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Abstract 

Investigating the spatiotemporal characteristics and 
factors of urban carbon emissions is essential to reduce 
carbon emissions and achieve dual carbon goals. In this 
study, we examined the change tendency of carbon 
emissions using the coefficient of variation, the Sen’s 
slope method, and the Mann–Kendall (MK) test and 
explored the effects of socioeconomic and environmental 
variables on carbon emissions using GeoDetector, in 
Qingdao City. The results revealed that: (1) From 2000 to 
2020, carbon emissions increased annually, the area ratio 
of high carbon emissions increased and of low carbon 
emissions decreased yearly. Over 73% of carbon emissions 
have changed in a moderate way (0.1< CV < 1) and 80% of 
Qingdao City experienced an increased tendency (β > 0) in 
carbon emissions. (2) Carbon emissions diminished 
gradually from the urban center to the periphery. There 
were significant spatiotemporal disparities from one 
another in the subareas, Municipal districts had the 
largest variation degree (CV=0.32) and a huge growth 
trend of carbon emissions, while Laixi, Jiaozhou, and 
Pingdu were minor. (3) Socio-economic factors 
demonstrated a stronger ability to explain carbon 
emissions than environmental factors. GDP density, 
population density and floor area ratio were the key 
variables that affect the spatial distribution of carbon 

emissions, and the interaction between GDPD and PD can 
explain 81.9% of the carbon emissions in Qingdao. New 
technologies and materials, low-carbon energy 
consumption and lifestyles, and acceptable economic 
growth were the main strategies for Qingdao to become a 
low-carbon city. 

Keywords: Urban, carbon emissions, spatiotemporal 
evolution, socioeconomic factors, environmental factors, 
GeoDetector. 

1. Introduction 

In China, over 90% of carbon emissions are generated 
from metropolitan regions (He et al., 2019). It is crucial to 
investigate the spatiotemporal characteristics and factors 
of urban carbon emissions in order to reduce carbon 
emissions and achieve dual carbon goals. At national and 
regional scales, researchers analyzed the energy 
utilization, spatiotemporal variation characteristics, and 
influence factors of carbon emissions in Fujian Province 
(Wei and Chen, 2021), Yangtze River Delta region, and 
Qinghai Plateau (Liu and Zeng, 2021) based on DMSP/OLS 
data (Du et al., 2021), IPCC inventory method (Wang et 
al., 2019), panel data (Zhang and Pan, 2019), STIRPAT 
model (Shen et al., 2020), system dynamics method (Yang 
and Wu, 2021), U-Kaya and LMDI model (Wang et al., 
2019), panel vector autoregression model (PVAR) (Zhao et 
al., 2021), and random forest (Liu et al., 2019). They found 
considerable spatiotemporal disparities in carbon 
emissions, with economic development, energy 
consumption, industrial structure, population and 
technology being the main contributors. At the 
metropolitan scale, Xu et al. (2022) examined the 
spatiotemporal pattern of land use and carbon emissions 
using information entropy and Tapio model and found 
that there was spatiotemporal heterogeneity in the 
decoupling of urban land use and carbon emissions. Wang 
et al. (2020) detected the spatiotemporal features and 
driving factors of energy consumption and carbon 
emissions using the panel measurement method, in 158 
cities, and found that urbanization and industrial structure 
have significant impacts on carbon emissions and energy 
consumption. Ma et al. (2021) analyzed the impact of 
urbanization on carbon emissions based on the entropy 
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approach and geographically weighted regression (GWR) 
model (Wang et al., 2019). They found regional variations 
in the impact of population and urbanization on carbon 
emissions, with urbanization and economies contributing 
to the increase. Wang and Chen (2020) examined how 
urbanization affected carbon emission efficiency using the 
STIRPAT model and found that technology, GDP per 
capita, and information all had a positive impact on 
carbon emissions. Huo et al. (2021) detected the 
relationship between urbanization and buildings’ carbon 
emissions based on the panel threshold regression and 
regression-enhanced random model (Zhang et al., 2021). 
They found that the impact of urbanization on building 
carbon emissions becomes more pronounced when per 
capita income and energy mix exceed a certain threshold. 
Population, economy, and technology were the key 
factors in building carbon emissions, which were 
positively correlated with per capita building area, energy 
intensity and have an inverted U-shape relationship with 
economic growth. Xu et al. (2021) analyzed the effect of 
urban three-dimensional structures on carbon emissions 
using the STIRPAT and ridge regression model, and found 
that building height and density were the primary factors 
driving the rapid growth of carbon emissions. 

