𝑐𝑛 of 96.84%, 𝑟𝑒𝑐𝑎𝑙 of 96.75%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.75%, and 𝐺𝑚𝑒𝑎𝑛 of 

96.72%. 

 

Figure 8. Result analysis of MVODTL-FD approach under run4 



20 
 

 

Fig. 9 portrays the classification results of the MVODTL-FD method under run-5. The MVODTL-FD 

approach has identified flooded samples with 𝑎𝑐𝑐𝑢𝑦 of 96.50%, 𝑝𝑟𝑒𝑐𝑛 of 97.94%, 𝑟𝑒𝑐𝑎𝑙 of 95%, 

𝐹𝑠𝑐𝑜𝑟𝑒 of 96.45%, and 𝐺𝑚𝑒𝑎𝑛 of 96.49%. Moreover, the MVODTL-FD algorithm has identified non-

flooded samples with 𝑎𝑐𝑐𝑢𝑦 of 96.50%, 𝑝𝑟𝑒𝑐𝑛 of 95.15%, 𝑟𝑒𝑐𝑎𝑙 of 98%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.55%, and 

𝐺𝑚𝑒𝑎𝑛 of 96.49%. In addition, the MVODTL-FD method has reached an average 𝑎𝑐𝑐𝑢𝑦 of 96.50%, 

𝑝𝑟𝑒𝑐𝑛 of 96.54%, 𝑟𝑒𝑐𝑎𝑙 of 96.50%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.50%, and 𝐺𝑚𝑒𝑎𝑛 of 96.49%. 

 

Figure 9. Result analysis of MVODTL-FD approach under run5 

The training accuracy (TRA) and validation accuracy (VLA) acquired by the MVODTL-FD approach 

under the test dataset is exemplified in Fig. 10. The experimental outcome implicit MVODTL-FD 

algorithm has gained maximal values of TRA and VLA. Seemingly, the VLA is greater than TRA. 
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Figure 10. TRA and VLA analysis of MVODTL-FD approach  

The training loss (TRL) and validation loss (VLL) obtained by the MVODTL-FD technique in the test 

dataset are displayed in Fig. 11. The experimental outcome denotes the MVODTL-FD approach has 

exhibited the least values of TRL and VLL. Specifically, the VLL is lesser than TRL. 

 

Figure 11. TRL and VLL analysis of MVODTL-FD approach  

A transparent precision-recall investigation of the MVODTL-FD approach in the test dataset is 

described in Fig. 12. The figure denoted the MVODTL-FD algorithm has resulted in enhanced 

precision recall values under all classes. 
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Figure 12. Precision-recall analysis of MVODTL-FD approach  

A brief ROC study of the MVODTL-FD approach under the test dataset is portrayed in Fig. 13. The 

results denoted the MVODTL-FD algorithm has displayed its capability in classifying different class 

labels in the test dataset.  

 

Figure 13. ROC curve analysis of MVODTL-FD approach  

Finally, a detailed comparative 𝑎𝑐𝑐𝑢𝑦 examination of the MVODTL-FD model with recent models 

is made in Fig. 14. The experimental values infer that the SMVD-CNN, RF, AHP, and SVM models 

have reached lower 𝑎𝑐𝑐𝑢𝑦 values of 84.55%, 86.94%, 84.47%, and 85.43% respectively. The CNN-

LE model has obtained a slightly improved 𝑎𝑐𝑐𝑢𝑦  of 90.47%. Then, the DNN model reached a 

reasonable 𝑎𝑐𝑐𝑢𝑦 of 91.55%.  

However, the MVODTL-FD model has shown enhanced performance with a maximum 𝑎𝑐𝑐𝑢𝑦 of 

96.75%. These results ensured the superior flood detection performance of the MVODTL-FD model.  

5. Conclusion 

  In this study, a new MVODTL-FD technique was developed for the flood detection process. 

In the demonstrated MVODTL-FD technique, remote sensing images are investigated for the effectual 
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detection of floods. To accomplish this, the demonstrated MVODTL-FD technique utilized GNF based 

image preprocessing approach to eliminate the noise. In addition, the proposed MVODTL-FD 

technique uses a deep convolutional neural network-based Squeeze Net model for feature extraction, 

and the hyperparameter tuning process is performed using the MVO algorithm. At last, the flood 

detection process is performed using the SVM classifier. To demonstrate the enhanced version of the 

MVODTL-FD model, a wide-ranging experimental analysis is performed. The comparison study 

reported the better version of the MVODTL-FD model over other DL models. In the future, the 

performance of the MVODTL-FD model was extended to utilize hybrid DL models for enhanced 

detection efficiency at real-time. 
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