These studies focused on accounting for carbon 
emissions, their spatiotemporal characteristics, and the 
effects of socioeconomic, land use, and building-related 
variables. There is a paucity of analysis of the shifting 
trends in carbon emissions and the results of factor 
interactions. For the creation of low-carbon development 
strategies, it is crucial to investigate the spatiotemporal 
change trends in carbon emissions during the urbanization 
process and to identify the influence factors and the effect 
of factor interactions on carbon emissions. The coefficient 
of variation has been utilized to disclose the variation 
features of time series data because it can reflect the 
relative variation of spatiotemporal data and eliminate 
the influence of scale and dimension (Liu et al., 2021). 
Sen’s slope and Mann Kendal test have been frequently 
applied in trend analysis and testing studies of time series 
data (Ma et al., 2022) owing to their excellent calculation 
efficiency, insensitivity to measurement errors and 
outliers, independence from a particular distribution, and 
minimal interference from outliers (Ali et al., 2019). And 
GeoDetector was primarily used to investigate the impact 
of numerous elements on the spatiotemporal pattern 
(Pan et al., 2019) with its advantage of examining the 
spatial differentiation of geographical features, the 
explanatory power of factors, and detecting the 
interaction between factors (Zhou et al., 2020; Li et al., 
2022). 

From 2000 to 2020, the GDP and urban construction land 
increased by 10 and 6 times, respectively, in Qingdao City. 
Although annual carbon emissions have declined since the 
11th Five-Year Plan due to the implementation of low-
carbon development policies, the growth of total carbon 
emissions and urban environmental issues have become 
more prominent. The purpose of this paper aims to 
identify the evolutionary tendency of carbon emissions 

and investigate the effects of socioeconomic and 
environmental factors on carbon emissions using the 
coefficient of variation, Sen’s slope trend, Mann-Kendall 
test, and GeoDetector, in Qingdao City. 

2. Study area 

Qingdao is a rapidly developing city in Shandong Province, 
China, with a total area of 11293 km2. It consists of 7 
municipal districts (Shinan, Shibei, Licang, Laoshan, West 
Coast New Area, Chengyang, and Jimo) and 3 county-level 
cities (Jiaozhou, Pingdu, and Laixi), with areas of 5226 km2 

and 6067 km2, respectively. The municipal districts have a 
long history of urbanization, high socioeconomic growth 
and urbanization levels, and a concentrated population, 
economy, and industry. Its elevation ranged from 0 to 
1090 meters, mountains account for 17.6% of the total 
area and are located in the southeast and north of the 
city, while plains and basins account for 59.4% of the 
entire city (Figure 1). It has experienced significant 
changes in industrial structure, construction landscape, 
and the ecological environment resulting from 
socioeconomic development and urban renewal policies 
from 2000 to 2020. GDP rose to 1240.06 billion yuan from 
118.31 billion yuan, with the ratio of the secondary 
industries falling to 35.2% from 46.1% and the tertiary 
industries rising to 19%. Both the urban built-up area and 
population increased by 639.1km2 and 2939.2 thousand, 
separately (Qingdao Municipal Bureau of Statistics, 2021). 
The implementation of low-carbon development policies 
from 2006 resulted in a 45% reduction in carbon 
emissions per unit of GDP from 2005 to 2020. However, 
the general amount of carbon emissions is on the rise, and 
socioeconomic development considerably affects the 
spatiotemporal heterogeneity of those emissions. 

 

Figure 1. The study area 

3. Materials and methods 

We detected the change characteristics of carbon 
emissions and explored the effects of socioeconomic and 
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environmental factors on carbon emissions from 2000 to 
2020, in Qingdao City. The flowchart of the applied 
methodology in the research is shown Figure 2. 

 
Figure 2. The flowchart of methodology 

3.1. Data collection 

A time series raster data in Qingdao with a resolution of 
1km×1km from 2000 to 2020 attained as follows: the 
carbon emissions data of fossil fuels attained from the 
ODIAC fossil fuel emission dataset (https://db.cger.nies. 
go.jp/dataset/ODIAC/). Annual average temperature data 
were from National Earth System Science Data Center 
(https://www.geodata.cn/). Land use and GDP density 
data were from the Resource and Environmental Science 
and Data Center (https://www.resdc.cn/DOI/doi. 
aspx?DOIid=33). Population density data were from the 
World population dataset (https://www.worldpop.org/ 

geodata/listing?id=76). The 30m × 30m resolution digital 
elevation model was obtained from the Geospatial data 
cloud (https://www.gscloud.cn/sources/). Buildings’ 3D 
information (buildings’ frame and height) was extracted 
from high-resolution satellite images using the 
monoplotting function of Barista software, a manual 
method mainly based on the Digital Elevation Model, 
Ground Control Points and a set of Rational Polynomial 
Coefficients (Zhang et al., 2014). The height accuracy of 
buildings extracted by Barista is 91.8% (Zhang, 2015) 
based on buildings that were randomly measured in the 
field. ArcGIS was used to calculate the floor area ratio and 
building coverage ratio. And the building coverage ratio 
and floor area ratio were calculated using ArcGIS. 

3.2. Data pre-processing 

The land use type (LST) was divided into 8 categories 
according to the composition of land use in the study area 
and the purpose of the study. The population density (PD, 
thousand people/km2), Gross Domestic Product density 
(GDPD, million yuan/km2), Building coverage ratio (BCR, 
%), Floor area ratio (FAR), Average temperature (T, ℃), 
Elevation (E, m) and Slope (S, °) were each divided into 9 
groups by natural breakpoint method (Ma et al., 2022) 
(Table 1). All the data were retrieved using 10742 grids 

with a resolution of 1km×1km, in Qingdao City. 

 

Table 1. Classification of environmental and socioeconomic factors 

Types 
Environmental factors Socioeconomic factors 

T (℃) S (°) E(m) LST 
PD (thousand 
people/km2) 

GDPD (million 
yuan/km2) 

BCR (%) FAR 

1 8.9-10.4 0-2.23 0-26 CL 0-0.1 1.52-21.03 0-2.74 0-0.05 

2 10.4-10.9 2.23-4.97 26-56 F 0.1-0.3 21.03-30.28 2.74-8.23 0.05-0.16 

3 10.9-11.5 4.97-8.20 56-94 W 0.3-0.7 30.28-47.10 8.23-15.29 0.16-0.31 

4 11.5-12.1 8.20-11.92 94-149 RL 0.7-1.2 47.10-70.29 15.29-23.92 0.31-0.53 

5 12.1-12.6 11.92-16.40 149-231 UL 1.2-1.9 70.29-113.77 23.92-34.50 0.53-0.85 

6 12.6-13.0 16.40-21.62 231-342 GL 1.9-3.0 113.77-258.17 34.50-47.45 0.85-1.40 

7 13.0-13.3 21.62-27.58 342-486 UC 3.0-4.2 258.17-554.58 47.45-61.17 1.40-2.19 

8 13.3-13.6 27.58-35.28 486-690 R 4.2-5.9 554.58-1066.55 61.17-75.29 2.19-3.22 

9 13.6-14.2 35.28-63.37 690-1088  5.9-8.3 1066.55-9337.56 75.29-100 3.22-4.82 

Note: Cultivated land (CL); Forest (F); Water (W); Rural construction land (RL); Unused land (UL); Grassland (GL); Urban construction 

land (UC); Roads (R). 

3.3. Calculation method for carbon emission variation 

The variation of carbon emissions in Qingdao was 
analyzed using the coefficient of variation, Sen’s slope 
method, and the Mann Kendal test based on Python. The 
coefficient of variation (CV) was used to estimate the 
relative variance in carbon emissions from 2000 to 2020, 
which can be derived as indicated in Equation (1): 

/CV    (1) 

Where σ is the standard deviation of carbon emissions, 
unit (t); μ is the average value of carbon emissions. When 
CV<=0.1 means weak variation, CV>=1 means strong 
variation, and 0.1<CV<1 means moderate variation. 

Sen’s slope is a non-parametric method for evaluating the 
propensity to change in time series data and has been 
shown to be quite reliable. It was used to estimate trends 
in carbon emissions from 2000 to 2020. And according to 
Equation (2), Sen’s slope (β) is a median of all the slopes 

that calculated all the subsequent data points of a time 
series carbon emission. 

 ( ) / ( )j imedian CE CE j i  
 

(2) 

Where CEi and CEj represent the carbon emissions in i and 
j years, 1<i<j<n; β >0 and β<0 indicated that the carbon 
emissions are increasing and decreasing, respectively. 

Mann–Kendall test is recommended by the World 
Meteorological Organization as the most popular test 
because it considers the data distribution and eliminates 
outliers. Mann–Kendall test (Z) was used to gauge the 
significance of the variation in carbon emissions, as shown 
in Equation (3), The value of Z indicates the direction of 
the trend. A value of minus Z indicates a decreasing trend 
and vice versa. If the absolute value of Z exceeds 1.64, the 
significance test is passed with 90% confidence and the 
value is significant at the 10% level. If the absolute value 
of Z is higher than 1.96, the significance test is passed with 
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95% confidence, and the value is significant at the 5% 
level. The significance level (P): 0.05<P<0.1 denotes a 
significant increase or decrease, and P<0.05 denotes an 
extremely significant increase or decrease. 

   

   

1 / 0

0 0

1 / 0
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(3) 

Where S is the test statistic for carbon emissions (Ali et al. 
2019). 

3.4. Detecting driving factors of carbon emissions based 
on GeoDetector 

GeoDetector is a set of statistical methods to detect 
spatial distinction and identify the driving force (Wang 
and Chen, 2017). Factor detector (q) was used to detect 
the impact of socioeconomic and environmental factors 
on the carbon emissions’ distribution, and the q-statistic 
can be generated from Equation (4). The value of q is 
strictly within [0, 1], q=1 indicates that the factor (X) fully 
determines the spatial distribution of carbon emissions; 
q=0 denotes that there is no relationship between the 
factor (X) and carbon emissions. The larger value of q 
means the factor (X) has a greater influence or stronger 
explanatory power on carbon emissions. 

 2 2

1
1

L

h hh
q N N


      (4) 

Where N is the number of samples in the study area; L is the 
number of factor layers; h is the number of argument layers, 

  2h 1,L ;  is the variance of the dependent variables. 

Interaction detector was used to evaluate whether the 
factors (X) interacting with one another will weaken or 
enhance the explanatory power of the dependent variable 
(Y), or whether these factors (X) are independent and 
their interaction has no impact on the dependent variable 
(Y). And the q-statistic divides the explanatory power of 
factors(X) to the dependent variable (Y) into 5 intervals 
(Table 2). The interactive explanatory power of 
socioeconomic and environmental factors to the carbon 
emissions was detected in Qingdao City. 

Table 2. Interaction between explanatory variables (Xs) 

Description Interaction 

      1 2 1 , 2q X X Min q X q x   Weaken, 

nonlinear  

     1 2 1 2q X X q X q x    Independent  

           1 , 2 1 2 1 , 2Min q X q X q X X Max q X q X    Weaken, uni-, 

nonlinear  

     1 2 1 2q X X q X q x    Enhance, 

nonlinear 

      1 2 1 , 2q X X Max q X q x   Enhance, bi- 

Ecological detector was used to identify the differences 
between the two factors in carbon emissions. It is 
measured by the F-statistic and can be calculated in 
Equation (5). At the significance level of 0.05, the result 
was expressed as ‘T’ means there was a significant 
difference between the effects of one factor (X1) and 
another factor (X2) on the dependent variable (Y), and the 

result was expressed as ‘N’ means there was no difference 
existed. 

 X1 X2 X1 X2 X1 X2

1 22 2
X1 X21 1

( 1 ) / ( ( 1) )

,    
L L

h h h hh h

F N N SSW N N SSW

SSW N x SSW N x
 

  

   
 

(5) 

Where NX1 and NX2 are the sample sizes of the factors; 
SSWX1 and SSWX2 are the sums of the variances in the 
argument layer; L1 and L2 are the number of layers; h is 

the number of argument layers,   2h 1,L ;   is the variance 

of the dependent variables. 

4. Results and discussion 

4.1. Spatiotemporal characteristics of carbon emissions 

The carbon emissions increased yearly due to the 
socioeconomic development in Qingdao, which is similar 
to the earlier research (Zheng et al., 2020). The average, 
maximum, and standard deviation (SD) of carbon 
emissions varied significantly from 2000 to 2020, in 
Qingdao (Figure 3). Rapid development of the population, 
economy, and secondary industry is the main driving force 
of this status. 

 

Figure 3. Carbon emissions in Qingdao City 

From 2000 to 2005, the maximum and SD of carbon 
emissions increased more quickly than the average value, 
and they increased by 15.93 ×104t/a, 1700t/a, and 40t/a, 
separately. GDP and secondary industries grew by 34.24 
billion yuan/a and 42.26 billion yuan/a, respectively, 
urban land expanded from 119.1 km2 to 178.8 km2, and 
more high-carbon emitting companies were established, 
all contributing to the rapid growth of carbon emissions 
and variability characteristics. From 2005 to 2015, the 
average, maximum, and SD of carbon emissions increased 
smoothly, increasing by 20t/a, 4.82×104t/a, and 390t/a 
due to the steady growth of population, industry, GDP, 
and urban land (increased by 2 million population/a, 9.4 
billion yuan/a, 60 billion yuan/a, and 38.8 km2/a, 
respectively). From 2015 to 2020, both the maximum and 
the SD of carbon emissions were growing slowly, while the 
average carbon emissions were increasing rapidly at a rate 
of 160t/a, which is four times higher than in 2000-2005 
and eight times higher than in 2005-2015. The structural 
optimization of industry and energy, the implementation 
of energy policies, and the rapid socioeconomic 
development have contributed to the changing character 
of carbon emissions during this period. 
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Figure 4 has shown that the area ratio of higher carbon 
emissions increased and of lower carbon emissions 
decreased yearly, and that carbon emissions gradually 
reduced from the urban centers to the periphery. From 
2000 to 2020, most of the carbon emissions above 
2000t/km2 were concentrated in urban centers, with their 
area ratio increasing from 3% to 12%. Carbon emissions in 
the 400-2000t/km2 range were located around urban 
centers, with the area ratio increasing from 9% to 25%. 
Carbon emissions in the 200-400t/km2 range and below 
200t/km2 were mainly in the urban periphery, where the 
area proportion reduced from 43% to 37% and 45% to 
26%, respectively. Most of the carbon emissions below 
200t/km2 were discovered in forests, grasslands, farms 
and mountains. Disparities in land use, economy and 
population were the primary determinants of the 
spatiotemporal heterogeneity in carbon emissions in 
Qingdao. The population, economy, industry, transport 
and energy consumption were concentrated in urban 
centers, which had the highest and fastest increase in 
carbon emissions. The density of population, economy, 
energy consumption and carbon emissions were gradually 
reduced from the urban centers to the periphery. Forests, 
grasslands and mountains had the lowest carbon 
emissions. The increase in population, urban construction, 
GDP and energy consumption contributed to the increase 
in carbon emissions in the study area from 2000 to 2020. 

 

Figure 4. Distribution of carbon emissions 

4.2. Spatio-temporal distinction of carbon emissions 
among subareas 

The composition and variation of carbon emissions varied 
significantly from one another in the subareas (Pingdu, 
Laixi, Jiaozhou, and Municipal districts) (Figure 5) due to 
the diversity of urbanization, economic patterns, 
industrial structure, which is similar to the earlier research 
(Wang et al. 2020). Generally, the area ratio of carbon 
emissions increased above 400t/km2 and decreased below 
400t/km2, in these subareas, from 2000 to 2020. 
Compared with these subareas, the largest proportion 
and the fastest growth rate of carbon emissions were in 
Municipal districts above 2000t/km2. Jianzhou noticed the 

fastest rise (41.1%) and decline (29.4%) in carbon 
emissions in 400-2000t/km2 and 200-400t/km2, 
respectively. The largest reduction (38.6%) in carbon 
emissions below 200t/km2 was found at Laixi. The 
majority of carbon emissions below 400t/km2 were 
produced in Pingdu (>85%) and Laixi (>75%). 

From 2000 to 2020, Municipal districts’ carbon emissions 
raised from 6.3% to 21% above 2000t/km2 and from 
13.9% to 28.1% in the 400-2000t/km2 range, and declined 
from 36.6% to 26.5% in the 200-400t/km2 range and from 
43.1% to 24.3% below 200t/km2, respectively. Jiaozhou’s 
carbon emissions raised from 1.1% to 10.4% above 
2000t/km2, primarily manifested as a rapid increase 
(41.1%) in the 400-2000t/km2 range and decrease (29.4%) 
in the 200-400t/km2 range. Laixi’s carbon emissions were 
reported to be declining rapidly below 200t/km2 and 
growing at roughly equal rates in the 400-2000t/km2 and 
200-400t/km2 ranges. Pingdu’s carbon emissions were 
expressed as a decrease below 200t/km2 and an increase 
in the range of 400-2000t/km2. 

 

Figure 5. Area percentage of carbon emissions in subareas 

Population, economy, policy, industrial structure, energy 
consumption, and the phase of urban growth were the 
key determinants of the variation in carbon emissions in 
the subareas. Municipal districts acted as the political, 
economic, cultural and trade hubs of Qingdao. It has 
experienced rapid socio-economic development and has 
the largest carbon emissions and the fastest growth rate 
compared to other sub-areas. Since 2005, many high-
emission enterprises have relocated to Jiaozhou from 
Municipal districts, which coincided with the rapid growth 
of the population and economy, leading to a sharp rise in 
carbon emissions. Laixi and Pingdu had a tiny amount of 
land used for urban construction, a modest economy, and 
a declining population. However, they had a substantial 
quantity of land used for farming, forestry, grassland, and 
rural construction, all of which made them maintain lower 
carbon emissions. 

4.3. The variation tendency of carbon emission 

The CV of carbon emissions ranged from 0.06 to 2, with 
weak variation (CV<=0.1), moderate variation (0.1<CV<1), 
and strong variation (CV>=1) accounting for 22.6%, 73.8%, 
and 3.6% of the whole research area, respectively. The 
majority of Qingdao's carbon emissions have changed in a 
moderate way over the last 20 years. Weak variation, 
moderate variation, and strong variation were distributed 
in the village and agricultural regions, urban areas, and 
forestry and grassland, correspondingly (Figure 6). 
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Municipal districts in possession of moderate variation 
and strong variation over 45%, separately, and Pingdu 
accounted for over 48% of the weak variation and strong 
variation, respectively (Table 3). 

Carbon emissions differed significantly from one another 
in the subareas. Municipal districts (CV=0.32) had the 
greatest degree of variation in carbon emissions, while 
Laixi (CV=0. 2) had the least. Moderate variation accounts 
for 81.7%, 90.4%, 72.1%, and 56.2% of areas in Municipal 
districts, Jiaozhou, Laixi, and Pingdu, respectively, while 
Laixi and Pingdu both have over 26% of areas with weak 
variation. Various types of land-use were the primary 
cause of the distinct variation in carbon emissions. 

From 2000 to 2020, over 80% of Qingdao City experienced 
an increased tendency (β>0) in carbon emissions, and they 
were primarily concentrated in urban areas. Additionally, 
a significant increase in carbon emissions was detected 

across 56% of the study region (Table 3). Agricultural, 
forestry, and grassland zones showed a decreased 
tendency in carbon emissions (Figure 5). Municipal 
districts were responsible for 37.2% of carbon emissions 
with an increased tendency (β>0) and 8.1% with a 
decreased tendency (β<0). Pingdu, Laixi, and Jiaozhou 
accounted for 19%, 13.3%, and 11.3% of carbon emissions 
with an increased tendency (β>0), respectively. 

Carbon emissions have risen sharply over the past two 
decades in Qingdao. Municipal districts exhibited an 
increasingly evident upward tendency in carbon 
emissions, followed by Pingdu. The differences in carbon 
emissions were remarkably compatible with the spatial-
temporal disparities in socioeconomic development and 
land-use patterns in the subareas. 

 

Table 3. Area percentage of CV and variation tendency for carbon emissions in subareas (%) 

Subarea 
CV β<0 β>0 

CV<=0.1 0.1<CV<1 CV>=1 P<0.05 - 0.05<P<0.1 P<0.05 - 

PingDu 49.4 22.4 48.6 1.1 8.7 3.8 4.3 10.9 

LaiXi 16.8 14.1 6.8 0.1 0.8 3.6 5.3 4.4 

JiaoZhou 5.0 14.4 0.0 0.0 0.4 1.8 8.5 1.0 

Municipal districts 28.8 49.1 44.6 0.9 7.2 5.4 24.3 7.5 

Total 100 100 100 2.1 17.1 14.6 42.3 23.9 

Note: P<0.05, extremely significant; 0.05<P<0.1, significant; －, insignificant. 

 

4.4. The driving factors of carbon emissions 

The influence degree of factors on carbon emissions was 
calculated using the factor detector, and the q-statistic of 
all factors ranged from 0.003 to 0.728 (Table 4), the 
explanatory power of factors on carbon emissions, with 
GDPD > PD > FAR > T > BCR > E >LST > S is a descending 
order. In comparison to natural environmental factors, 
socio-economic factors (GDPD, PD, and FAR) 
demonstrated a stronger ability to explain carbon 
emissions. It is on par with the results of a previous 
research paper, which found that an inverted U-shaped 
link between GDP and carbon emissions meets the 
Kuznets curve (Wang and He, 2019), population, 
technology, and urban economic growth all had positive 
correlations with carbon emissions, whereas temperature 
and precipitation had negative correlations (Li et al., 
2019). Inhabitants and buildings are the main components 
of a city and account for the bulk of energy consumption 
for daily activities and urban development. Thus, GDP 
density, population density, and floor area ratio were 
Qingdao's most important and powerful explanatory 
indicators of carbon emissions over the last two decades. 

The results of the interaction detector (Table 5) have 
demonstrated that a combination of socioeconomic and 
environmental factors has a larger effect on carbon 
emissions than either factor has on its own. The 
interaction between GDPD and PD, FAR, BCR, and T 
presented a double-factor enhancement in their 
explanatory power, with the order of the explanatory 
power being GDPD∩PD (81.9%)>GDPD∩FAR(79.4%) 
>GDPD∩BCR(75.5%)>GDPD∩T(74.2%)>PD∩FAR(72.3%)>P
D∩T(61.4%). The interaction of other factors was a 

nonlinear enhancement, with environmental factors 
interacting with GDPD, PD, FAR and BCR accounting for 
more than 70%, 62%, 56% and less than 10% of the spatial 
differences in carbon emissions, respectively. The 
interaction of GDPD, PD, and FAR with the rest of the 
factors can enhance the explanatory power of spatial 
differences in carbon emissions. In particular, the 
interaction between GDPD and PD had an explanatory 
power of 81.9% for the carbon emissions in Qingdao. 

 

Figure 6. Distribution of coefficient of variation (a) and variation 

of carbon emissions (b) from 2000 to 2020 

The statistically significant differences between factors 
discovered by the ecological detector (Table 5) have 
shown that there were significant differences between PD 
and environmental factors, GDPD and socioeconomic 
factors (BCR, FAR), BCR and environmental factors (S, E), 
LST, FAR and environmental factors (T, S, E). Other factors 
did not significantly differ from one another in their 
impact on carbon emissions. 
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Table 4. Q-statistic of the factor detector 

 T S  E LST PD GDPD BCR FAR 

q-statistic 0.074 0.003 0.006 0.005 0.595 0.728 0.039 0.553 

Significance 0 0 0 0 0 0 0 0 

Table 5. Results of the interaction detector and the ecological detector 

Indexes T S  E LST PD GDPD BCR FAR 

T 0.074 N N T T N N T 

S 0.079 0.003 N T T N T T 

E 0.082 0.011 0.006 T T N T T 

LST 0.098 0.012 0.014  0.005 T N N N 

PD  0.614* 0.667 0.622  0.634 0.595 N N N 

GDPD  0.742* 0.740 0.737 0.754  0.819* 0.728 T T 

BCR 0.175 0.051 0.048  0.054 0.717  0.755* 0.039 T 

FAR  0.566* 0.592 0.601  0.586  0.723*  0.794*  0.647* 0.553 

Note: ___is a nonlinear enhancement, and * is a double-factor enhancement. T denotes that Y(Xi) was a significant difference from 

Y(Xh), while N expresses the opposite meaning 

 

Generally, compared with the natural environment, socio-
economic factors were the main drivers of Qingdao's 
carbon emissions from 2000 to 2020. GDP density, 
population density, and floor area ratio were the most 
powerful explanatory indicators for carbon emissions. 

This study solely uses Qingdao as a sample in order to 
investigate the spatiotemporal variation characteristics of 
carbon emissions during the last 20 years due to the limits 
of spatiotemporal data gathering. Regional restrictions 
apply to the changing features and spatiotemporal 
variations of carbon emissions in Qingdao, but they also 
perfectly encapsulate those of the majority of Chinese 
cities. In order to identify the general characteristics of 
urban emissions in China, the national scale and longer 
time series data are required. Only the primary elements 
from the natural environment and socio-economic factors 
are chosen for analysis of the carbon emission factors due 
to data limitations, and the identification of factors has 
certain restrictions. Similar to the findings of other 
studies, socio-economic factors have a large impact on 
urban carbon emissions. For the carbon emissions in 
Qingdao, the interaction between GDPD and PD has an 
explanatory power of 81.9%. This value must be verified 
by the analysis of multi-city, large-scale spatial, and longer 
time series datasets because of the limitations of time and 
space scale. The results of this study will offer guidelines 
for the development of low-carbon cities. 

5. Conclusion 

This study examined the spatiotemporal differences and 
driving factors of carbon emissions in Qingdao City from 
2000 to 2020 using the coefficient of variation, Sen's 
slope, the Mann-Kendall test, and GeoDetector. The 
following conclusions are drawn: (1) Annual increases in 
carbon emissions and the area ratio of high emissions 
have been seen in Qingdao City for the previous 20 years. 
(2) Regional variances were apparent in carbon emissions. 
Carbon emissions were gradually reduced from the city 
center to the periphery. Municipal districts had the largest 
carbon emissions and the highest growth rates. (3) Socio-
economic factors provided the strongest explanatory 

power for carbon emissions, particularly GDP density, 
population density, and floor area ratio. The interaction 
between GDPD and PD can explain 81.9% of the 
distribution in carbon emissions, whereas the effect of the 
natural environment factors was negligible. (4) New 
building energy-saving technologies and materials, low-
carbon energy consumption and lifestyles, appropriate 
economic and population growth, and new technologies 
were the major strategies for the low-carbon city in 
Qingdao. 
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